
1

A DNA Sequence Compiler
Udo Feldkamp∗, Wolfgang Banzhaf∗, Hilmar Rauhe∗†

feldkamp@LS11.cs.uni-dortmund.de
banzhaf@LS11.cs.uni-dortmund.de
rauhe@LS11.cs.uni-dortmund.de

1 Abstract

Various approaches to the self-assembly of molecules have been introduced already1), 2), 3), 4), 5), 6), 7). A step
further toward flexible design and construction of precisely defined molecules are approaches to
programmable self-assembly5), 10). In order to allow arbitrary programming, a sufficient solution of the
negative design problem8), 5), 9) is needed. We present a computer program which translates formal
grammars directly into DNA molecules. It allows the construction of DNA molecules with defined logical
structure and physical properties. Applications of the compiler are DNA-computing algorithms, nano-
frameworks and the construction of biochips.

2 Introduction

The correspondence of Chomsky-classes of grammars to certain implementations of self-assembling DNA
molecules was shown by Winfree et al. 11). In particular it was shown that linear molecules are capable to
represent regular grammars, branched sequences (“dendrimers”) to represent context-free grammars and a
certain type of tile-shaped molecules (DX molecules) to represent universal grammars11), 5). The molecules
in such a system represent the rules of a grammar. The true computational step is the hybridization and
ligation of self-assembling molecules to larger molecules thereby executing the grammar's rules.
In order to allow arbitrary programming the “negative design problem”8), 9), 5) has to be solved in a
sufficient way. For that purpose we constructed a compiler that directly translates grammars into DNA
molecules. At the moment the compiler only translates regular grammars into linear molecules but is not
necessarily restricted to it. The compiler was originally developed as a programming tool for an approach
to programmable digital DNA10). The linear self-assembling molecules generated by the compiler can be
synthesized in vitro by an oligonucleotide synthesizer. Those linear molecules can be used not only for the
implementation of regular grammars but also for the design of biochips and DNA based cryptography12).
The self-assembling molecules (“rule-molecules” or so-called algomers) that the compiler generates consist
of a double stranded core sequence and two sticky ends10) (Figure 1).
Each algomer represents a rule of a grammar, the core sequence encoding a terminal and the sticky ends
encoding variables. As regular expressions are built by replacing the right-end variable of an expression
with the right-hand terminal-variable-pair of a rule in which this variable is on its left side, hybridizing
complementary sticky ends (which represent the left-hand and right-hand appearance of the same variable)
assembles the algomers to longer sequences that represent words of the chosen grammar (called logomers).

3 Specifications

The rules of a regular grammar have the form A → xB or A → x, where A and B are variables and x is a
terminal. As variables and terminals have fixed positions in a rule, only the rules set and the start variable

∗ Dept. of Computer Science, LS11, University of Dortmund, 44221 Dortmund, Germany
† To whom correspondence should be addressed

2

are required inputs to define the grammar; the variable and terminal sets can be extracted from the rules.
The algomers are sequences with a double stranded core sequence representing the terminal of a certain rule
and two sticky ends (one on each strand) representing the variables of this rule (see Figure 1). In addition to
their logical structure, algomers can be defined to have certain physical, chemical and biological properties.
This is done to meet design criteria as well as to favor proper thermodynamical behavior and to avoid
possible errors.

Rules Algomers Rules Algomers
_ _

HindIII s 0 A A 0 B

S:=s0A 5' agctt caacacatggagttacacgc 3' A->0A 5' cggaaacatc ggatttggcaacaacctgag 3'

3' a gttgtgtacctcaatgtgcg gcctttgtag 5' 3' cctaaaccgttgttggactc gaaaatcggg 5'
_ _

HindIII s 1 A A 1 B

S:=s1A 5' agctt gaaaaaattggactcggggc 3' A->1A 5' cggaaacatc caaccaggattaagccatgc 3'

3' a cttttttaacctgagccccg gcctttgtag 5' 3' gttggtcctaattcggtacg gaaaatcggg 5'
_ _

