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Abstract. In this paper, we propose an efficient NAS algorithm for gen-
erating task-specific models that are competitive under multiple compet-
ing objectives. It comprises of two surrogates, one at the architecture
level to improve sample efficiency and one at the weights level, through
a supernet, to improve gradient descent training efficiency. On stan-
dard benchmark datasets (C10, C100, ImageNet), the resulting models,
dubbed NSGANetV2, either match or outperform models from existing
approaches with the search being orders of magnitude more sample effi-
cient. Furthermore, we demonstrate the effectiveness and versatility of
the proposed method on six diverse non-standard datasets, e.g. STL-10,
Flowers102, Oxford Pets, FGVC Aircrafts etc. In all cases, NSGANetV2s
improve the state-of-the-art (under mobile setting), suggesting that NAS
can be a viable alternative to conventional transfer learning approaches
in handling diverse scenarios such as small-scale or fine-grained datasets.
Code is available at https://github.com/mikelzc1990/nsganetv2.
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1 Introduction

Neural networks have achieved remarkable performance on large scale supervised
learning tasks in computer vision. A majority of this progress was achieved by
architectures designed manually by skilled practitioners. Neural Architecture
Search (NAS) [38] attempts to automate this process to find good architectures
for a given dataset. This promise has led to tremendous improvements in convo-
lutional neural network architectures, in terms of predictive performance, compu-
tational complexity and model size on standard large-scale image classification
benchmarks such as ImageNet [27], CIFAR-10 [15], CIFAR-100 [15] etc. How-
ever, the utility of these developments, has so far eluded more widespread and
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practical applications. These are cases where one wishes to use NAS to obtain
high-performance models on custom non-standard datasets, optimizing possibly
multiple competing objectives, and to do so without the steep computation bur-
den of existing NAS methods.

The goal of NAS is to obtain both the optimal architecture and its associ-
ated optimal weights. The key barrier to realizing the full potential of NAS is
the nature of its formulation. NAS is typically treated as a bi-level optimization
problem, where an inner optimization loops over the weights of the network for
a given architecture, while the outer optimization loops over the network archi-
tecture itself. The computational challenge of solving this problem stems from
both the upper and lower level optimization. Learning the optimal weights of
the network in the lower level necessitates costly iterations of stochastic gradient
descent. Similarly, exhaustively searching the optimal architecture is prohibitive
due to the discrete nature of the architecture description, size of search space
and our desire to optimize multiple, possibly competing, objectives. Mitigating
both of these challenges explicitly and simultaneously is the goal of this paper.

Many approaches have been proposed to improve the efficiency of NAS algo-
rithms, both in terms of the upper level and the lower level. A majority of
them focuses on the lower level, including weight sharing [1,18,25], proxy mod-
els [26,38], coarse training [30], etc. But these approaches still have to sample,
explicitly or implicitly, a large number of architectures to evaluate in the upper
level. In contrast, there is relatively little focus on improving the sample efficiency
of the upper level optimization. A few recent approaches [9,17] adopt surrogates
that predict the lower level performance with the goal of navigating the upper
level search space efficiently. However, these surrogate predictive models are still
very sample inefficient since they are learned in an offline stage by first sampling
a large number of architectures that require full lower level optimization.

In this paper, we propose a practically efficient NAS algorithm, by adopting
explicit surrogate models simultaneously at both the upper and the lower level.
Our lower level surrogate adopts a fine-tuning approach, where the initial weights
for fine-tuning are obtained by a supernet model, such as [1,4,5]. Our upper level
surrogate adopts an online learning algorithm, that focuses on architectures in
the search space that are close to the current trade-off front, as opposed to a
random/uniform set of architectures used in the offline surrogate approaches [9,
12,17]. Our online surrogate significantly improves the sample efficiency of the
upper level optimization problem in comparison to the offline surrogates. For
instance, OnceForAll [5] and PNAS [17] sample 16,000 and 1,1601 architectures,
respectively, to learn the upper level surrogate. In contrast, we only have to
sample 350 architectures to obtain a model with similar performance.

