DNA SequenceGenerator: A Program for the
construction of DNA sequences

Udo Feldkamp®, Sam Saghafi?, Wolfgang Banzhaf?, Hilmar Rauhe*

'Chair of Systems Analysis, University of Dortmund, Germany
{feldkamp, banzhaf, rauhe}@LS11.cs.uni-dortmund.de
?Institute of Genetics, University of Cologne, Germany

Abstract. In DNA Computing and DNA nanotechnology the design of proper
DNA sequences turned out to be an elementary problem [1-9]. We here
present a software program for the construction of sets (“pools™) of DNA
sequences. The program can create DNA sequences to meet logical and
physical parameters such as uniqueness, melting temperature and GC ratio as
required by the user. It can create sequences de novo, complete sequences
with gaps and allows import and recycling of sequences that are still in use.
The program always creates sequences that are — in terms of uniqueness, GC
ratio and melting temperature — "compatible™ to those already in the pool, no
matter whether those were added manually or created or completed by the
program itself. The software comes with a GUI and a Sequence Wizard. In
vitro tests of the program’s output were done by generating a set of oligomers
designed for self-assembly. The software is available for download under
http://LS11-www.cs.uni-dortmund.de/molcomp/Downloads/downloads.html.

Introduction

The most important requirement for DNA sequences useful for computation is the
avoidance of non—specific hybridizations. These can occur between the sequences
used in a self-assembly step, in a polymerase chain reaction, in an extraction
operation etc. Thus the main purpose for designing DNA sequences is finding a set
of sequences as dissimilar as possible, where the dissimilarity usually includes
comparison to complementary sequences. Another important aspect is the control of
the thermodynamic properties of the sequences, allowing the design of a protocol
(the actual application) minimizing the probability of hybridization errors and
possibly regarding other constraints given by the application.

There are several approaches to DNA sequence design. Seeman et al. designed
sequences using overlapping subsequences to enforce uniqueness [1,2]. The
approach is based on the "repairing” of sequences. Deaton et al. used genetic
algorithms to generate a set of unique DNA sequences using the Hamming distance
for measuring the uniqueness [3,4]. Marathe, Condon and Corn chose a dynamic
programming approach for DNA sequence design, also using the Hamming distance
[5]. They also described a dynamic programming based algorithm for the selection

of sequences with a given free energy . Frutos et al. developed a so-called
template—-map strategy to get a grand number of dissimilar sequences while having
to design only a significantly smaller number of templates and maps [6]. They also
use a Hamming-like dissimilarity with no shifts of the regarded sequences.
Hartemink, Gifford and Khodor designed sequences for the programmed
mutagenesis, which demands similar sequences with only a few mismatches [7].
The selection of appropriate sequences is done by exhaustive search, which is
feasible for short oligomers. Faulhammer et al. described a designing algorithm for
RNA sequences to be used in solving a chess problem [8]. They also use the
Hamming distance as measurement for uniqueness and do not construct the
sequences but repair them as long as necessary, potentially non—terminating. Baum
suggested a method to design unique sequences by avoiding multiple usage of
subsequences by restricting the choice of nucleotides at the ends of the sequences

[9].

Theoretical background

The program described here uses a concept of uniqueness that, within a pool of
sequences, allows any subsequence of a certain (definable) length to occur at most
once in that pool. This concept of uniqueness is related to the one described by
Seeman et al. [1,2] but a different approach was chosen. In particular the software
described here uses a fully automatic, graph—based approach[10].

acgcgctca complete sequence

acgcgc

cgcgct
gcgcetc
cgctca

ase strands

Fig. 1. A sequence of length n; = 9 consisting of (n, — ny + 1) = 4 overlapping base strands of
length n, = 6.

According to this concept a pool of sequences is said to be n,—unique if any
subsequence in the pool of length n, is unique, i.e. all sequences of the pool have
common substrings of maximum length n, — 1. Uniqueness on the other hand is
defined as 1 — (n, — 1)/n,, a ratio to measure how much of a set of sequences of
length n, is unique. For example, 20—mers that are 10-unique have common
subsequences of at most 9 subsequent nucleotides and a uniqueness of 55%.

