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Abstract

A topological structure based on hashing for an
algorithmic reaction system is introduced. Hash-
ing, as a very efficient storage method for certain
problems, uses an important property of the com-
puter: Its ability to accurately access a specific
address in memory space. It is shown, how a self-
organising system can be built with this method.
We discuss experiments with a reaction system
based on the resulting hash topology.

Keywords: artificial life, self-evolution, prebiotic evo-
lution, molecular computer, self-programming, autokat-
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1 Introduction

Computer models can be used to study complex phe-
nomena of self-organization. Life itself has become the
topic of such studies in recent years [13]. A sub-class
of models are systems that are inspired by chemical re-
action systems [8, 15, 18]. Other simulations intend to
model other levels of life-like behavior, e.g. the evolution
of cells and organisms [14, 16].

These models nearly always apply the Euclidean topol-
ogy of physical space [1] if spatial structures are used.
Even Tierra [16] is influenced by the euclidean space
metaphor. There, the pattern search mechanism induces
a one dimensional space.

In this paper we will introduce a new method for creat-
ing a ”spatial” world with self-organizing topology that
tries to respect the medium ”computer” as much as pos-
sible'. The method will be based on hashing.

Our goals are primarily:

(1) To introduce a method for creating a self-organizing
topology.
In systems like AlChemy [8] or machine-tape-
rewriting systems [10, 18] the same object is inter-
preted in two ways. (1) It can be seen as pure, pas-
sive data, or (2) it can be transformed (folded) to

1With the term ”computer” we refer to today’s conventional
von-Neumann computer.
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Figure 1: Three functions of an object: (1) data, (2)
machine and (3) spatial structure.

an active operator (machine) which is able to pro-
cess other objects as data in order to produce new
objects. Here, we will introduce a third interpreta-
tion. Besides the dualism of data and operator, the
representation of an object will be used to constitute
a topological relation among the objects (Fig. 1).

(2) To show that the presented method is feasible and has
the desired properties.
This is done by three series of experiments which
show that introducing the hashing-topology increases
the phenomenally repertoire of an autokatalytic reac-
tion system. The experiments will not allow general
conclusions about spatially self-organizing systems.

(3) To show that information processing systems used in

computer science have inherent properties for self-
organisation and cvolution.
Two concepts of computer science, a finite state ma-
chine and a hashing function, are joined by a sim-
ple algorithm. The resulting dynamical system shows
complex self-organizing behaviours, which can not be
assigned to the surrounding algorithm but have to be
seen as inherently rooted in the computational sub-
systems.

The motivation of this work is not to model a certain
biological system. Rather, the system presented here can
be seen as a model for (spatially) self-organizing systems.



2 The Hashing Method

Hashing is an efficient and widely used technique in
Computer Science for implementing dictionaries or sets.
By careful design, storage management by hashing re-
quires only a constant time per lookup. The aim of
hashing is to find a certain object s € S from the set
S specified by a key k = key(s),k € K in a large mem-
ory array.

The essential idea is that the (possibly infinite) set S
of objects is partitioned into a number np of ”classes”
with finite content by the hash function

hash : K —{0,1,...,ng — 1}. (1)

The classes are called buckets and each object s belongs
to bucket hash(key(s)). In order to look up an object
of the memory array, its corresponding bucket number
hash(key(s)) is calculated and the (fixed-sized) bucket
is searched for the object.

Problems arise when more objects should be stored in
a bucket then it can hold: If we try to place s in a bucket
hash(key(s)) and find it already filled up, a ”collision”
occurs. In this situation a rehash strategy chooses a set
of alternative locations in which storage is tried. In the
worst case, this rehashing requires time proportional to
the number of objects stored in the memory array.