An overview of our approach is shown in Fig. 1. We refer to the proposed
NAS algorithm as MSuNAS and the resulting architectures as NSGANetV2.
Our method is designed to provide a set of high-performance models on a cus-
tom dataset (large or small scale, multi-class or fine-grained) while optimizing
possibly multiple objectives of interest. Our key contributions are:

1 Estimate from # of models evaluated by PNAS, actual sample size is not reported.
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Fig. 1. (Top) Overview: Given a dataset and objectives, MSuNAS obtains a task-
specific set of models that are competitive in all objectives with high search efficiency.
It comprises of two surrogates, one at the upper level to improve sample efficiency
and one at the lower level, through a supernet, to improve weight learning efficiency.
(Bottom) Performance of the set of task-specific models, i.e. NSGANetV2s, on three
different types of non-standard datasets, compared to SOTA from transfer learning
[23,31] and semi-/un-supervised learning [2,33]

– An alternative approach to solve the bi-level NAS problem, i.e., simultane-
ously optimizing the architecture and learn the optimal model weights. How-
ever, instead of gradient based relaxations (e.g., DARTS), we advocate for
surrogate models. Overall, given a dataset and a set of objectives to opti-
mize, MSuNAS can design custom neural network architectures as efficiently
as DARTS but with higher performance and extends to multiple, possibly
competing objectives.

– A simple, yet highly effective, online surrogate model for the upper level
optimization in NAS, resulting in a significant increase in sampling efficiency
over other surrogate-based approaches.

– Scalability and practicality of MSuNAS on many datasets corresponding to
different scenarios. These include standard datasets like ImageNet, CIFAR-
10 and CIFAR-100, and six non-standard datasets like CINIC-10 [10] (multi-
class), STL-10 [8] (small scale mutli-class), Oxford Flowers102 [24] (small
scale fine-grained) etc. Under mobile settings (≤ 600M MAdds), MSuNAS
leads to SOTA performance.
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Table 1. Comparison of existing NAS methods

Methods Search
method

Performance
Prediction

Weight
sharing

Multiple
objective

Dataset
searched

NASNet [38] RL C10

ENAS [25] RL � C10

PNAS [17] SBMO � C10

DPP-Net [12] SBMO � � C10

DARTS [18] Gradient � C10

LEMONADE [13] EA � � C10, C100

ProxylessNAS [6] RL+gradient � � C10, ImageNet

MnasNet [30] RL � ImageNet

ChamNet [9] EA � � ImageNet

MobileNetV3 [14] RL+expert � ImageNet

MSuNAS (ours) EA � � � C10, C100,
ImageNet, Pets,
STL-10,
Aircraft, DTD,
CINIC-10,
Flowers102

2 Related Work

Lower Level Surrogate: Existing approaches [4,18,21,25] primarily focus on
mitigating the computational overhead induced by SGD-based weight optimiza-
tion in the lower level, as this process needs to be repeated for every architecture
sampled by a NAS method in the upper level. A common theme among these
methods involves training a supernet which contains all searchable architectures
as its sub-networks. During search, accuracy using the weights inherited from
the supernet becomes the metric to select architectures. However, completely
relying on supernet as a substitute of actual weight optimization for evaluat-
ing candidate architectures is unreliable. Numerous studies [16,35,36] reported
a weak correlation between the performance of the searched architectures (pre-
dicted by weight sharing) and the ones trained from scratch (using SGD) during
the evaluation phase. MSuNAS instead uses the weights inherited from the super-
net only as an initialization to the lower level optimization. Such a fine-tuning
process affords the computation benefit of the supernet, while at the same time
improving the correlation in the performance of the weights initialized from the
supernet and those trained from scratch (Table 1).

