Check for
Updates

A Double Lexicase Selection Operator for Bloat Control in
Evolutionary Feature Construction for Regression

Hengzhe Zhang
hengzhe.zhang@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

Wolfgang Banzhaf
banzhafw@msu.edu
Michigan State University
East Lansing, MI, USA

ABSTRACT

Evolutionary feature construction is an important technique in
the machine learning domain for enhancing learning performance.
However, traditional genetic programming-based feature construc-
tion methods often suffer from bloat, which means the sizes of
constructed features increase excessively without improved perfor-
mance. To address this issue, this paper proposes a double-stage
lexicase selection operator to control bloat while not damaging
search effectiveness. This new operator contains a two-stage se-
lection process, where the first stage selects individuals based on
fitness values and the second stage selects individuals based on
tree sizes. Therefore, the proposed operator can control bloat mean-
while leveraging the advantage of the lexicase selection operator.
Experimental results on 98 regression datasets show that compared
to the traditional bloat control method of having a depth limit, the
proposed selection operator not only significantly reduces the sizes
of constructed features on all datasets but also keeps a similar level
of predictive performance. A comparative experiment with seven
bloat control methods shows that the double lexicase selection op-
erator achieves the best trade-off between the model performance
and the model size.

CCS CONCEPTS

+ Computing methodologies — Genetic programming.

KEYWORDS

Evolutionary feature construction, genetic programming, bloat con-
trol

ACM Reference Format:

Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang.
2023. A Double Lexicase Selection Operator for Bloat Control in Evolu-
tionary Feature Construction for Regression. In GECCO ’23: The Genetic

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

GECCO 23, July 15-19, 2023, Lisbon, Portugal

© 2023 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 979-8-4007-0119-1/23/07...$15.00
https://doi.org/10.1145/3583131.3590365

Qi Chen
qi.chen@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

1194

Bing Xue
bing.xue@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

Mengjie Zhang
mengjie.zhang@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

and Evolutionary Computation Conference, July 15-19, 2023, Lisbon, Portugal.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3583131.3590365

1 INTRODUCTION

Feature construction is a critical and challenging task in a machine-
learning pipeline. The general idea of feature construction is to
construct a set of new features {¢1, ..., dm} to improve the learn-
ing performance on a given dataset {{x1,y1},..., {xn, yn}} rather
than learning on the original features {xl, ..., xP}. In the feature
construction domain, genetic programming (GP) based feature con-
struction methods have gained significant success [4, 40]. GP has
been widely used to automatically construct features because its
flexible representation and gradient-free search mechanism make
it suitable for constructing optimal features based on arbitrary
datasets and machine learning algorithms, especially for enhancing
non-differentiable machine learning algorithms.

Among all GP representations, tree-based GP is the most popular
one for evolutionary feature construction tasks [34, 39, 40]. This
is because features can be naturally represented by an expression
tree ¢. Based on the tree representation, variation operators in
GP can iteratively cross two subtrees or mutate one subtree to a
newly generated subtree to discover new features. Using the score
provided by the fitness function and the selection pressure imposed
by the selection operator, GP can gradually discover expressive
features that improve the learning performance on a given dataset.

Although tree-based GP methods have become popular in the
machine learning domain, bloat hinders their further development.
Due to the bloat phenomenon in GP, it tends to generate large mod-
els, but the increase in model size does not improve performance.
The explanations for bloat range from hitchhiking [33], to defense
against crossover [3], removal bias [31] and the nature of a program
search space [16]. The hitchhiking explanation [33] suggests that
introns accidentally attach to a GP tree and survive during the
selection process because they do not have an impact on fitness.
The defense against crossover [3] and removal bias [31] hypotheses
claim the variation operator on exons is often disruptive. Thus,
bloated GP trees have a higher chance of survival because they
can resist destructive variations. The nature of the program search
space [16] explanation posits that there are more large and good
programs than small and good programs in the GP search space
because of the existence of various introns. Thus, it is easier for GP
to find large and good programs.

https://doi.org/10.1145/3583131.3590365
https://doi.org/10.1145/3583131.3590365
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590365&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Regardless of the reason for bloat, it is widely acknowledged that
solving bloat can increase search efficiency and improves the inter-
pretability of the final model [30]. In recent years, there are a lot of
bloat control methods modifying variation operators, fitness func-
tions and selection operators. Among these bloat control methods,
selection-based bloat control methods received a lot of attention as
it is easy to implement, and requires little domain knowledge.

In the GP domain, a relatively new operator named the lexicase
selection [13] has gained wide attention in recent years. Different
from the tournament selection operator which selects better-fitted
parent individuals, the lexicase selection operator selects individ-
uals based on the semantics of each individual. The semantics
of a GP individual refers to the output or behavior of the indi-
vidual. For regression problems, the semantics can be defined as
{Y1,...,4yn} Then, based on the semantic information, fitness cases
are defined as the mean squared error made on each data instance,
ie, {(g1—y1)? ..., (Yn — yn)?}. By considering the fitness cases of
each individual, the lexicase selection operator constructs multiple
filters to select GP individuals in a more diverse way, which avoids
GP to get stuck at a local optimum. For regression problems, it is
worth noting that the automatic € lexicase selection operator [13]
is used to replace the lexicase selection operator for better search
effectiveness.