HindIII s 2 A B 0 C

S:=s2A 5' agctt gctcctagaagtctacaagc 3' B->0C 5' cttttagccc ggatttggcaacaacctgag 3'

3' a cgaggatcttcagatgttcg gcctttgtag 5' 3' cctaaaccgttgttggactc cctctaatgg 5'
_ _

HindIII s 3 A B 1 C

S:=s3A 5' agctt cttctgccatacaactaggc 3' B->1C 5' cttttagccc caaccaggattaagccatgc 3'
3' a gaagacggtatgttgatccg gcctttgtag 5' 3' gttggtcctaattcggtacg cctctaatgg 5'

_
C 0 D

C->0D 5' ggagattacc ggatttggcaacaacctgag 3'
3' cctaaaccgttgttggactc ggcgtttatc 5'

_____ _
I e BamHI C 1 D

I->e 5' gtcttgtgtc cttgtttaatacaggggcgc g 3' C->1D 5' ggagattacc caaccaggattaagccatgc 3'
3' gaacaaattatgtccccgcg cctag 5' 3' gttggtcctaattcggtacg ggcgtttat 5'

_
D 0 E

D->0E 5' ccgcaaatag ggatttggcaacaacctgag 3'
3' cctaaaccgttgttggactc gtctcgtatg 5'

_
D 1 E

D->1E 5' ccgcaaatag caaccaggattaagccatgc 3'
3' gttggtcctaattcggtacg gtctcgtatg 5'

_
E 0 F

E->0F 5' cagagcatac ggatttggcaacaacctgag 3'
3' cctaaaccgttgttggactc gcatcttgac 5'

_
E 1 F

E->1F 5' cagagcatac caaccaggattaagccatgc 3'
3' gttggtcctaattcggtacg gcatcttgac 5'

_
F 0 G

F->0G 5' cgtagaactg ggatttggcaacaacctgag 3'
3' cctaaaccgttgttggactc ctgccaatag 5'

_
F 1 G

F->1G 5' cgtagaactg caaccaggattaagccatgc 3'
3' gttggtcctaattcggtacg ctgccaatag 5'

_
G 0 H

G->0H 5' gacggttatc ggatttggcaacaacctgag 3'
3' cctaaaccgttgttggactc gacttcactg 5'

_
G 1 H

G->1H 5' gacggttatc caaccaggattaagccatgc 3'
3' gttggtcctaattcggtacg gacttcactg 5'

_
H 0 I

H->0I 5' ctgaagtgac ggatttggcaacaacctgag 3'
3' cctaaaccgttgttggactc cagaacacag 5'

_
H 1 I

H->1I 5' ctgaagtgac caaccaggattaagccatgc 3'
3' gttggtcctaattcggtacg cagaacacag 5'

Figure 1: Implementation of a grammar of 32-bit datatypes. Left: the four start algomers identifying the
four bytes and one end algomer. Right: the algomers encoding the eight bits of a byte.

There are two specific algomers, called the start and end terminator respectively, appearing at the start and
end of a logomer. "Start" acts as priming site of the forward primer during readout and can be used as a
position mark to distinguish logomers with otherwise identical structure. Using four different start