The generation algorithm uses a directed graph, where the nodes are base strands
(the unique strands of minimal length n,) and the successors of a node are those four
strands that can appear as an (overlapping) successor in a longer sequence (see Fig.
1, 2). Thus, a set of n,—unique sequences of length nscorresponds to a set of paths of
length (n, — n, + 1) through this graph having no node in common.

cgcgca <

cgcgcec <

acgcgc gcgcta<
cyegey <
gcgcetc <

cgcgct

—— = acgcgctc

Fig. 2. Graph of base strands. A path of m nodes represents a sequence of length n, + m — 1.
The node cgcgcg is self-complementary and therefore not used.

The details of this algorithm have been described in more detail earlier [10]. Note
that this concept of uniqueness restricts the number of usable sequences strictly. The
number of base strands of length nj is

Nbs(nb) :4% (1)

Since complements of already used base strands are not used themselves, self-
complementary base strands are not used at all. The number of base strands that can
be used in the generation process is

Nys(n,) = 4" @
Nuseful (nb) = ° b2
if n, is even and
N (n,) ©)
Nuseful (nb) = %

if n, is odd, because there are no self-complementary base strands of odd length.
A sequence of length ns consists of n, — n, + 1 base strands. Thus, the maximum
number of sequences built with the described algorithm is

|:Nus;eful (nb) [(4)

N_.(n,n)=
segs\'s? ' b |:
s nb + 1[

This estimation is probably a bit too high because it does not include the
constraint of the base strands having to overlap.

Further requirements such as GC-ratio, melting temperature, the exclusion of
long guanine subsequences or of start codons decrease the yield.

DNA Sequence Generator

The program DNASequenceGenerator is based on the metaphor of a pool of
sequences that can be iteratively filled with sequences which meet the logical and
physical requirements. The main window represents a pool of sequences. The user
can add, import, export and print sequences to and from it. E.g., one might import
sequences already available in the lab and add new sequences that are compatible to

those in terms of uniqueness, melting temperature and GC ratio.

-Iolx
File Edit Yiew Generslor Fool Help

Eﬂﬁﬂﬂ|>|“ Ls) jd!ﬂ ¢|?|

No. |Length |GC% |Tm |Sequence 2
0 20 0.50 0.8 aaagctcgtcogtttaggagg

3| 20 0.50 61.9 ggccttcacgocaaaatactce

2 20 0.50 1.8 acactaccgcgtggectaaat

3 20 0.50 61.9 attacaagctgagggccgta

4 20 0.50 1.9 tgcgctcgeatgagtagtat

b 20 0.50 ©58.3 ctaccacttagggagcgatt

6 20 0.50 0.6 cggagcocctgetactaattt

7 20 0.50 61.3 catccggcaggcttctatat

8 20 0.50 1.9 cggagatttgcccactaaag

9 20 0.50 59.4 gtccgggaggtagaactttt

10 20 0.50 62.0 tecaggggttcgtaatatcgg

11 20 0.50 61.9 attattaggtatggccccgg

12 20 0.50 1.8 acccgacagacggcttaata

13 20 0.50 58.1 cgtgtggtgaacagagtaca 14
14 20 0.50 8©l.2 aacaatcgtatagggcagcc

15 20 0.50 ©59.4 ggttaaggtaatgctggteg

16 20 0.50 59.4 ctcttctgecgacggtattcet -

For Help, press F1

Fig. 3. Screenshot of the main window, containing a pool of sequences.

The process of constructing sequences is controlled by using a "Sequence

Wizard". The sequence wizard enables the user to:

a) import or manually add existing or strictly required sequences

b) import or manually add sequence templates that are completed to full sequences
if possible. Sequence templates use a simple notation: The preset nucleotides
(e.g. of a redriction site or other functional subsequence) are specified
normally, while an n stands for the positions to fill. E.g., if given the sequence
template nnnnaacgt t nnnn, the generator replaces the leading and rear four
ns with nucleotides.

C) Qenerate sequences de novo.

A pool of sequences can be built iteratively invoking the sequence wizard

repeatedly using different parameter sets.

=
=
E_}

mam II ﬁ

Fig. 4. The different steps of the sequence wizard for the three possible ways to add
sequences to the pool.

The user can also use the DNASequenceGenerator as a T, calculator for whole
sequence pools. After importing the sequences to the pool the melting
temperature is calculated automatically for each sequence. After changing the
pool conditions, T will be re—calculated for all sequences in the pool.

Pool conditions that can be parameterized by the user are sample concentration,
monoionic salt concentration and formamide concentration. Also the method of
estimating the melting temperature can be chosen (Wallace rule, GC-%

formula, nearest-neighbor method) as well as different parameter sets for the
nearest—neighbor method.