Although the lexicase selection operator has demonstrated better
performance than the tournament selection operator in many cases,
it still suffers from bloat and most existing bloat control strategies
in selection operators are designed for the tournament selection
operator [18, 19]. Consequently, it is worthwhile to develop a bloat
control method for lexicase selection. Recently, a variant of the lex-
icase selection operator named Lexi? has been proposed to control
bloat [9]. This selection operator uses the tree size as a criterion to
break a tie when the lexicase selection operator still cannot select
the best individual after examining all training cases. When facing
a tie, the Lexi® operator prefers the smaller individual among the
remaining individuals, thereby bloat can be reduced to a certain
extent while not sacrificing the search effectiveness. Experimental
results confirm its good performance in bloat control on Boolean
problems and classification problems. However, such problems have
discrete outputs, and thus devising a tie-breaking strategy to facili-
tate the generation of smaller GP individuals would take effect. For
regression problems, existing studies show that only a few training
cases are enough to select the parent individuals because of the
continuous output [13]. Therefore, a tie-breaking strategy may not
be effective in regression problems, necessitating the design of a
bloat control strategy that is suitable for regression tasks.

1.1 Goals

The overall goal of this work is to develop a bloat control strat-
egy to enhance the lexicase selection operator in tree-based evolu-
tionary feature construction algorithms on regression problems 1.
Specifically, we aim to make GP prefer smaller models during the
evolutionary process while not hurting search effectiveness, i.e.,
reducing the size of ineffective codes. To achieve this goal, we pro-
pose a double lexicase selection (DLS) operator in this paper. The

general idea of the DLS operator is to split the selection process

Source Code:https://tinyurl.com/DLS-GPFC

1195

Trovato and Tobin, et al.

into two stages. In the first stage, the DLS operator selects mul-
tiple candidates based on fitness/semantics using the automatic
e-lexicase selection operator. In the second stage, the DLS operator
selects the parent among all candidates using the roulette wheel
selection operator to select an individual according to the model
size. By employing such a two-stage selection process, we can take
the model sizes into account as an optimization goal, while not
reducing the selection pressure. In summary, this work covers the
following three objectives:

e Introducing a two-stage selection mechanism to lexicase
selection considering both fitness values and model size in
the selection stage.

Developing a size-based roulette wheel selection operator
to have a high probability to select good individuals with
smaller model sizes, while not completely ignoring good but
big individuals.

Investigating whether the proposed selection operator can
surpass existing selection operators with bloat control meth-
ods.

1.2

The rest of this paper is organized as follows. Section 2 introduces
the related work of bloat control methods and selection operators
in GP. Section 3 shows the details of the proposed DLS operator.
Section 4 and Section 5 present experimental settings and experi-
mental results, respectively. Section 6 gives some further analysis of
parameter settings and evolved models. The conclusion and future
directions are presented in Section 7.

Organization

2 RELATED WORK
2.1 Bloat Control Methods

Research on bloat control in the GP domain has been developed
over thirty years [20]. Generally speaking, bloat control strategies
can be embedded into evaluation, selection or variation operators.
For the bloat control strategy used in the selection operator, the
most representative method is the depth limit method [12], which
sets a hard limit to GP to avoid oversized models. Following up the
depth limit method, researchers developed more advanced methods
to dynamically determine the depth limit based on the distribu-
tion of good individuals [17, 30]. These methods estimate the size
distribution of good individuals and try to generate or preserve
individuals obeying the expected distribution.

As for the bloat control approach based on evaluation methods,
the most intuitive way is to add model size as a part of the fitness
evaluation, which is known as the parsimony pressure method [37].
However, it is not an easy task to determine the weight between the
model performance and the model size. To avoid such a dilemma,
Zhang and Rockett [41] developed a multi-objective method to
balance the trade-off between model performance and model size. A
problem of multi-objective-based GP (MOGP) is that some existing
multi-objective evolutionary algorithms over-exploit small but low-
performance solutions. For example, a recent study shows that
over 30% GP trees in standard MOGP only have one node, which is
not enough for achieving good performance [17]. To address this
issue, an a-dominance relationship was introduced into MOGP [35].
Rather than balancing the trade-off between model performance

A Double Lexicase Selection Operator for Bloat Control in Evolutionary Feature Construction for Regression

and model size, the Tarpeian method [28] controls bloat by directly
assigning bad fitness values to a part of individuals larger than the
average tree size in the population.

In contrast to designing a bloat control strategy in selection op-
erators and evaluation functions to passively control bloat, bloat
control strategies in the variation operators actively control bloat
by simplifying a GP tree. A representative example is size-fair
crossover [15], which controls bloat based on the crossover bias
theory [29]. Supposing the size of the first subtree to be crossed is
Sa, the size-fair crossover operator restricts the size of the second
subtree to be less than 2s, + 1. Another representative example of
controlling bloat through variation operators is prune-and-plant [1],
which randomly splits a GP tree into two separate trees and places
them into the population. Compared to designing a bloat control
strategy in selection operators, incorporating a bloat control method
in variation operators may require more effort due to the existence
of different representations in GP. For strongly typed genetic pro-
gramming [3], linear genetic programming [5], stack-based genetic
programming [32] and other variants of GP, bloat control strategies
need to be redesigned to adapt to the change in variation operator
caused by different representations [27].

For the bloat control strategies based on variation operators,
there is a special kind of strategy named program simplification.
Unlike traditional bloat control methods, program simplification
methods require the simplified program to have equal or similar
semantics to the original program. For the program simplification
methods to guarantee exact equivalent semantics, representative
examples include removing inactive codes or simplification by math-
ematical rules. The advantage of exact simplification is that it guar-
antees to not impair the model performance, but the magnitude of
size reduction may be limited. As for approximate simplification
methods, it can replace parent nodes with child nodes with similar
semantics [11] or replace a subtree with a randomly generated se-
mantically similar tree [22]. Compared to the exact simplification
method, the approximate method can simplify programs even more
but at the risk of compromising predictive performance.