3

terminators for example allows construction of a 32-bit data type out of four 1-byte logomers where each
byte's position is marked. Also, each byte can be read out separately. The outer sticky ends of the start and
end terminator are not used as variables but as cloning sites to allow the logomers to be pasted into a
cloning vector10).
The most important requirement for a successful and error-free application is the avoidance of non-specific
hybridizations. These can occur between the sticky ends of algomers, during PCR and in further
applications of the logomers. Therefore, the sequences representing the terminals and the variables should
be as unique as possible.
For the purpose of constructing unique sequences a graph-algorithm was developed by Niehaus14) to
produce a pool of nb-unique sequences. A pool of sequences is said to be nb-unique if all sequences of the
pool have common substrings of at most length nb – 1, i.e. any subsequence in the pool of length nb is
unique. Uniqueness on the other hand is defined as 1 – (nb – 1)/ns, a ratio to measure how much of a
sequence of length ns is unique. For example 20-mers that are 10-unique have common subsequences of at
most 9 subsequent nucleotides and a uniqueness of 55%.
In order to construct unique sequences, a DNA sequence is considered to consist not of single nucleotides
but of overlapping subsequences of a defined length nb (so called base strands) (Figure 2). Base strands are
organized as nodes of a directed graph where every base strand has exactly 4 predecessors and 4
successors. Every successor contains its predecessing base strand minus the first nucleotide and plus one
nucleotide out of the alphabet of DNA nucleotides (a, c, g, t) at the 3’-end. Sequences are generated as
paths through the graph. During generation of the sequences a base strand may be used only once, so that
the paths of any two sequences do not have a node in common. Likewise if a node is used, its complement
may not be used in any other sequence while self-complementary base strands may not be used at all
(Figure 3). Thus the algorithm guarantees all generated sequences to have a maximum common
subsequence of at most nb – 1 nucleotides and so are nb-unique.

acgcgctca
acgcgc
 cgcgct
 gcgctc
 cgctca

} base strands

complete sequence Figure 2: A sequence of length ns consisting of
(ns – nb + 1) overlapping base strands of length
nb.

acgcgc

cgcgca

cgcgcc

cgcgcg

cgcgct

gcgcta

gcgctc

gcgctg

gcgctt
= acgcgctc

Figure 3: Graph of base strands. A path of m
nodes represents a sequence of length nb + m–
1. The node cgcgcg is self-complementary
and therefore marked as forbidden.

This algorithm is still not sufficient to construct sequences that can be used for DNA computing and the
production of biochips. First, in order to construct molecules that are working properly in vitro, certain
physical, chemical and biological requirements have to be applied to the generated sequences. Second, in
order to construct new sequences that are compatible (in terms of being nb-unique) to an existing pool of
old sequences, the compiler must be able to process the old sequences to their base strands and to subtract

4

these from the pool of all available base strands. Third, in order to create unique variables (sticky ends)
that can attach to a multitude of terminals, the algorithm must be applied in parallel. Fourth, depending on
design, additional measures should be applicable to sustain uniqueness.
There are several requirements to the physical properties of the constructed sequences that are essential for
a successful in vitro approach, such as a uniform melting temperature (to prevent mismatches and biases in
the probability distribution of the ligation process15)), GC-base-pairs at the ends of the sequences to avoid
fraying (to prevent in vitro errors and deviations from the two-state-transition model used for
thermodynamic estimations), no occurance of three or more consecutive guanine nucleotides (to prevent
several undesirable phenomena16)), different lengths for terminal and variable sequences (to uphold stability
of the algomers while hybridizing to logomers) and bounds for the GC-ratio of the used base strands (to
approximate the two-state-transition model).
A drawback of the chosen understanding of uniqueness regarding common subsequences is the possible
similarity of sequences said to be nb-unique for a not small enough value of nb. E.g., the subsequences
...aaaagaaaa ... and ...aaaacaaaa ... are very similar and could both anneal to ...ttttctttt ..., but
are 5-unique. Therefore the maximum number of identical bases for all possible shifts of two compared
sequences and their complements (maximal homology) can be used as an additional measure of similarity.
Since the whole in vitro approach is based on the controlled interaction between DNA and enzymes, the
uniqueness of the constructed sequences can itself be seen as their major chemical property. Besides, a
whole set of enzymatic interactions such as interaction with restriction endonuclease, ligase, polymerase,
methylase etc. is essential. Therefore, the sequences should contain (or sometimes definitively not contain)
certain enzymatically active sites.
Biological properties are essential under several aspects. First, biological techniques such as hybridization,
ligation, PCR and cloning are used in vitro for implementation. Cloning for example requires inclusion of
appropriate cloning sites and design with respect to the cloning vector. Second, if the constructed molecules
are used in vivo or under otherwise sensitive conditions, the presence or absence of specific biological
meaningful sequences such as start-, stop-, promotor- or specific recombinational sites might be required.
For example the compiler can be instructed to avoid sequences that contain start codons to prevent
accidential translation even though it is highly unlikely to produce biologically meaningful information by
coincidence.
In order to reuse existing molecules or to generate sequences that are compatible to existing biological
sequences, the compiler is able to process predefined sequences to their base strands and subtracts these
from the pool of all available base strands.