An example to illustrate the hashing method is the
following table. Tt shows a memory array (called hash
table) where the stored objects are pairs of name and
phone number. The key is the name. The hash value
hash(name) is defined as the number characters in
name:

bucket number key phone number

0 -empty- -empty-

1 -empty- -empty-

2 -empty- -empty-

3 Ted 0234 4711

4 -empty- -empty-

5 Peter 0231 9700

6 Walter 0042 8146

7 -empty- -empty-
np

3 Generating Topology through Hashing

In contrast to the real world, distances between memory
cells is independent of their position in a computer. 2.
For example, the CPU time a copy instruction consumes
is constant no matter to what location the data is trans-
ferred. This is an important difference when studying
life, because recent work suggests that topological struc-
tures play an important role in the evolution of life.

2In reality, different memory types exist and transfer between
them takes different time.

In artificial life (”AL”) systems relationships among
systems or sub-systems are implemented by various tech-
niques which are consuming computational resources like
CPU time and memory space. For example, pattern
matching is often used in Tierra-like systems for address-
ing memory locations. In other models the relationships
are stored explicitly as a graph which may need a lot of
memory.

In systems like ” The Game of Life” [6] cells occupy a
grid inspired by Euclidean topology. Already Ray has
pointed out, however, that such an ”space” does not ex-
ist in a computer, and that when we intend to instanti-
ate an AL system in a computer we should ”respect the
medium” [16]. We will follow this philosophy by using
the hashing method for generating a topology because
accessing a memory location via a bucket number is a
more natural and adapted way to manipulate memory
in a computer.

In the following we shall see what memory access has
to do with topology for interactions. Suppose two objects
s1 and sy interact and produce a result s3. If there is
no topological structure s3 can be stored at any random
position in memory. This corresponds to a well-stirred
reactor or a ”bag full of enzymes”.

We could define a neighborhood of an object s by intro-
ducing a Euclidean topology for objects. Alternatively,
we could simply use a hash function hash(key(s)) which
would always return the bucket number s is related to.
This would generate a natural topology for objects s.
It should be noted that this topology is under control of
the objects (molecules, individuals) themselves. There is
no algorithm ”on top” of the objects, which determines
the connection among elements, like, e.g., in a system
where an Evolutionary Algorithm evolves a Neural Net-
work. The phenomenon that a system actively manip-
ulates its spatial relationships can be found in nature,
too. Examples are the cytosceleton or the human-made
traffic/transportation system.

4 The Binary String System

This section describes the system where we have applied
hashing.

The system is inspired by (bio-)chemical reaction sys-
tems like the RNA world, where molecules collide and
interact to produce new molecules [3]. Tt can be called
an artificial chemistry, because the interaction rules
are defined by abstract algorithms. Through this ab-
straction one tries to extract the logic of information
processing rather than simulating physical details [5].

The system consists of the following three components:

(1) A soup (population) of objects.
These objects may be character sequences [11],
lambda-expressions [8], binary strings [18, 2] or num-

bers. Here, we use binary strings with a constant



length of 32 bit.

(2) A collision or reaction rule.
A collision rule defines the interaction among two ob-
jects s1 and s; which may lead to the generation of
new objects, e.g. s3.

(3) An algorithm to run the system.
Special instances of the algorithm used in this con-
tribution can also be found with minor modifications
in [8, 11, 18, 2].

4.1 The soup

The soup consists of a collection of ng buckets. Each
bucket contains nys objects. The total soup size is M =
np X nps. As already said before, an object here is a
binary string s € {0, 1}3? of fixed size 32.

4.2 The collision rule

The collision rule is motivated by the RNA world where
the molecules have two functions. They can either act
as enzymes or be processed by other enzymes. In the
first role they act as active machines and in the second
role they are processed as passive data. This dualism
can already be found in conventional computer hardware
where binary strings represent programs as well as data.

We call the special reaction rule automata reaction,
because it 1s based on a finite state automaton which is a
blend of a Turing-machine and a register machine. The
Typogenetics of Hofstadter [9] has inspired this model.