2.2 Selection Operator

The selection operator is one driving force of GP because it deter-
mines which genetic materials will survive and reproduce. The most
widely used selection operator in GP is the tournament selection
operator. This operator has been widely studied in the GP domain
in the past thirty years, e.g., enhancing it via taking multiple loss
functions into consideration [38] or making it easy to use with an
automatic tournament size control technique [36]. In recent years,
researchers begin to take the semantic information of GP individu-
als in the selection process to encourage population diversity. The
representative selection operators include: lexicase selection [13],
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [24]
and GP with transformed semantics entropy-based diversity pre-
serving framework (GPED) [6]. The key idea of the lexicase selec-
tion operator is to randomly construct filters based on semantics
to filter out individuals until only one individual remains, where
the simplest way is to filter out individuals which do not have the
best semantic value on a randomly selected case i. However, this
approach is too strict for regression problems, and thus La Cava

1196

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

A A
@D ©H)

GP Trees

Figure 1: The multi-tree GP representation used in evolution-
ary feature construction.

et al. [13] propose an automatic e-lexicase selection operator to
allow individuals within the median absolute deviation to survive.

From the perspective of bloat control, some researchers have
already considered tree size as one criterion in the selection opera-
tor, creating several effective bloat control methods. Among these
methods, the double tournament selection operator [19] is a repre-
sentative one. The general idea of double tournament selection is to
select two individuals based on the standard tournament selection
operator and then select the smaller one with a higher probabil-
ity. Existing literature shows that the double tournament selection
operator is a strong competitor among bloat control methods [19].
As for a bloat control method for the lexicase selection operator,
there is little related work. A representative algorithm is Lexi? [9]
introduced in Section 1. However, Lexi? is designed for tasks with
discrete output values. It should be useful developing a new bloat
control method for lexicase selection, particularly for regression,
which outputs continuous values.

3 ALGORITHM

In this section, a new variant of the automatic € lexicase selection
operator named double lexicase selection (DLS) is proposed and dis-
cussed in detail. We first present the model representation and the
overall framework of a GP-based evolutionary feature construction
method. Then, we describe the proposed double lexicase selection
operator.

3.1

The proposed DLS operator is targeting a GP-based evolutionary
feature construction scenario. In this paper, we employ a multi-
tree GP representation for feature construction, as it is more flexi-
ble than the single-tree GP representation. As shown in Figure 1,
each GP individual consists of m GP trees {¢1,...,¢m}, repre-
senting m constructed features. Based on the constructed features
{p1(X),...,¢m(X)}, a linear model is built to make predictions.
The linear model is chosen because it is an efficient learning algo-
rithm, and has shown superior performance in the evolutionary
feature construction domain [14, 21].

Model Representation

3.2 Algorithm Overview

As shown in Figure 2, an evolutionary feature construction algo-
rithm consists of four steps:

e Population Initialization: At the beginning of the evolution
process, |P| individuals are initialized randomly. Each indi-
vidual consists of m trees initialized by the ramped half-and-
half method to represent m randomly constructed features.

e Solution Evaluation: In the solution evaluation stage, the
fitness cases and the fitness value of each individual are
evaluated based on training data and a learning algorithm

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Population Initialization

Solution Evaluation
Parent Selection

Offspring Generation

ermination?
es

End

Figure 2: The workflow of DLS-based GP.

(i.e. a linear model). The fitness value is the sum of fitness
cases, which is used to determine the best model, whereas
the fitness cases are used specifically in lexicase selection.
Fitness Cases: The whole model is evaluated on the train-
ing data through a leave-one-out cross-validation scheme.
Suppose 4. represents the leave-one-out prediction made
by the model on the data item k, and y; represents the
ground truth value, the vector of the square error on all
data items (1 —yj)? is defined as the fitness cases of each
individual. The fitness cases are used for parent selection.
Fitness Value: The fitness value is defined as the R? score
Zi(yi=:)?
Siyi-9*°
sents the average target value of the training data. The
fitness value is only used to determine the historically
best individual, which is output as the final model. Fitness
cases cannot be used for this purpose because it is hard
to determine the best model based on a vector of square
errors.

over the data items, ie., 1 — where § repre-

Parent Selection: Parent selection refers to a stage where
promising individuals are selected from the parent selection
operator. In this paper, we apply a DLS operator to select
parents based on the semantics/fitness and the model size of
each individual.

Offspring Generation: After selecting parents, random sub-
tree crossover and random subtree mutation operators are
applied to parents to generate offspring. For m-tree GP, the
crossover and mutation operators are applied to m randomly
selected GP trees to ensure sufficient variation.

Once population initialization is finished, the solution evaluation,
parent selection and offspring generation steps are repeated until
the stopping criterion is satisfied.

3.3 Double Lexicase Selection

Algorithm 1 presents the pseudocode of the double lexicase selec-
tion operator. The selection process consists of double stages, where
lines 1-14 represent the first stage, and lines 15-19 represent the
second stage.

3.3.1 First Stage Selection. For the first stage of selection, the DLS
operator selects Cap individuals by using Cap rounds of the auto-
matic e-lexicase selection (ALS) operator, where Cap represents the
capacity of a candidate pool. In each round, as shown in line 4, the
ALS operator randomly picks one index k € {1,2,-- -, n} from the
semantic vector of an individual ¢ according to the shuffled order.

1197

Trovato and Tobin, et al.

Algorithm 1 Double Lexicase Selection

Input: Population P, Capacity of Candidates Pool Cap, Number of
Data Items n
Output: Parent cfipg

:C=0 > Candidates Pool
2. while |C| < Cap do > Select Cap individuals
3: C'P > Promising individuals
4 for k € shuffle({1,2,---,n}) do > Random order
5: Ck =0

6: for p € C’ do

7: if Li(p) < mingecr Li(¢’) + €, then

8: Cr < Cr U {p}

9: C, — Ck

10: if |C’| = 1 then

11: break

if |C’| > 1 then

C’ « random select one from C’
14: C—Ccucr
15: {sc|c € C} « get the individual sizes(C)
16: for ¢ € C do
17: S¢ ¢— MaXceC Se + MiNgeC Se — Se
18: Cfinal < roulette wheel selection ({sc|c € C})
19: return crjp g

Then, in line 7, individuals in the current candidate pool p € C’
that satisfy Lr(p) < mingecr L (¢) + €, are preserved, where
Li(¢") = (4 — y)? represents the mean square error on the data
item k. ming e Ly (¢”) represents the minimal error for the data
item k in the population and € represents the median absolute
deviation for the error of the data item k in the population [13].
The filtering process will continue until all indices [1, n] have been
traversed, or only one individual remains. If more than one indi-
vidual remains after using all indices, an individual is randomly
selected from the remaining individuals, as shown in line 13. In
the end, as shown in line 14, the selected individual is added to a
candidate pool C to wait for the next stage selection.