4 Implementation

The compiler contains a core module (called sequence generator) which uses the base strands of a given
length to construct sequences regarding the requirements listed above. On different stages of the
construction process different requirements are implemented. All requirements can be applied in the form of
filters either to the pool of base strands or to the pool of sequence candidates (see Figure 4), except
uniqueness and the prevention of fraying which are implemented within the construction.
The generation of sequences consists of the following steps:
1. Create a directed graph out of the base strands of a certain length and apply all defined filters to the base
strands by marking those as forbidden that do not satisfy the criteria. Among these filters there are logical
and structural filters (i.e. self-complementary sequences), physical filters (i.e. GC-ratio, melting
temperature, triple G sequences), chemical filters (i.e. enzymatic sites) and biological filters (i.e. start-,
stop-, promotor-, recombinational sequences). Also base strands of already existing sequences can be
excluded at this stage from being used again.
2. As long as there are still sequences to generate and there are possible start nodes (not forbidden, not yet
used and not yet tried as start nodes), choose one of them randomly. Here, fraying of the 5’-end can be

5

prevented by limiting the choice such that the first nucleotide of the start node is a G or C. With each
chosen start node do the following:
2a. As long as the path has not the desired length, choose a successor node which is not forbidden nor used
randomly and mark it and its complement as used. If the last successor of the path is to be chosen, fraying
of the 3’-end can be prevented in this step by limiting the choice accordingly.
If a node has no usable successor left before the path has reached its full length, backtracking is used to
search another path, thereby marking the no longer used nodes as unused.
2b. If a path has reached its full length, the newly generated sequence is filtered by applying certain logical,
physical, chemical or biological criteria, such as melting temperature, GC-ratio or homology. If a sequence
does not meet the criteria backtracking is initiated, otherwise it is added to the output pool.
2c. If backtracking leads the algorithm back to the start node and none of its four successors is available,
this search is terminated and another start node is chosen by the outer loop.

All base
sequences

Sequence
candidates

Sequences
"Good" base
sequences

Pal indromes

Filter

etc

Fil ter
Genera te

Un iqueness
Fray ing

Back t rack ing

T m
G C %

Restr ict ion s i tes
Homo logy

etc

G C %
G G G
star t codons

Leng th

Figure 4: Sketch of the DNA sequence generator.

The compiler first parses the given ruleset of the grammar. It then uses the generator module to generate the
terminal and variable sequences used in the algomers.
Though the compiler can construct all sequences completely de novo, the construction of sticky ends is
particularly needed for construction of self-assemblying molecules (nano-frameworks). Because variables
(sticky ends) have to be attached to a multitude of terminals that can be represented by complex molecules,
the original Niehaus-graph algorithm14) as described above is not sufficient to grant uniqueness. Instead, the
compiler uses a "parallel extension" uniqueness algorithm. This algorithm makes use of several path
constructions executed in parallel and thus is able to meet several additional requirements:
If sequences generated as a nb-unique sequence pool were concatenated to algomers, and later to logomers,
"new" base strands would emerge around the junctions, which hadn't been considered in the construction
process (Figure 5). Thus, in worst case, the length of a repeatedly appearing subsequence could increase to
2 * (nb – 1) (nb – 1 nucleotides in each direction from the junction).
Any variable sequence can (and usually will) have more than one adjacent terminal sequence and vice
versa, so several junctions must be regarded simultaneously when generating one terminal or variable
sequence.
If one terminal sequence has more than four adjacent variables (or vice versa), uniqueness even has to be
violated for a successful compilation because the terminal sequence path cannot branch into more than four
junctions (see Figure 6). If a terminal sequence is adjacent to n variable sequences at least for the next
log4(n) positions base strands must be used more than once. These violations must be tolerated in a
controlled way so that they are still prevented if not necessary.