Upper Level Surrogate: MetaQNN [1] uses surrogate models to predict the
final accuracy of candidate architectures (as a time-series prediction) from the
first 25% of the learning curve from SGD training. PNAS [17] uses a surrogate
model to predict the top-1 accuracy of architectures with an additional branch
added to the cell structure that are repeatedly stacked together. Fundamen-
tally, both of these approaches seek to extrapolate rather than interpolate the
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performance of the architecture using the surrogates. Consequently, as we show
later in the paper, the rank-order between the predicted accuracy and the true
accuracy is very low2 (0.476). OnceForAll [5] also uses a surrogate model to
predict accuracy from architecture encoding. However, the surrogate model is
trained offline for the entire search space, thereby needing a large number of sam-
ples for learning (16K samples -> 2 GPU-days -> 2x search cost of DARTS for
just constructing the surrogate model). Instead of using uniformly sampled archi-
tectures and their validation accuracy to train the surrogate model to approxi-
mate the entire landscape, ChamNet [9] trains many architectures through full
lower level optimization and selects only 300 samples with high accuracy with
diverse efficiency (FLOPs, Latency, Energy) to train a surrogate model offline. In
contrast, MSuNAS learns a surrogate model in an online fashion only on the sam-
ples that are close to the current trade-off front as we explore the search space.
The online learning approach significantly improves the sample efficiency of our
search, since we only need lower level optimization (full or surrogate assisted)
for the samples near the current Pareto front.

Multi-objective NAS: Approaches that consider more than one objective to
optimize the architecture can be categorized into two groups: (i) scalarization,
and (ii) population based approaches. The former include, ProxylessNAS [6],
MnasNet [30], FBNet [34], and MobileNetV3 [14] which use a scalarized objec-
tive that encourages high accuracy and penalizes compute inefficiency at the
same time, e.g., maximize Acc ∗ (Latency/Target)−0.07. These methods require
a pre-defined preference weighting of the importance of different objectives before
the search, which typically requires a numbers of trials. Methods in the latter cat-
egory include [7,12,13,19,20] and aim to approximate the entire Pareto-efficient
frontier simultaneously. These approaches rely on heuristics (e.g., EA) to effi-
ciently navigate the search space, which allows practitioners to visualize the
trade-off between the objectives and to choose a suitable network a posteriori
to the search. MSuNAS falls in the latter category using surrogate models to
mitigate the computational overhead.

3 Proposed Approach

The neural architecture search problem for a target dataset D =
{Dtrn,Dvld,Dtst} can be formulated as the following bilevel optimization prob-
lem [3],

minimize F(α) =
(
f1(α;w∗(α)), . . . , fk(α;w∗(α)), fk+1(α), . . . , fm(α)

)T
,

subject to w∗(α) ∈ argmin L(w;α),
α ∈ Ωα, w ∈ Ωw,

(1)

2 In the supplementary material we show that better rank-order correlation at the
search stage ultimately leads to finding better performing architectures.
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Fig. 2. Search Space: A candidate architecture comprises five computational blocks.
Parameters we search for include image resolution, number of layers (L) in each block
and the expansion rate (e) and the kernel size (k) in each layer.

where the upper level variable α defines a candidate CNN architecture, and the
lower level variable w(α) defines the associated weights. L(w;α) denotes the
cross-entropy loss on the training data Dtrn for a given architecture α. F : Ω →
R

m constitutes m desired objectives. These objectives can be further divided
into two groups, where the first group (f1 to fk) consists of objectives that
depend on both the architecture and the weights—e.g., predictive performance
on validation data Dvld, robustness to adversarial attack, etc. The other group
(fk+1 to fm) consists of objectives that only depend on the architecture—e.g.,
number of parameters, floating point operations, latency etc.