3.3.2 Second Stage Selection. After selecting Cap individuals to
form a candidate pool C, the DLS operator first transforms the model
size score of each individual via s; < max¢ec S¢ + mingec ¢ — S
in line 17. This transformation leads to the smaller individual hav-
ing a larger score, forcing the selection operator to prefer smaller
individuals among acceptable individuals. Then, in line 18, the DLS
operator samples an individual proportional to the model size score
sj, i.e., as a roulette wheel selection. Based on this roulette wheel
selection, a smaller individual has a higher chance to be selected,
whereby bloat can be controlled. The reason for using roulette
wheel selection is that greedily selecting the smallest individual
from the candidate pool may force GP to focus on exploiting small
individuals and thus hinders the algorithm from discovering com-
plex but accurate models.

4 EXPERIMENTAL SETTINGS

To investigate the effectiveness of the double lexicase selection
operator, a set of experiments has been conducted to compare the

A Double Lexicase Selection Operator for Bloat Control in Evolutionary Feature Construction for Regression

predictive performance and the model size using different bloat
control methods. This section describes the design of experiments,
including datasets, baseline methods, parameter settings and the
evaluation protocol.

4.1 Datasets

This paper uses the Penn Machine Learning Benchmark (PMLB) [25]
to conduct experiments. PMLB is a curated list of datasets based
on the OpenML repository. In this paper, 98 regression datasets are
used in the experiments, which are all datasets in PMLB with less
than 2000 data items. These 98 datasets are a variety of datasets
with different properties. For example, the size of datasets range
between 47 and 1059, and the dimension of datasets are between 2
and 124.

4.2 Baseline Methods

In this paper, we compare the DLS operator with the following
seven bloat control methods on multi-tree GPs:

Depth Limit: The depth limit method sets a strict depth limit
for each GP tree. This method is used to control bloat in
most GP algorithms.

Double Tournament Selection (DTS) [19]: The double tour-
nament selection operator first selects two individuals with
a traditional tournament selection operator and then selects
the smaller one among these two individuals with a higher
probability.

Tarpeian [28]: The idea of the Tarpeian method is to assign
extremely poor values to a portion of individuals with a tree
size greater than the average size.

Prune and plant (PAP) [1]: Prune and plant is an active bloat
control method that replaces a subtree with a random node
and plants the pruned subtree as an individual in the popu-
lation.

a-MOGP [35]: a-MOGP uses NSGA-II to balance the trade-
off between model performance and model size. Rather than
using the traditional dominance relationship, -MOGP de-
fines an a-dominance relationship to avoid preserving small
trivial solutions.

TS-S [8]: Statistics tournament selection with size (TS-S) is a
selection-based bloat control method proposed by Chu et al.
[8]. The basic flow of TS-S is the same as the traditional
tournament selection operator. The difference is that if the
semantics of two individuals are not statistically different,
the smaller individual is chosen. Otherwise, the individual
with a higher fitness value is chosen.

DSA [22]: Dynamic subtree approximation (DSA) randomly
generates a small tree to replace a subtree in each GP tree that
is larger than the average tree size. The generated subtree is
linearly scaled to approximate the semantics of the replaced
subtree.

4.3

Table 1 presents the parameter settings of GP. These parameter
settings are common in the GP field [6]. In order to avoid the
zero division problem, we use the analytical quotient (AQ) [23] to
replace the division operator, which is defined as ——4= for two

Vi+b?

Parameter Settings

1198

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Table 1: Parameter settings for all experiments.

Parameter Value
Population Size 1000
Maximal Number of Generations 100
Crossover and Mutation Rates 0.9 and 0.1
Maximum Tree Depth 10
Maximum Initial Tree Depth 6
Number of Trees in An Individual 10

+,-, % AQ, Sin, Cos, Abs,

Functions . .
Max, Min, Negative

input variables {a, b}. For all bloat control methods, we set a strict
limit for the depth of GP trees to 10, as GP trees that exceed this
limit are over-complex. The capacity of the candidate pool Cap is
the only hyperparameter of the DLS operator, which is set as 10
based on the results shown in Section 6.1. For the hyperparameters
of the baseline methods, tournament size and parsimonious size of
the DTS method are set to 7 and 1.4, respectively, according to the
suggestion provided by Luke and Panait [19]. Initial alpha value
and step size in aMOGP are set to 0 and 90 respectively, which
is recommended by the original paper [35]. Generally speaking,
aMOGP will provide a set of non-dominated solutions. In this work,
we select the solution with the best R? score as the final model,
which is the same as in the original paper [35]. For the probability
of applying the prune and plant operator, we set it to 1 as it is
the optimal parameter for solving symbolic regression problems
according to the existing literature [2]. For tournament size of the
TS-S operator, it is set to 7 because this has shown good performance
in the original paper [8].

4.4 Evaluation Protocol

This paper applies a common evaluation protocol that is used in
the existing literature. First, all experiments are repeated 30 times
independently to ensure a reliable conclusion. In each independent
run, each dataset is randomly split into a training set and a test set
in a ratio of 80:20. To eliminate the magnitude differences between
different features, we normalize all datasets before performing fea-
ture construction [26]. Wilcoxon signed-rank test results on R? and
model sizes for each pair of bloat control methods with a signifi-
cance level of 0.05 are reported.