The automata reaction instantiates a deterministic
reaction sy + sy = s3, where s1,s2,53 € {0,1}3%
In order to calculate the product string ss, string s;
is "folded” into the instruction for an automaton A,
which gets s; as an input. The construction of the
automaton ensures that it will always halt after a fi-
nite number of steps. Because the automaton is finite
and deterministic, this reaction rule defines a functions
10,1332 x {0,1}3%2 — {0,1}32.

Figure 2 shows the structure of the automaton. It
contains two 32-bit registers, the IO register and the
operator register. At the outset, operator string s is
written into the operator register and operand ss into the
10 register. The program is generated from s; by simply
mapping successive 4-bit segments into instructions. The
resulting program is executed sequentially, starting with
the first instruction. There are no control statements for
loops or jumps in the instruction set.

Each 32-bit register has a pointer, referring to a bit
location. The IO pointer refers to a bit ' in the 1O
register and the operator pointer refers to a bit b in the
operator register. Bits b and &’ are inputs to the ALU.
The ALU operation result is stored at the IO pointer’s
location replacing b’.

[1100101101011101010111100010110[1]
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Figure 2: The finite and deterministic automaton used.
It carries out the reaction s; + s9 —> s3. S1 is writ-
ten into the operator register and specifies the program.
The 1/0 register is initialized with sy and contains, after
executing the program, the result string ss.

For a precise formal specification of the automata re-
action, see the source code, available under [7].

5 The Hash-reactor Algorithm

The following general algorithm is used to run the binary
string system:

1 by < choose Buckety()

2 51+ getObj(hy)

3 by < choose Bucketz(s1, b1)

4 59 getObj(bs)

5  products « collide(sy, s2)

6  for each s3 € products do

7 bz < choose Buckets(s1, sa, b1, ba)
8 storeObj(ss, b3)

9 done

10 goto 1 (iterate)

S1,89,83 are binary strings and b1,b9,03 €
{0,1,...,ng — 1}. The function chooseBucket;
selects a bucket number. For chooseBuckets and
choose Buckets a hash function can be used to calculate
by and bg, respectively. The function getObj(b) returns a
randomly selected string from bucket b. The procedure
storeObj(s,b) replaces a string in bucket b by s. The
strategy for the replacement is first-in-last-out.

M iterations of the algorithm are called a generation.
This notion is used to generate a time scale. When using
”generation” instead of “number of iteration” the com-
parison of runs with different soup sizes becomes more
straight forward.



6 Visualisation

6.1 Macroscopic Measurements

To analyze the experiments we have used the following
measurements. These methods try to observe the whole
system, by mapping its high-dimensional state into a low-
dimensional space which can be displayed over time.

Diversity (Div):

The diversity Div is simply defined as the number of
different string types in the soup.

Innovativity (Inn):

The (total) innovativity at time step ¢ for the time
window [0,¢] is the average number of string types —
generated in one iteration of the algorithm — that have
not appeared before in the system during the time win-
dow.

Distance Distribution Complexity:

To measure the complexity of the mix the distance
distribution complexity ("DDC”) [12] is applied. Given
a discrete distance measure D : P x P — IN the distance
distribution is defined as the relative frequency of the
distance value d € IN:

2

f(d):m

The DDC is then defined as the Shannon entropy of the
distribution of distance values:

DDC(P) := =" f(d)log(f(d))

For the following analysis D is the Hamming-distance.
This simple and fast measure is sufficient, because no
shift, insert or delete operation is taking place. The DCC
does not take into account a topology.

6.2 Visualisation of the Topology

In order to visualize the topology we map the state of the
soup on two graphs. The first graph G; = (V, E1) should
capture the connections imposed through the selection of
by by the function choose Buckets(...). Tt is defined as:

V= {0,...,7’LB— 1},
E = {(bl,bg)l(bl,bg) S V2 and ds; € Bucket(bl) :
choose Buckety (..., s1) = ba}

and its edges are displayed as dotted lines.
The edges for G2 = (V, E3) are defined accordingly:

V= {0,...,77,3— 1},
By = {(bg,bg)l(bg,bg) € V2 and sy € Bucket(bg) :
choose Buckety(. .., s3) = b3}

and are printed as solid lines.