3.1 Search Space

MSuNAS searches over four important dimensions of convolutional neural net-
works (CNNs), including depth (# of layers), width (# of channels), kernel size
and input resolution. Following previous works [5,14,30], we decompose a CNN
architecture into five sequentially connected blocks, with gradually reduced fea-
ture map size and increased number of channels. In each block, we search over
the number of layers, where only the first layer uses stride 2 if the feature map
size decreases, and we allow each block to have minimum of two and maximum
of four layers. Every layer adopts the inverted bottleneck structure [28] and we
search over the expansion rate in the first 1 × 1 convolution and the kernel size
of the depth-wise separable convolution. Additionally, we allow the input image
size to range from 192 to 256. We use an integer string to encode these architec-
tural choices, and we pad zeros to the strings of architectures that have fewer
layers so that we have a fixed-length encoding. A pictorial overview of this search
space and encoding is shown in Fig. 2.

3.2 Overall Algorithm Description

The problem in Eq. 1 poses two main computational bottlenecks for conventional
bi-level optimization methods. First, the lower level problem of learning the
optimal weights w∗(α) for a given architecture α involves a prolonged training
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Fig. 3. A sample run of MSuNAS on ImageNet: In each iteration, accuracy-prediction
surrogate models Sf are constructed from an archive of previously evaluated architec-
tures (a). New candidate architectures

(
brown boxes in (b)

)
are obtained by solving the

auxiliary single-level multi-objective problem F̃ = {Sf , C} (line 10 in Algorithm 1). A
subset of the candidate architectures is chosen to diversify the Pareto front (c)–(d). The
selected candidate architectures are then evaluated and added to the archive (e). At
the conclusion of search, we report the non-dominated architectures from the archive.
The x-axis in all sub-figures is #MAdds. (Color figure online)

process—e.g., one complete SGD training on ImageNet dataset takes two days
on an 8-GPU server. Second, even though there exist techniques like weight-
sharing to bypass the gradient-descent-based weight learning process, extensively
sampling architectures at the upper level can still render the overall process
computationally prohibitive, e.g., 10,000 evaluations on ImageNet take 24 GPU
hours, and for methods like NASNet, AmoebaNet that require more than 20,000
samples, it still requires days to complete the search even with weight-sharing.

Algorithm 1 and Fig. 3 show the pseudocode and corresponding steps from a
sample run of MSuNAS on ImageNet, respectively. To overcome the aforemen-
tioned bottlenecks, we use surrogate models at both upper and lower levels to
make our NAS algorithm practically useful for a variety of datasets and objec-
tives. At the upper level, we construct a surrogate model that predicts the top-1
accuracy from integer strings that encode architectures. Previous approaches
[5,9,29] that also used surrogate-modeling of the accuracy follow an offline



42 Z. Lu et al.

approach, where the accuracy predictor is built from samples collected sepa-
rately prior to the architecture search and not refined during the search. We
argue that such a process makes the search outcome highly dependent on the
initial training samples. As an alternative, we propose to model and refine the
accuracy predictor iteratively in an online manner during the search. In par-
ticular, we start with an accuracy predictor constructed from only a limited
number of architectures sampled randomly from the search space. We then use
a standard multi-objective algorithm (NSGA-II [11], in our case) to search using
the constructed accuracy predictor along with other objectives that are also of
interest to the user. We then evaluate the outcome architectures from NSGA-II
and refine the accuracy predictor model with these architectures as new train-
ing samples. We repeat this process for a pre-specified number of iterations and
output the non-dominated solutions from the pool of evaluated architectures.

3.3 Speeding Up Upper Level Optimization

Recall that the nested nature of the bi-level problem makes the upper level
optimization computationally very expensive, as every upper level function eval-
uation requires another optimization at the lower level. Hence, to improve the
efficiency of our approach at the upper level, we focus on reducing the number
of architectures that we send to the lower level for learning optimal weights. To
achieve this goal, we need a surrogate model to predict the accuracy of an archi-
tecture before we actually train it. There are two desired properties of such a
predictor: (1) high rank-order correlation between the predicted and the true per-
formance; and (2) sample efficient such that the required number of architectures
to be trained through SGD are minimized for constructing the predictor.