5 EXPERIMENTAL RESULTS

In this section, we present and discuss the experimental results of
GP with the proposed DLS operator on the 98 datasets by comparing
them with the results obtained from seven bloat control methods.
The comparison includes training performance, test performance
and model sizes, demonstrating the effectiveness of the proposed
method.

5.1 Comparisons on Test Performance

In this section, we present the test R? score of each bloat control
method compared to show the predictive performance of the final
model obtained by different bloat control methods. Table 2 shows
the pair-wise statistical comparison results of the eight bloat control

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Table 2: Statistical comparison of test R? scores for different bloat control methods. ("+";

Trovato and Tobin, et al.

wn__n

, and "-" indicate using the method in

a row is better than, similar to or worse than using the method in a column.)

aMOGP Tarpeian DTS PAP TS-S DSA DepthLimit
DLS 13(+)/83(~)/2(-) 8(+)/90(~)/0(-) 37(+)/58(~)/3(-) 45(+)/49(~)/4(-) 46(+)/41(~)/11(-) T(+)/91(~)/0(-) 14(+)/79(~)/5(-)
aMOGP - 4(+)/8T(~)T(-) 35(+)/55(~)/8(-) 44(+)/45(~)/9(-) 38(+)/45(~)/15(-) T(+)/88(~)/3(-) 4(+)/85(~)/9(-)
Tarpeian — — 35(+)/60(~)/3(-) 42(+)/50(~)/6(-) 39(+)/48(~)/11(-) 4(+)/94(~)/0(-) 7(+)/90(~)/1(-)
DTS — - — 18(+)/76(~)/4(-) 7(+)/75(~)/16(-) 1(+)/71(~)/26(-) 13(+)/50(~)/35(-)
PAP - — - - 4(H)T1(~)/23(-) 1(+)/62(~)/35(-) 10(+)/48(~)/40(-)
TS-S - — - - - 8(+)/65(~)/25(-) 19(+)/40(~)/39(-)
DSA - - - - — — 7(+)/82(~)/9(-)

methods. In short, only DLS, DSA and Tarpeian methods have
similar or better performance on most datasets compared to the
depth limit method. For the top three algorithms, the DLS method
is better than the Tarpeian and DSA methods, as it outperforms
the DSA and Tarpeian methods on 7 and 8 datasets respectively,
while not worse on any dataset. Compared to the fourth-placed
algorithm, «MOGP, the advantage of DLS is further verified, as it
obtains significantly better test performance on 13 datasets and
gets worse on only 2 datasets. The advantage of DLS over the DTS
and TS-S methods is notable, where the DLS method outperforms
them on 37 and 46 datasets, respectively, while worsening on only
3 and 11 datasets. The comparison on the test R? between DLS and
PAP is the most notable where the DLS operator outperforms the
PAP method on 45 datasets and is only worse on 4 datasets.

To further understand the behavior of the proposed method,
we plot the convergence curve of test R score on four datasets in
Figure 3. The results show that the DLS operator has good effective-
ness over the whole evolution process, and thus achieves good final
accuracy. These results are consistent with the results presented in
Table 2. One interesting observation worth noting is that the PAP,
DTS and TS-S operators perform significantly worse than other
bloat control methods in early generations, which is obvious in the
"OpenML_618" dataset. The reason might be that these three bloat
control operators aggressively reduce the model size, as shown
in Figure 4 in the next section, restricting GP from finding more
complex but better solutions. Therefore, GP with these bloat control
methods cannot achieve comparable R? scores to GP with the DLS
method.

5.2 Comparisons on Model Size

Table 3 presents pairwise comparisons of different bloat control
methods for model sizes, referring to the average number of nodes
of all trees. It shows that the DLS operator is a successful bloat
control method, as it reduces model sizes on all datasets. When
compared to Tarpeian, which is a method that has slightly worse
R? scores, the final model size obtained with the DLS operator is
significantly smaller on 19 datasets while only larger on one dataset,
showing the advantage of using the DLS operator. Also, the DLS
operator is significantly better than aMOGP on 86 datasets and
not worse on any dataset. When comparing the PAP, DSA, DTS
and TS-S operators, the DLS operator is worse at reducing model
size, as the model size of the DLS operator is significantly larger
than these four baseline algorithms on 42, 49, 87 and 88 datasets,

1199

OpenML_582 OpenML_599
1.00
TR
o [AN
8 0.75 So9 F
» 7]
= 050 / = f
! 0.8
0 25 50 75 100 0 25 50 75 100
Generation Generation
OpenML_645
@
§ 0.75
w
& 0.50

0 25 50 75 100 0 25 50 75 100
Generation Generation
— DLS =~ e Tarpeian ~ --:- PAP DSA
aMOGP ----- DTS ~ wseae TS-S - DepthLimiting

Figure 3: Evolutionary plots of test R score for different bloat
control methods.

respectively. However, keeping in mind that the DLS operator is
better than the PAP, DSA, DTS and TS-S operators in terms of test
R? scores, we can conclude that the DLS operator strikes the best
balance between test accuracy and model size since test accuracy
is the more important than model size in most machine learning
tasks.

Besides showing numerical results, we also plot the convergence
curve of average tree sizes in Figure 4 to gain a deeper understand-
ing of the DLS operator. Figure 4 shows that all methods experience
a reduction of model size in early generations, which is consistent
with the results reported by [2] on the symbolic regression task.
As evolution proceeds, the depth limit method cannot effectively
control tree sizes, which leads to a rapid growth of tree sizes. In
contrast, the DLS operator can effectively control tree size to a
relatively low level, and thus achieves a better final result.