Results
inslico

Experiments in silico were made to examine the possible yield of n,—unique
DNA sequences. Ten runs with different random number generator seeds were
made for each combination of n,— and ns—values, which ranged from 4 to 7 nt
(for ny) and 10 to 40 nt (for ns), respectively. Most runs achieved a yield of 80 -
90 % of the theoretically estimated maximum number of sequences (see
equation (4)).

Table 1. Yield of n,—unique sequences averaged over 10 runs, theoretic maximum yield

and ratio. This is only an excerpt of all experimental results.

n Ny =4 =5 M, = 6 ny =7
1 8.1 of 10 38.6 of 46 165.4 of 201 757.8 of 910
5 (81.0%) (83.9%) (82.3%) (83.3%)
1 7.30f9 35.6 of 42 150.5 of 183 682.1 of 819
6 (81.1%) (84.8%) (82.2%) (83.3%)
1 6.8 of 8 33.0 of 39 138.5 of 168 623.4 of 744
7 (85.0%) (84.6%) (82.4%) (83.8%)
1 6.1 0f 8 30.7 of 36 127.3 of 155 573.3 of 682
8 (76.3%) (85.3%) (82.1%) (84.1%)
1 5.8 0f 7 28.4 of 34 118.4 of 144 531.1 of 630
9 (82.9%) (83.5%) (82.2%) (84.3%)
2 5.6 of 7 26.6 of 32 111.4 of 134 494.8 of 585
0 (80.0%) (83.1%) (83.1%) (84.6%)
3 3.30f4 16.9 of 19 67.8 of 80 294.0 of 341
0 (82.5%) (88.9%) (84.8%) (86.2%)
4 2.00f 3 12.2 of 14 48.2 of 57 211.1 of 240
0 (66.7%) (87.1%) (84.6%) (88.0%)
invitro

In order to test the program’s output, oligonucleotides for parallel overlap
assembly have been generated and assembled in vitro [11]. The single—stranded
molecules overlap by 20 nucleotides (E/O sections, see Fig. 5), where the
overlap assembly takes place, and a core sequence that stays single stranded in
the assembly step and is filled later by the use of polymerase. Additionally, the
sequences had to have restriction sites at specified locations.

I)

|

Qo ENN RN NES AR IS & BN C, B e E

Fig. 5. Overlap assembly of DNA sequences. The O; — and E; — subsequences were
designed such that E; is complementary to Oi..

The DNASequenceGenerator provided the needed sequences, which hybridised
which high specificity to form the desired molecules.

Additionally, the melting temperature of a batch of 51 of the generated
sequences with a length of 20 bp and a GC ratio of 50% was analyzed with a
Roche LightCycler. Since the oligos were selected for their GC ratios rather
than their melting temperatures, their melting temperatures ranged between 53
and 63 °C.

X0

0.35

0.25] |
-dF/ 0.2 H
dT /

0.151 g r:

0.11 g i
ﬁﬁ#ﬁ H
0.051 IWNBUITL %)
0 Hrvees -
30 40 50 60 70 80 90
T(C)

Fig. 6. Sample melting plot of one of the oligos. The y—axis shows the
fluorescence absorption, the x—axis shows the current temperature in °C. In this
case the oligo’s Tm is 60,1 °C.

Tm
T(°C)

80
75
70
65
B0 @ te et ey eens v e
55 .~

50
45
40

o o ~ o o © o o N N~ o o ~ oo ©
X X X o - 4 g o NN 0 = s~ Q
x x x x x x x x x x x x

Oligo (Nr)

Fig. 7. Distribution of Tn ’s of 51 oligonucleotides. All oligonucleotides were 20bp long
and had 50% GC ratio. The distribution of Tn’s is in a range from 53 to 63 °C.

One step further: The DNASequenceCompiler

While the DNASequenceGenerator could, in principle, be used for sticky—end
design, its sibling tool, the DNASequenceCompiler, is more specifically suited
for this task [10]. It is designed to translate formal grammars directly into DNA
molecules representing the rules of the grammar. As these rules determine how
terminals are assembled to expressions, they also determine how the DNA
molecules self-assemble to larger molecules. Thus, the DNASequenceCompiler
provides an interface for the programmable self—assembly of molecules.

It mainly consist of three parts: a parser module for reading the “source code™
which contains the symbol sets and the rules of the grammar as well as physical
of chemical requirements for the sequences; the generator as a core module for
the generation of the sequences; and a coordinating instance controlling the use
of the generator while regarding the additional requirements in respect to
uniqueness that arise for concatenated sequences.