We first collected four different surrogate models for accuracy prediction from
the literature, namely, Multi Layer Perceptron (MLP) [17], Classification And
Regression Trees (CART) [29], Radial Basis Function (RBF) [1] and Gaussian
Process (GP) [9]. From our ablation study, we observed that no one surrogate
model is consistently better than others in terms of the above two criteria on
all datasets (see Sect. 4.1). Hence, we propose a selection mechanism, dubbed
Adaptive Switching (AS), which constructs all four types of surrogate models at
every iteration and adaptively selects the best model via cross-validation.

With the accuracy predictor selected by AS, we apply the NSGA-II algorithm
to simultaneously optimize for both accuracy (predicted) and other objectives of
interest to the user (line 10 in Algorithm 1). For the purpose of illustration, we
assume that the user is interested in optimizing #MAdds as the second objective.
At the conclusion of the NSGA-II search, a set of non-dominated architectures is
output, see Fig. 3(b). Often times, we cannot afford to train all architectures in
the set. To select a subset, we first select the architecture with highest predicted
accuracy. Then we project all other architecture candidates to the #MAdds
axis, and pick the remaining architectures from the sparse regions that help in
extending the Pareto frontier to diverse #MAdds regimes, see Fig. 3(c)–(d). The
architectures from the chosen subset are then sent to the lower level for SGD
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training. We finally add these architectures to the training samples to refine our
accuracy predictor models and proceed to next iteration, see Fig. 3(e).

3.4 Speeding Up Lower Level Optimization

To further improve the search efficiency of the proposed algorithm, we adopt
the widely-used weight-sharing technique [4,21,22]. First, we need a supernet
such that all searchable architectures are sub-networks of it. We construct such
a supernet by taking the searched architectural hyperparameters at their max-
imum values, i.e., with four layers in each of the five blocks, with expansion
ratio set to 6 and kernel size set to 7 in each layer (See Fig. 2). Then we fol-
low the progressive shrinking algorithm [5] to train the supernet. This process
is executed once before the architecture search. The weights inherited from the
trained supernet are used as a warm-start for the gradient descent algorithm
during architecture search.

4 Experiments and Results

In this section, we evaluate the surrogate predictor, the search efficiency and the
obtained architectures on CIFAR-10 [15], CIFAR-100 [15], and ImageNet [27].

4.1 Performance of the Surrogate Predictors

To evaluate the effectiveness of the considered surrogate models, we uniformly
sample 2,000 architectures from our search space, and train them using SGD
for 150 epochs on each of the three datasets and record their accuracy on 5,000
held-out images from the training set. We then fit surrogate models with different
number of samples randomly selected from the 2,000 collected. We repeat the
process for 10 trials to compare the mean and standard deviation of the rank-
order correlation between the predicted and true accuracy, see Fig. 4. In general,
we observe that no single surrogate model consistently outperforms the others
on all three datasets. Hence, at every iteration, we adopt an Adaptive Switching
(AS) routine that compares the four surrogate models and chooses the best based
on 10-fold cross-validation. It is evident from Fig. 4 that AS works better than
any one of the four surrogate models alone on all three datasets. The construction
time of the AS is negligible (relatively to the search cost).

4.2 Search Efficiency

In this section, we first compare the search efficiency of MSuNAS to other single-
objective methods on both CIFAR-10 and ImageNet. To quantify the speedup,
we compare the two governing factors, namely, the total number of architectures
evaluated by each method to reach the reported accuracy and the number of
epochs undertaken to train each sampled architecture during search. The results
are provided in Table 2. We observe that MSuNAS is 20x faster than methods
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Fig. 4. Comparing the relative prediction performance of the proposed Adaptive
Switching (AS) method to the existing four surrogate models. Top row compares Spear-
man rank-order correlation coefficient as number of training samples increases. Bottom
row visualizes the true vs. predicted accuracy under 500 training samples (RBF method
is omitted to conserve space).

that use RL or EA. When compared to PNAS [17], which also utilizes an accuracy
predictor, MSuNAS is still at least 3x faster.