5.3 Overall Analysis

Based on the experimental results in the previous two subsections,
we present the overall results in Table 4. The results in Table 4
show Friedman’s rank of median test R? scores and tree sizes across
all datasets. The number in parenthesis indicates the relative rank
between the eight algorithms in terms of mean rank value. The

A Double Lexicase Selection Operator for Bloat Control in Evolutionary Feature Construction for Regression

Table 3: Statistical comparison of model sizes for different bloat control methods. ("+",

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

, and "-" indicate using the method in a

row is better than, similar to or worse than using the method in a column.)

PAP

TS-S

DSA

DepthLimit

11(+)/45(~)/42(-)
0(+)/27(~)/71(-)
13(+)/41(~)/44(-)
54(+)/28(~)/16(-)

0(+)/10(~)/88(-)
0(+)/0(~)/98(-)
0(+)/10(~)/88(-)
31(+)/19(~)/48(-)
8(+)/22(~)/68(-)

11(+)/38(~)/49(-)
0(+)/1(~)/97(-)
2(+)/43(~)/53(-)
87(+)/11(~)/0(-)
43(+)/17(~)/38(-)
81(+)/14(~)/3(-)

98(+)/0(~)/0(-)
74(+)/19(~)/5(-)
98(+)/0(~)/0(-)
98(+)/0(~)/0(-)
98(+)/0(~)/0(-)

aMOGP Tarpeian DTS
DLS 86(+)/12(~)/0(-) 19(+)/78(~)/1(-) 2(+)/9(~)/87(-)
aMOGP — 0(+)/11(~)/87(-) ~ 0(+)/0(~)/98(-)
Tarpeian — - 0(+)/6(~)/92(-)
DTS - - -
PAP - - -
TS-S - - -
DSA - - -

98(+)/0(~)/0(-)
98(+)/0(~)/0(-)

OpenML_582 OpenML_599
1B T F 1
& 10 &
2] (7]
° o 10
(] o
= 5 =
5
0 25 50 75 100 0 25 50 75 100
Generation Generation
OpenML_618 OpenML_645
& 10 210
2] (7]
[Q
o o
= 5 = 5
0 25 50 75 100 0 25 50 75 100
Generation Generation
— DLS e Tarpeian =~ «-:- PAP DSA
aMOGP ~ +-+-+ DTS wmes TS-S oot DepthLimiting

Figure 4: Evolutionary plots of average tree sizes for different
bloat control methods.

results in Table 4 are similar to the results in the previous two
subsections. For a good bloat control method, it should at least not
get worse predictive performance than using depth-limited methods
alone. Only four methods, DLS, Tarpeian, DSA and aMOGP meet
this criterion. Further, when analyzing the bloat control effect of
these four algorithms, it becomes clear that DLS achieves the best
R? score rank and the second-best size rank among these four
methods, indicating the DLS operator achieves a good trade-off
between test R? scores and model size. It is worth noting that
although some operators, like TS-S and DTS, are more successful
in reducing model size, these operators significantly impair the
predictive performance of the final model. Thus, these operators are
less suitable for evolutionary feature construction tasks compared
to the DLS operator, as the predictive performance of the model is
often more important than model size in machine learning tasks.

6 FURTHER ANALYSIS

In this section, we further analyze the sensitivity of the only pa-
rameter in the DLS operator, i.e., the capacity of the candidate pool.
Furthermore, the effectiveness of using the roulette wheel selection
operator instead of selecting the smallest individual in the candidate
pool of the DLS operator is also discussed.

1200

Table 4: Friedman’s rank of test R? scores and tree sizes on
all datasets for different bloat control methods.

Algorithm R? Score Rank Size Rank
DLS 3.43 (1) 4.71 (5)
Tarpeian 3.93 (2) 4.92 (6)
DSA 4.16 (3) 3.9 (4)
aMOGP 4.22 (4) 7.06 (7)
DepthLimit 4.29 (5) 7.88 (8)
DTS 5.03 (6) 2.09 (2)
TS-S 5.15 (7) 1.7 (1)
PAP 5.79 (8) 3.74 (3)

6.1 Capacity of Candidate Pool

In the DLS operator, the capacity of the candidate pool is a crucial
parameter, as it determines the number of candidates to be further
selected by the roulette wheel selection operator. To study the im-
pact of this parameter, we use the capacity of 10 as the baseline
and compare three options {2,5,20} with the baseline and present
the statistical comparison results of model sizes in Figure 5. The
results of R? scores are shown in supplementary material, as the
significant difference between different options is not much. Exper-
imental results in Figure 5 show that model sizes decrease with an
increase in capacity. One possible reason is that, by providing more
choices to the roulette wheel selection operator, a better estimate
can be obtained for the appropriate size of good individuals. Al-
though increases in the capacity of the candidate pool can reduce
final model size, marginal improvement decreases with increase in
capacity. For example, increasing the pool size from 10 to 20 only
improves results on 8 datasets and makes the results significantly
worse on one dataset. Also, experimental results in Figure 5d show
that training time will increase significantly when increasing pool
capacity from 10 to 20. Thus, to achieve a good balance between
time complexity and bloat control effect, setting capacity to 10 is
the recommended option.

6.2 Roulette Wheel Selection

In the DLS operator, we use roulette wheel selection to select par-
ents from candidate pools. One question is whether we can select
the smallest individual from the candidate pool as parent, which
would be easier to implement than the roulette wheel selection
operator. In this section, we study this question by conducting an

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

84 93

(a) Candidate Pool Capacity: 2.

89
50
8 1
0 | __
+ ~ N

(c) Candidate Pool Capacity: 20.

(b) Candidate Pool Capacity: 5.

"

1
Pool Capacity

2250

2000

Training Time
B o I
2 g 3
g2 8 g

1000

(d) Distribution of training time
versus candidate pool capacity.