Currently, a preliminary version of this tool is in use for the design of sequences
for algorithmic self-assembly. A user—friendly version is under development.
Further enhancements will tackle branched molecules, the consideration of
secondary structures occurring on purpose, and a "programming language™ on a
higher level of abstraction than a formal grammar.

Conclusion

Here, a software tool for the design of DNA oligomers useful for DNA
computation and DNA Nanotechnology was presented. The software uses a
graph—based approach and generates pools of unique DNA sequences
automatically according to the user’s logical and physical requirements. First
experimental results with sequences yielded with the software are encouraging
and suggest further investigation. Additional experiments to measure melting
temperatures, uniqueness of the sequences and specific hybridization behaviour
are currently under investigation. A challenging task will be the development of
a benchmark protocol.

The DNASequenceGenerator can be seen as a basic design tool for multiple
purposes. The design of sophisticated DNA structures, such as cubes [11] or
double— [12] or triple—crossover molecules [13] will require a more specialized
program. The DNASequenceCompiler which is currently developed is intended
for such a purpose and may help design molecules suitable for algorithmic self-
assembly.

Acknowledgements

We would like to thank Jonathan C. Howard and the members of his group from
the Institute for Genetics, University of Cologne, for their friendly support. The
work was supported in parts by the Stifterverband der Deutschen
Wissenschaft/Stiftung Winterling Markleuthen.

References

[1] Seeman, N. C., Kallenbach, N. R.: Design of immobile Nucleic Acid Junctions,
Biophysical Journal 44: 201-209, (1983)

[2] Seeman, N. C.: De Novo Design of Sequences for Nucleic Acid Structural
Engineering. Journal of Biomolecular Sructure & Dynamics, 8(3), 573-581, (1990)

[3] Deaton, R., Murphy, R. C., Garzon, M., Franceschetti, D. T., Stevens Jr., S. E.:
Good Encodings for DNA-based Solutions to Combinatorial Problems, Proceedings of
the Second Annual Meeting on DNA Based Computers, held at Princeton University,
159-171 (1996)

[4] Deaton, R., Murphy, R. C., Rose, J. A., Garzon, M., Franceschetti, D. T., Stevens
Jr., S. E.: Genetic Search for Reliable Encodings for DNA-based Computation, First
Conference on Genetic Programming (1996)

[5] Marathe, A., Condon, A. E., Corn, R. M.: On Combinatorial DNA Word Design,
Proceedings of the 5th International Meeting on DNA Based Computers (1999)

[6] Frutos, A. G., Liu, Q., Thiel, A. J., Sanner, A. M. W., Condon, A. E., Smith, L. M.,
Corn, R. M.: Demonstration of a word design strategy for DNA computing on surfaces.
Nucleic Acids Research, 25(23), 4748-4757 (1997)

[7] Hartemink, A. J., Gifford, D. K., Khodor, J.: Automated Constraint—Based
Nucleotide Sequence Selection for DNA Computation, Proceedings of the 4th DIMACS

Workshop on DNA Based Computers, held at the University of Pennsylvania,
Philadelphia, 227-235 (1998)

[8] Faulhammer, D., Cukras, A. R., Lipton, R. J., Landweber, L. F.: Molecular
Computation: RNA solutions to chess problems, Proceedings of the National Academy
of Sciences USA 97(4): 1385-1389 (2000)

[9] Baum, E: B.: DNA Sequences Useful for Computation, unpublished, available under
http://www.neci.nj.nec.com/homepages/eric/seq.ps (1996)

[10] Feldkamp, U., Banzhaf, W., Rauhe, H.: A DNA Sequence Compiler, Proceedings
of the 6th DIMACS Workshop on DNA Based Computers, held at the University of
Leiden, The Netherlands: 253 (2000). Manuscript available at: http://LS11-
www.cs.uni—dortmund.de/molcomp/Publications/publications.html

[11] Chen, J., Seeman, N. C.: Synthesis from DNA of a molecule with the connectivity
of a cube. Nature, 350, 631-633, (1991)

[12] Winfree, E., Liu, F., Wenzler, L. A., Seeman, N. C., Design and self-assembly of
two—dimensional DNA crystals. Nature, 394, 539-544, (1998)

[13] Mao, C., LaBean, T. H., Reif, J. H., Seeman, N. C., Logical computation using
algorithmic self-assembly of DNA triple-crossover molecules. Nature, 407, 493-496,
(2000)