We then compare the search efficiency of MSuNAS to NSGANet [20] and ran-
dom search under a bi-objective setup: Top-1 accuracy and #MAdds. To perform
the comparison, we run MSuNAS for 30 iterations, leading to 350 architectures
evaluated in total. We record the cumulative hypervolume [37] achieved against
the number of architectures evaluated. We repeat this process five times on both
ImageNet and CIFAR-10 datasets to capture the variance in performance due to
randomness in the search initialization. For a fair comparison to NSGANet, we
apply the search code to our search space and record the number of architectures
evaluated by NSGANet to reach a similar hypervolume than that achieved by
MSuNAS. The random search baseline is performed by uniformly sampling from
our search space. We plot the mean and the standard deviation of the hypervol-
ume values achieved by each method in Fig. 5. Based on the incremental rate of
hypervolume metric, we observe that MSuNAS is 2–5x faster, on average, in
achieving a better Pareto frontier in terms of number of architectures evaluated.

4.3 Results on Standard Datasets

Prior to the search, we train the supernet following the training hyperparam-
eters setting from [5]. For each dataset, we start MSuNAS with 100 randomly
sampled architectures and run for 30 iterations. In each iteration, we evaluate 8
architectures selected from the candidates recommended by NSGA-II according
to the accuracy predictor. For searching on CIFAR-10 and CIFAR-100, we fine
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Table 2. Comparing the relative search efficiency of MSuNAS to other single-objective
methods: “#Model” is the total number of architectures evaluated during search,
“#Epochs” is the number of epochs used to train each architecture during search. †

and ‡ denote training epochs with and without a supernet to warm-start the weights,
respectively.

Method Type Top1 Acc #MAdds #Model Speedup #Epochs Speedup

CIFAR-10 NASNet-A [38] RL 97.4% 569M 20,000 57x 20 up to 4x

AmoebaNet-B [26] EA 97.5% 555M 27,000 77x 25 up to 5x

PNASNet-5 [17] SMBO 96.6% 588M 1,160 3.3x 20 up to 4x

MSuNAS (ours) EA 98.4% 468M 350 1x 5†/20‡ 1x

ImageNet MnasNet-A [30] RL 75.2% 312M 8,000 23x 5 up to 5x

OnceForAll [5] EA 76.0% 230M 16,000 46x 0 -

MSuNAS (ours) EA 75.9% 225M 350 1x 0†/5‡ 1x

Fig. 5. Comparing the relative search efficiency of MSuNAS to other methods under
bi-objective setup on ImageNet (a) and CIFAR-10 (b). The left plots in each subfigure
compares the hypervolume metric [37], where a larger value indicates a better Pareto
front achieved. The right plots in each subfigure show the Spearman rank-order cor-
relation (top) and the root mean square error (bottom) of MSuNAS. All results are
averaged over five runs with standard deviation shown in shaded regions.

tune the weights inherited from the supernet for five epochs then evaluate on
5K held-out validation images from the original training set. For searching on
ImageNet, we re-calibrate the running statistics of the BN layers after inheriting
the weights from the supernet, and evaluate on 10K held-out validation images
from the original training set. At the conclusion of the search, we pick the four
architectures from the achieved Pareto front, and further fine-tune for additional
150–300 epochs on the entire training sets. For reference purpose, we name the
obtained architectures as NSGANetV2-s/m/l/xl in ascending #MAdds order.
Architectural details can be found in the supplementary materials.

Table 3 shows the performance of our models on the ImageNet 2012 bench-
mark [27]. We compare models in terms of predictive performance on the val-
idation set, model efficiency (measured by #MAdds and latencies on different
hardware), and associated search cost. Overall, NSGANetV2 consistently either
matches or outperforms other models across different accuracy levels with highly
competitive search costs. In particular, NSGANetV2-s is 2.2% more accu-
rate than MobileNetV3 [14] while being equivalent in #MAdds and latencies;
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Table 3. ImageNet Classification [27]: comparing NSGANetV2 with manual and auto-
mated design of efficient networks. Models are grouped into sections for better visualiza-
tion. Our results are underlined and best result in each section is in bold. CPU latency
(batchsize = 1) is measured on Intel i7-8700K and GPU latency (batchsize = 64) is mea-
sured on 1080Ti. † The search cost excludes the supernet training cost. ‡ Estimated
based on the claim that PNAS is 8x faster than NASNet from [17].