Figure 5: Comparison of average tree sizes and training time
using a capacity of 10 as the baseline. ("+",'~", and "-" indicate
using the compared capacity is significantly better than, sim-
ilar to or worse than using the capacity of 10.)

67
.+ 75 Algorithm
50 - - _ s Min
S 50 Roulette
25 23 B 8
H.
0 | o LI
+ ~ - 5 10 15
Tree Size
Figure 6: Statistical com- . e er s
& Figure 7: Distribution

parison of R? scores using
roulette instead of mini-
mum as the selection strat-

egy.

of tree sizes when using
roulette or minimum as
the selection strategy.

ablation study, which replaces the roulette wheel selection oper-
ator with the smallest selection operator. A pair-wise statistical
comparison of using the roulette wheel selection operator to re-
place the smallest selection operator is presented in Figure 6. The
experimental results in Figure 6 show that using the roulette wheel
selection operator instead of the minimum selection operator to
select a parent from a candidate pool will significantly improve the
test R? score on 67 out of the 98 datasets, while only worsening
it on 8 datasets. To further investigate the reason for causing this
phenomenon, we plot the distribution of the average tree sizes in
Figure 7. Figure 7 shows that the roulette wheel selection operator
controls model sizes within a reasonable range. In contrast, the
minimum selection operator favors very small individuals, thus
creating final models that have a small model size but very poor
predictive performance.

1201

Trovato and Tobin, et al.

7 CONCLUSIONS

The goal of this paper was to develop a bloat control strategy to
reduce the tree size of GP in the evolutionary feature construction
scenario. This is accomplished by introducing a double-stage selec-
tion mechanism to the lexicase selection operator to consider both
the model performance and the model size during the selection
process. Moreover, we propose to use the roulette wheel selection
operator in the second selection stage of the DLS operator to avoid
the overuse of very small individuals. The performance of the pro-
posed DLS operator has been examined on 98 regression datasets
with different properties. Experimental results confirm that the DLS
operator obtains a better trade-off between predictive accuracy and
model size than the seven baseline bloat control methods. Further
studies illustrate that the DLS operator can perform better by in-
creasing the capacity of the candidate pool, and the effectiveness of
using the roulette wheel selection operator in the DLS operator has
been validated. This paper has demonstrated that using a double
selection mechanism can boost the lexicase selection operator to
reduce the model size. In the future, it is worthwhile to investigate
whether such a mechanism can control the model complexity, such
as the Rademacher complexity [7], to obtain a model with better
generalization performance.

REFERENCES

[1] Eva Alfaro-Cid, Anna Esparcia-Alcazar, Ken Sharman, and Francisco Fernandez de
Vega. 2008. Prune and plant: a new bloat control method for genetic programming.
In 2008 Eighth International Conference on Hybrid Intelligent Systems. IEEE, 31-35.
Eva Alfaro-Cid, J] Merelo, F Fernandez de Vega, Anna Isabel Esparcia-Alcazar, and
Ken Sharman. 2010. Bloat control operators and diversity in genetic programming:
A comparative study. Evolutionary Computation 18, 2 (2010), 305-332.
Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. 1998.
Genetic programming: an introduction: on the automatic evolution of computer
programs and its applications. Morgan Kaufmann Publishers Inc.

Ying Bi, Bing Xue, and Mengjie Zhang. 2022. Genetic Programming-Based Evolu-
tionary Deep Learning for Data-Efficient Image Classification. IEEE Transactions
on Evolutionary Computation (2022). https://doi.org/10.1109/TEVC.2022.3214503
Markus Brameier, Wolfgang Banzhaf, and Wolfgang Banzhaf. 2007. Linear genetic
programming. Vol. 1. Springer.

Qi Chen, Bing Xue, and Mengjie Zhang. 2020. Preserving Population Diver-
sity Based on Transformed Semantics in Genetic Programming for Symbolic
Regression. IEEE Transactions on Evolutionary Computation 25, 3 (2020), 433-447.
Qi Chen, Bing Xue, and Mengjie Zhang. 2022. Rademacher Complexity for
Enhancing the Generalization of Genetic Programming for Symbolic Regression.
IEEE Transactions on Cybernetics 52, 4 (2022), 2382-2395.

Thi Huong Chu, Quang Uy Nguyen, and Michael O’Neill. 2018. Semantic tour-
nament selection for genetic programming based on statistical analysis of error
vectors. Information Sciences 436 (2018), 352-366.

Allan de Lima, Samuel Carvalho, Douglas Mota Dias, Enrique Naredo, Joseph P
Sullivan, and Conor Ryan. 2022. Lexi2: lexicase selection with lexicographic
parsimony pressure. In Proceedings of the Genetic and Evolutionary Computation
Conference. 929-937.

Stephen Dignum and Riccardo Poli. 2007. Generalisation of the limiting dis-
tribution of program sizes in tree-based genetic programming and analysis of
its effects on bloat. In Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation. 1588-1595.

David Kinzett, Mark Johnston, and Mengjie Zhang. 2009. Numerical simplifica-
tion for bloat control and analysis of building blocks in genetic programming.
Evolutionary Intelligence 2, 4 (2009), 151-168.

John R Koza. 1994. Genetic programming as a means for programming computers
by natural selection. Statistics and computing 4, 2 (1994), 87-112.

William La Cava, Thomas Helmuth, Lee Spector, and Jason H Moore. 2019. A
probabilistic and multi-objective analysis of lexicase selection and ¢-lexicase
selection. Evolutionary Computation 27, 3 (2019), 377-402.

William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H Moore.
2018. Learning concise representations for regression by evolving networks of
trees. In International Conference on Learning Representations.

William B Langdon. 2000. Size fair and homologous tree genetic programming
crossovers. Genetic Programming and Evolvable Machines 1, 1/2 (2000), 95-119.