H(Si’sj)lsi’sj €Pi< j’D(Siﬂsj) = d}|

6.3 Spatial Complexity

Spatial complexity can be measured by using another
Shannon entropy based observable:

Let p; be the probability, that a bucket i is selected to
be the target for s3 in one iteration of the hash-reactor
algorithm. For a randomly initialized soup and a well
defined hash function, p; should be approximately 1/ng
foralli € {0,...,ng—1}. The spatial complexity is then
defined as

nB—l

SPC(P)=— Y pilogpi. (2)
i=1

Here, p; is estimated by running the algorithm for 10000
iterations without changing the state of the soup (skip-
ping step 8) and counting how often the bucket i would
be a target for the insertion of ss.

7 Experiments

First we shall discuss a reference experiment.

7.1 A Well-stirred Tank Reactor

The hash-reactor algorithm is able model a well-stirred
tank reactor by defining choose Bucket;(...) to return a
random bucket number. In such a case, no topological
structure exists and every string reacts with any other
string with equal probability. For a large reactor size the
behavior of this system can be modeled — in principle —
by of ordinary differential equations [17]. For the systems
discussed here, however, the number of different string
types is too high to make this method feasible.

Figure 3 shows an example of the system behavior for
the well-stirred case. The time development of the con-
centration of some representative string types and total
number of different string types i1s shown. During the
first 20 generations a more or less complex evolutionary
process can be observed, where new strings appear and
”weaker” ones are replaced. After generation 20 this
”pre-biotic” evolution declines and finally comes to an
end. The remaining organization structure consists of
very few (4) string types which are able to reproduce
themselves. They are not able to generate totally new
string types and innovativity is 0.

In this well-stirred reactor, the fastest replicating or-
ganization has superseded every other organization. As
has been noted elsewhere, stable co-existence of many
different species is practically impossible in well-stirred
systems [8].

In the following subsections we shall describe two ex-
periments making use of two different variants the hash-
reactor algorithm and compare their behavior to the well-
stirred case.
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Figure 3: Well-stirred tank reactor.
tomata reaction.

M = 10000, au-

7.2  FEzxperiment 1

In this experiment the operator string s; and the operand
string s, are selected randomly from the soup. The
bucket where the product sz of their collision is stored
is determined by a hash function that maps the product
string s3 to a distinct memory location. The key of s3 is
the string itself. The setup of the experiment reads:

choose Buckety () = randomBucket()
choose Buckety(. . .) = randomBucket()
choose Buckets(...,s3) = hash(key(ss))
key(s) =s, s€{0,1}3
hash(s) =5 mod ng

np = 104

Nps =1

collision = automata reaction

Note that the function choose Bucket3(...,ss) is de-

terministic here. The soup is initialised with M =
np * nps random strings.

Typical resulting behaviour is shown in Figure 4.
Compared to Figure 3 the diversity, complexity and in-
novativity are much higher in the long run. The soup
is not overrun by a single (quasi)species. Many different
organizations are coexisting, even if the simulation time
is extended to more than 10,000 generations.

The innovativity is high because (i) the diversity is
high and because (ii) every string can interact with every
other string. With respect to the interaction, the soup
is still well-stirred and the interaction between different
string types is not constrained by the topology.

7.3  Erperiment 2

Like in the previous experiment the location of the opera-
tor string s; is chosen randomly. But now the bucket the
operand ss is chosen from is in turn determined by the
structure of the operator s;. The target bucket where
the reaction product sz is stored is determined by the
structure of s5. In addition, we apply two different key
functions to s; and sg respectively. keys(s1) extracts 16
bits out of the center of s; and keys(sz) extracts the
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Figure 4: Ezperiment 1. The diversity, innovativity, dis-
tance distribution complexity and spatial complexity are
shown. np = 1000, np, = 10, soup initialized with 10000
random strings.