Model Type Search Cost #Params #MAdds CPU GPU Top-1 Top-5

(GPU days) Lat. (ms) Lat. (ms) Acc. (%) Acc. (%)

NSGANetV2-s auto 1† 6.1M 225M 9.1 30 77.4 93.5

MobileNetV2 [28] manual 0 3.4M 300M 8.3 23 72.0 91.0

FBNet-C [34] auto 9 5.5M 375M 9.1 31 74.9 -

ProxylessNAS [6] auto 8.3 7.1M 465M 8.5 27 75.1 92.5

MobileNetV3 [14] combined - 5.4M 219M 10.0 33 75.2 -

OnceForAll [5] auto 2† 6.1M 230M 9.5 31 76.9 -

NSGANetV2-m auto 1† 7.7M 312M 11.4 37 78.3 94.1

EfficientNet-B0 [31] auto - 5.3M 390M 14.4 46 76.3 93.2

MixNet-M [32] auto - 5.0M 360M 24.3 79 77.0 93.3

AtomNAS-C+ [22] auto 1† 5.5M 329M - - 77.2 93.5

NSGANetV2-l auto 1† 8.0M 400M 12.9 52 79.1 94.5

PNASNet-5 [17] auto 250‡ 5.1M 588M 35.6 82 74.2 91.9

NSGANetV2-xl auto 1† 8.7M 593M 16.7 73 80.4 95.2

EfficientNet-B1 [31] auto - 7.8M 700M 21.5 78 78.8 94.4

MixNet-L [32] auto - 7.3M 565M 29.4 105 78.9 94.2

Fig. 6. Accuracy vs Efficiency: Top row compares predictive accuracy vs. GPU
latency on a batch of 64 images. Bottom row compares predictive accuracy vs. number
of multi-adds in millions. Models from multi-objective approaches are joined with lines.
Our models are obtained by directly searching on the respective datasets. In most
problems, MSuNAS finds more accurate solutions with fewer parameters.
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NSGANetV2-xl achieves 80.4% Top-1 accuracy under 600M MAdds, which
is 1.5% more accurate and 1.2x more efficient than EfficientNet-B1 [31].
Additional comparisons to models from multi-objective approaches are provided
in Fig. 6.

For CIFAR datasets, Fig. 6 compares our models with other approaches in
terms of both predictive performance and computational efficiency. On CIFAR-
10, we observe that NSGANetV2 dominates all previous models including (1)
NASNet-A [38], PNASNet-5 [17] and NSGANet [20] that search on CIFAR-10
directly, and (2) EfficientNet [31], MobileNetV3 [14] and MixNet [32] that fine-
tune from ImageNet.

5 Scalability of MSuNAS

5.1 Types of Datasets

Existing NAS approaches are rarely evaluated for their search ability beyond
standard benchmark datasets, i.e., ImageNet, CIFAR-10, and CIFAR-100.
Instead, they follow a conventional transfer learning setup, in which the architec-
tures found by searching on standard benchmark datasets are transferred, with
weights fine-tuned, to new datasets. We argue that such a process is concep-
tually contradictory to the goal of NAS, and the architectures identified under
such a process are sub-optimal. In this section we demonstrate the scalability of
MSuNAS to six3 additional datasets with various forms of difficulties, in terms
of diversity in classification classes (multi-classes vs. fine-grained) and size of
training set (see Table 4). We adopt the settings of the CIFAR datasets as out-
lined in Sect. 3. For each dataset, one search takes less than one day on 8 GPU
cards.