[2

[10

(1]

[12

=
&

[14

[15

https://doi.org/10.1109/TEVC.2022.3214503

A Double Lexicase Selection Operator for Bloat Control in Evolutionary Feature Construction for Regression GECCO ’23, July 15-19, 2023, Lisbon, Portugal

[16] William B Langdon and Riccardo Poli. 1998. Fitness causes bloat. In Soft Com-
puting in Engineering Design and Manufacturing. Springer, 13-22.

[17] Dazhuang Liu, Marco Virgolin, Tanja Alderliesten, and Peter AN Bosman. 2022.
Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic
Regression. arXiv preprint arXiv:2202.06983 (2022).

[18] Sean Luke and Liviu Panait. 2002. Fighting bloat with nonparametric parsimony
pressure. In International Conference on Parallel Problem Solving from Nature.
Springer, 411-421.

[19] Sean Luke and Liviu Panait. 2006. A comparison of bloat control methods for
genetic programming. Evolutionary Computation 14, 3 (2006), 309-344.

[20] YiMei, Qi Chen, Andrew Lensen, Bing Xue, and Mengjie Zhang. 2022. Explainable

Artificial Intelligence by Genetic Programming: A Survey. IEEE Transactions on

Evolutionary Computation (2022).

Kaustuv Nag and Nikhil R Pal. 2019. Feature extraction and selection for parsi-

monious classifiers with multiobjective genetic programming. IEEE Transactions

on Evolutionary Computation 24, 3 (2019), 454-466.

[22] Quang Uy Nguyen and Thi Huong Chu. 2020. Semantic approximation for reduc-

ing code bloat in genetic programming. Swarm and Evolutionary Computation 58

(2020), 100729.

Ji Ni, Russ H Drieberg, and Peter I Rockett. 2012. The use of an analytic quotient

operator in genetic programming. IEEE Transactions on Evolutionary Computation

17,1 (2012), 146-152.

Kyle Nickerson, Antonina Kolokolova, and Ting Hu. 2022. Creating Diverse

Ensembles for Classification with Genetic Programming and Neuro-MAP-Elites.

In European Conference on Genetic Programming (Part of EvoStar). Springer, 212—

227.

[25] Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and
Jason H Moore. 2017. PMLB: a large benchmark suite for machine learning
evaluation and comparison. BioData mining 10, 1 (2017), 1-13.

[26] Caitlin A Owen, Grant Dick, and Peter A Whigham. 2022. Standardisation and

Data Augmentation in Genetic Programming. IEEE Transactions on Evolutionary

Computation 26, 6 (2022), 1596—1608.

Michael Defoin Platel, Manuel Clergue, and Philippe Collard. 2003. Maximum

homologous crossover for linear genetic programming. In European Conference

on Genetic Programming. Springer, 194-203.

[28] Riccardo Poli. 2003. A simple but theoretically-motivated method to control

bloat in genetic programming. In European Conference on Genetic Programming.

Springer, 204-217.

Riccardo Poli and Nicholas Freitag McPhee. 2003. General schema theory for

genetic programming with subtree-swapping crossover: Part II. Evolutionary

Computation 11, 2 (2003), 169-206.

[30] Sara Silva and Ernesto Costa. 2009. Dynamic limits for bloat control in ge-
netic programming and a review of past and current bloat theories. Genetic
Programming and Evolvable Machines 10, 2 (2009), 141-179.

[31] Terence Soule and James A Foster. 1998. Removal bias: a new cause of code growth

in tree based evolutionary programming. In 1998 IEEE International Conference

on Evolutionary Computation Proceedings. IEEE, 781-786.

Lee Spector, Jon Klein, and Maarten Keijzer. 2005. The push3 execution stack and

the evolution of control. In Proceedings of the 7th Annual Conference on Genetic

and Evolutionary Computation. 1689-1696.

[33] Walter Alden Tackett. 1994. Recombination, selection, and the genetic construction
of computer programs. Ph.D. Dissertation. University of Southern California Los
Angeles.

[34] Binh Tran, Bing Xue, and Mengjie Zhang. 2019. Genetic programming for

multiple-feature construction on high-dimensional classification. Pattern Recog-

nition 93 (2019), 404-417.

Shaolin Wang, Yi Mei, and Mengjie Zhang. 2022. A Multi-Objective Genetic Pro-

gramming Algorithm with a dominance and Archive for Uncertain Capacitated

Arc Routing Problem. IEEE Transactions on Evolutionary Computation (2022).

https://doi.org/10.1109/TEVC.2022.3195165

Huayang Xie and Mengjie Zhang. 2012. Parent selection pressure auto-tuning for

tournament selection in genetic programming. IEEE Transactions on Evolutionary

Computation 17, 1 (2012), 1-19.

[37] Byoung-Tak Zhang and Heinz Miithlenbein. 1995. Balancing accuracy and parsi-
mony in genetic programming. Evolutionary Computation 3, 1 (1995), 17-38.

[38] Hu Zhang, Hengzhe Zhang, and Aimin Zhou. 2020. A Multi-metric Selection
Strategy for Evolutionary Symbolic Regression. In 2020 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC). IEEE, 585-591.

[39] Hengzhe Zhang, Aimin Zhou, and Xin Lin. 2020. Interpretable policy derivation
for reinforcement learning based on evolutionary feature synthesis. Complex &
Intelligent Systems 6, 3 (2020), 741-753.

[40] Hengzhe Zhang, Aimin Zhou, and Hu Zhang. 2022. An Evolutionary Forest for
Regression. IEEE Transactions on Evolutionary Computation 26, 4 (2022), 735-749.

[41] Yang Zhang and Peter Rockett. 2007. A Comparison of three evolutionary
strategies for multiobjective genetic programming. Artificial Intelligence Review
27, 2 (2007), 149-163.

[21

[23

[24

[27

[29

[32

[35

[36

1202

https://doi.org/10.1109/TEVC.2022.3195165