rightmost 16 bits of s3. The setup reads:

choose Bucket () = randomBucket()

choose Buckety(...,s2) = hash(keya(s1))

choose Buckets(...,s3) = hash(keys(s2))

keys(s) = (523, 5B

keys(s) = (5(15), .. .,5(0))

hash(k) = maximum entropy

np = 102

Nps =10

collision = automata reaction

with s = (5(31), s(30) .,5(0)) € {0,1}3%2 and k €

{0,1}*¢. In order to map the 16 bits of the key to a

bucket number we have applied a hash function with
maximum entropy. This means that there is no cor-
relation between the key and the memory location it
is mapped to. This is implemented by a deterministic
pseudo-random number generator with high-dimensional
internal state.

In Figure 5 the same macroscpic measurements are
displayed as for the well-stirred case and Experiment 1.
As expected, the diversity and innovativity is lower than
in Experiment 1, but there are still many different string
types.

Figure 6 shows a small time window of the soup. Three
different dynamical behaviors can be observed. 1. Sta-
sis: Bucket 122 (left of 123, unnumbered) shows no alter-
ations. This is due to the fact that there is no reaction
producing a product which is inserted into this bucket.
2. High activity: Bucket 123 shows a high turn-around
of strings. The situation, however, is rather stable, be-
cause 1t can hardly be invaded by other string types.
New string types are overwritten quickly. 3. Punctu-
ated equilibrium: In bucket 125 a long periop of stasis
is suddenly interruped by fluctuations leading to a new
ensemble of strings.
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The development of the topology in the vicinity of
bucket 124 is depicted in Figure 7 and 8. The relation-
ships to other buckets are reduced.

& Discussion and Conclusion

e This contribution shows how to use efficient tech-
niques of computer science to create complex self-
organizing systems. We used hashing to create a
topology which co-evolves with the objects (strings)
in the system.

e The complexity of the behavior is high if one con-
siders the simplicity of the algorithm and the small
size of the objects (32 bit). The monitoring meth-
ods used here have shown some interesting aspects
like the formation of a topology. For a deeper under-
standing, however, more analysis tools are needed.

e The system shows features like the formation of self-
replicating autocatalytic networks, punctuated equi-
libria, development etc. It should be noted that
we have not used any explicit variation operators
like mutation (external noise) nor any explicit fit-
ness function. Instead, variation is carried out by the
strings themselves in their machine form. Therefore
we have called this phenomenon self-evolution.

The term ”mutation” is used to characterize undi-
rected variation in a genome. But here, the machines
can ”decide” how to change an operand. So, we sug-
gest the term active variation partially following
Ikegami and Hashimoto who call the variation in their
system ”active mutation” [10].

e Reaction systems — like the system discussed here —
are able to perform useful computations [4]. Future
research will aim at implications of artificial topolog-
ical structures on the ability of computation.

bucket number

125 126

123

900

d0db5c66
70db5c66
f 0db5c66

fb01299c
fb012996
fb01299e
fb012999

time

b301299c
b3012993
3301299d
f 0db5c66

3b01299d
bb01299e
bb012998
bb012993

1500

Figure 6: Erperiment 2: Buckets 122 (unnumbered) and
123-126 are shown for every 5th generation during the
time 900 - 1500. Different colors are assigned randomly
to string types.
the soup.

One pizel represents a single string in



generation 10

generation 30

Figure 7: Ezperiment 2: The early development of the
topology in experiment 2 1s shown in the vicinity of bucket
124 for generations 10, 30 and 125. The dotted edges
represent the selection of the operand so by the operator
s1 (ba < hash(keya(s1))), the solid lines the selection of

the target bucket bz by s2 (b + hash(keys(s2))) respec-
tively.

generation 250

429

Figure 8: Ezperiment 2: The topology in experiment 2 is
shown in the vicinity of bucket 124 for generations 250,
500, 9000. The dotted edges represent the selection of
the operand sy by the operator sy (ba < hash(keya(s1))),
the solid lines the selection of the target bucket by by s
(bs + hash(keys(s2))) respectively.
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