6

acgcatcgagctaggttacagtg

acgcatcgagc taggttacagtg Figure 5: Concatenation of sequences leads to
the occurrence of base strands not regarded in
the construction of the sequences (here for
nb = 4).

R = {..., S 0A, S 0B, S 0C, S 0D, S 0E,
 A 1F, B 2G, C 3H, D 4I, E 5J, ...}

0 aaa 1a... A

0 aaa 2c... B

0 aaa 3g... C

0 aaa 4t... D

0 aaa 5?... E

Figure 6: Tolerated uniqueness violation. The
compiler tolerates uniqueness violation
because the terminal path for 0 must branch
into more than four variable paths. The
compiler also limits the multiple use of the
base strand used in the last path to this
position (dotted box).

The compiling process can be divided into the following steps:
1. Read one type of sequences (in general the terminal sequences) from existing molecules if present or
otherwise generate them with the algorithm described above.
2. For each variable collect all pairs of terminals whose sequences will embrace the respective variable
sequence in a logomer from the rules set and bundle them into groups, one group for each variable. Align
their paths such that between each pair a gap of the length of the variable path plus 2 * (nb – 1) remains for
the junctions and the variable sequences themselves (Figure 7).
3. Choose the last base strand of each left hand terminal sequence as the start node of the according path.
4. Build the terminal-variable junctions by applying the path search loop for all paths in parallel, regarding
the joining of paths and the possibly necessary uniqueness violation.
5. Build the variable sequences as common path extensions of the corresponding terminal paths in parallel.
6. Build the variable-terminal junctions in parallel, regarding the branching of paths and the possibly
necessary uniqueness violations again.
Annotations to these steps:
1. It is also possible to reuse terminal sequences and create additional sequences to expand a grammar. For
this purpose the base strands are extracted from the reused sequences and are excluded from the
construction pool.
2. Even “empty” terminal sequences can be aligned if variables shall be left open.
3. If the terminal sequence should be empty (or for any other reason be shorter than the base strand length
used for the variables) the “missing” nucleotides are chosen randomly.
4. Searching “in parallel” means first searching the immediate successor node for all paths (in all groups),
then searching all second successors etc. Joining is implemented by choosing the same successor for all
paths in one group respectively. The prevention of fraying is realized in this step by limiting the choice of
the first successors. A necessary violation, i.e. the multiple usage of one base strand, is allowed only within
one step of the parallel growth so that these multiple occurences are limited to the same position in all
paths. One of the compiler’s parameters defines in how many positions from the junction such violations
are to be tolerated.

7

5. Again, all paths within one group have the same successors so that the variable path is a common
extension of those paths.
6. Here the nb – 1 successor nodes for each path are not chosen randomly but predetermined by the first
nb – 1 nucleotides of the right hand terminal sequence. Otherwise the usual path searching routine is used.
Again, uniqueness violations are limited to occur within a “column” (see description to step 4).
If backtracking is needed because a path is blocked or a completed sequence does not meet the filter criteria
not all paths track back as this could lead to infinite loops of two or more paths initiating backtracking
alternately. Therefore, backtracking is used only for the “guilty” path to search another path. The other
paths are “frozen” in the position where the backtracking was initiated until the “guilty” one reaches this
position again. Then the parallel search continues.

S aA

A bA

A cA

Rules: a

b

c

b

c

d

A

A dX

S bB

B cB

b

c

d

c

d

f

B

start

B dB

B fX

Figure 7: Parallel extension. The sequences representing A and B are generated by extending the paths of
the terminal sequences in parallel. The dotted column contains the start nodes for the extension algorithm.