Table 4. Non-standard Datasets for MSuNAS

Datasets Type #Classes #Train #Test

CINIC-10 [10] Multi-class 10 90,000 90,000
STL-10 [8] Multi-class 10 5,000 8,000
Flowers102 [24] Fine-grained 102 2,040 6,149

Figure 1 (Bottom) compares
the performance of NSGANetV2
obtained by searching directly on
the respective datasets to models
from other approaches that trans-
fer architectures learned from
either CIFAR-10 or ImageNet. Overall, we observe that NSGANetV2 sig-
nificantly outperforms other models on all three datasets. In particular,
NSGANetV2 achieves a better performance than the currently known state-of-
the-art on CINIC-10 [23] and STL-10 [2]. Furthermore, on Oxford Flowers102,
NSGANetV2 achieves better accuracy to that of EfficientNet-B3 [31] while using
1.4B fewer MAdds.

5.2 Number of Objectives

Single-Objective Formulation: Adding a hardware efficiency target as a
penalty term to the objective of maximizing predictive performance is a com-
mon workaround to handle multiple objectives in the NAS literature [6,30,34].
3 Due to space constraints, we report results from three datasets in the main paper

and three more in the supplementary material.
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Fig. 7. Scalability of MSuNAS to different numbers and types of objectives: optimizing
(a) a scalarized single-objective on ImageNet; (b) five objectives including accuracy,
Params, MAdds, CPU and GPU latency, simultaneously. (c) Post-optimal analysis on
the architectures that are non-dominated according to different efficiency objectives.

We demonstrate that our proposed algorithm can also effectively handle such
a scalarized single-objective search. Following the scalarization method in [30],
we apply MSuNAS to maximize validation accuracy on ImageNet with 600M
MAdds as the targeted efficiency. The accumulative top-1 accuracy achieved
and the performance of the accuracy predictor are provided in Fig. 7a. Without
further fine-tuning, the obtained architecture yields 79.56% accuracy with 596M
MAdds on the ImageNet validation set, which is more accurate and 100M fewer
MAdds than EfficientNet-B1 [31].

Many-Objective Formulation: Practical deployment of learned models are
rarely driven by a single objective, and most often, seek to trade-off many dif-
ferent, possibly competing, objectives. As an example of one such scenario, we
use MSuNAS to simultaneously optimize five objectives—namely, the accuracy
on ImageNet, #Params, #MAdds, CPU and GPU latency. We follow the same
search setup as in the main experiments and increase the budget to ensure a
thorough search on the expanded objective space. We show the obtained Pareto-
optimal (to five objectives) architectures in Fig. 7b. We use color and marker
size to indicate CPU and GPU latency, respectively. We observe that a Pareto
surface emerges, shown in the left 3D scatter plot, suggesting that trade-offs
exist between objectives, i.e., #Params and #MAdds are not fully correlated.
We then project all architectures to 2D, visualizing accuracy vs. each one of the
four considered efficiency measurements, and highlight the architectures that
are non-dominated in the corresponding two-objective cases. We observe that
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many architectures that are non-dominated in the five-objective case are now
dominated when only considering two objectives. Empirically, we observe that
accuracy is highly correlated with #MAdds, CPU and GPU latency, but not
with #Params, to some extent.

6 Conclusion

This paper introduced MSuNAS, an efficient neural architecture search algo-
rithm for rapidly designing task-specific models under multiple competing objec-
tives. The efficiency of our approach stems from (i) online surrogate-modeling
at the level of the architecture to improve the sample efficiency of search, and
(ii) a supernet based surrogate-model to improve the weights learning efficiency
via fine-tuning. On standard datasets (CIFAR-10, CIFAR-100 and ImageNet),
NSGANetV2 matches the state-of-the-art with a search cost of one day. The
utility and versatility of MSuNAS are further demonstrated on non-standard
datasets of various types of difficulties and on different number of objectives.
Improvements beyond the state-on-the-art on STL-10 and Flowers102 (under
mobile setting) suggest that NAS is a more effective alternative to conventional
transfer learning approaches.
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