Note that the parallel lengthening of all variable paths allows regarding not only all joining terminal-
variable junctions and branching variable-terminal junctions, but also vice versa, controlling the according
uniqueness violations.
If some variable sequences are to be reused and others are to be generated, the already existing sequences
are also included in the parallel extension algorithm and thus can be taken into account with respect to
controlled uniqueness violations. Their completely predetermined paths are simply reproduced in the path
search routine.

5 Results

In the context of our work on digital DNA10) we used the compiler to construct a library of DNA molecules
for representation of 32-bit datastructures using the grammar G32b2 = (Σ, V, R, S), with Σ:= {0, 1, e, s0, s1,
s2, s3}, V:={S, A, B, C, D, E, F, G, H, I}, start-symbol S and R:= {S→siA, A→0B, A→1B, B→0C,
B→1C, C→0D, C→1D, D→0E, D→1E, E→0F, E→1F, F→0G, F→1G, G→0H, G→1H, H→0I, H→1I,
I→e with i = {0, 1, 2, 3}}.
The grammar describes the production of random bytes where every byte carries information about the
position within a 32-bit datastructure. It produces logomers of the form s0{x} 8e, s1{x} 8e, s2{x} 8e, s3{x} 8e,
where {x}8 is a random concatenation of 8 bits and si is the byte position (see Figure 1).
All generated molecules are guaranteed to have a maximum overlap of 5bp (to be 6-unique), have 50%GC,
a melting temperature between 50°C and 51°C (for the terminal sequences), a maximal homology of 0.8
and no fraying (see Figure 1 and Figure 8). The grammar was translated in 160 seconds on a PC with a
300MHz Pentium and 128 MB RAM.

8

Figure 8: Screenshot of the compiler options used for translating the 32-bit grammar. The melting
temperature (Tm) for the variables is not explicitely bounded, because for such short sequences the melting
temperature is estimated as depending on the GC-ratio only, while for longer sequences the nearest-
neighbor method is used.

The compiler was tested for de novo construction of oligonucleotide sets that can be used for biochips. A
set of DNA sequences fixed to a chip has to meet two diverging needs: The sequences should be as unique
as possible while having the most uniform possible melting temperatures.
The compiler could generate large sets of oligonucleotides with the defined properties (Figure 9) within the
limits set by the requirements (see Figure 10). Because computational time increases exponentially with the
base strand length, oligo sets with a uniqueness not lower than 50% are realistic. In case of 20-mers with
50% GC-ratio and 50% uniqueness this means around 140,000 out of 167,960 possible sequences. This is
sufficient for todays biochips that contain up to 10,000 sequences on a single chip (Affymetrix, 25µm
technique).

Figure 9: Compiler options for the generation of sequence sets for biochips.

9

When restricted only to uniqueness, the compiler could find up to 86% of all possible sequences. Additional
requirements to the oligonucleotides lowered the yield and increased compilation time. While strict
parameters can lower the yield dramatically, GC-ratios around 50% typically had only minor impact to the
yield of sequences with 50% - 55% uniqueness.

0.1

10

1000

100000

1E +07

1E +09

1E +11

1E +13

0 0.2 0.4 0.6 0.8 1

Uniqueness

N
o.

 s
eq

ue
nc

es Max possible
unique 20-mers

Max 20-mers
50% GC

Max 20-mers
NoGGG

Figure 10: Certain requirements set upper limits to the number of sequences that can be generated by the

compiler. The maximum number of 20-mers with 50%GC is






⋅

b

s

n

n
202 = 167,960. The maximum number of

20-mers with 50% uniqueness is
)1(2

4

+−⋅ bs

n

nn

b = 209,715. For 20-mers with 50% uniqueness a yield of 71%

(148500) is expexted. For 20-mers with 55% uniqueness a yield of 73.3% (34,931 sequences) could be
achieved. More restrictive is the exclusion of base strands with multiple-G subsequences. This leads to a
loss in yield of 25% to over 40% (relative to the maximal possible unique sequences) around 50%
uniqueness.

6 Discussion

The compiler shown here translates formal grammars directly into self-assembling DNA “rule molecules”
(algomers). It can generate the molecules of a given ruleset fully de novo or can complete a set of molecules
by constructing new molecules which are compatible (in terms of uniqueness and homology) to the already
existing molecules. The completion of molecule sets is especially useful when reusing DNA molecules
already available in vitro. In particular, the compiler can generate sticky ends (the variables) to predefined
terminals. Therefore the compiler is not limited to the translation of regular grammars to linear molecules
which is implemented yet, translation of higher grammars to more complex molecules such as DX-
molecules5) and Ψ-molecules7) is currently under development. The reusability of still existing sequences
enables the compiler to include biological sequences into the construction process. Thus, for example the
construction of artificial chromosomes such as YACs (Yeast artificial chromosomes) and BACs (Bacterial
artificial chromosomes) can be done with the compiler.
Another application of the compiler is the creation of sets of oligonucleotides for the construction of
biochips. For that purpose the compiler can generate molecule sets with defined uniqueness and
thermodynamical behavior de novo or assemble biological DNA sequences such as genomic DNA into
oligonucleotides.

10

The compiler can directly be connected to an oligonucleotide synthesizer to create an interface between
silicon and DNA. This follows the philosophy of DNA/Silicon hybrid computing10) where components of
both worlds are integrated more closely. The compiler might evolve to or become part of the operating
system of such an hybrid system.

The compiler is available for download at:
http://ls11-www.cs.uni-dortmund.de/molcomp/DNACompiler/

7 References

1) J. Chen, N.C. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube.
Nature, 350, 631-633, (1991)

2) George M. Whitesides, John P. Mathias, Christopher T. Seto, Molecular Self-Assembly and
Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science, 254, 1312-
1319, (1991)

3) Christof M. Niemeyer, Takeshi Sano, Cassandra L. Smith, Charles R. Cantor,
Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA – streptavidin hybrid
molecules as connectors for the generation of macroscopic arrays and the construction of
supramolecular bioconjugates. Nucleic Acids Research, 22(25), 5530-5539, (1994)

4) Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, A DNA-based
method for rationally assembling nanoparticles into macroscopic materials. Nature, 382, 607-
609, (1996)

5) Erik Winfree, Furong Liu, Lisa A. Wenzler, Nadrian C. Seeman, Design and self-assembly of
two-dimensional DNA crystals. Nature, 394, 539-544, (1998)

6) Eugene R. Zubarev, Martin U. Pralle, Leiming Li, Samuel I. Stupp, Conversion of
Supramolecular Clusters to Macromolecular Objects. Science, 283, 523-526, (1999)

7) Matthias Scheffler, Axel Dorenbeck, Stefan Jordan, Michael Wüstefeld, Günter von
Kiedrowski, Self-Assembly of Trisoligonucleotidyls: The Case for Nano-Acetylene and Nano-
Cyclobutadiene. Angewandte Chemie Int. Ed., 38(22), 3312-3315, (1999)

8) N.C. Seeman: De Novo Design of Sequences for Nucleic Acid Structural Engineering. Journal
of Biomolecular Structure & Dynamics, 8(3), 573-581, (1990)

9) Anthony G. Frutos, Qinghua Liu, Andrew J. Thiel, Anne Marie W. Sanner, Anne E. Condon,
Lloyd M. Smith, Robert M. Corn, Demonstration of a word design strategy for DNA
computing on surfaces. Nucleic Acids Research, 25(23), 4748-4757 (1997)

10) Hilmar Rauhe, Gaby Vopper, Udo Feldkamp, Wolfgang Banzhaf, Jonathan C. Howard,
Digital DNA molecules. (also submitted, DNA6).

11) Erik Winfree, Xiaoping Yang, Nadrian C. Seeman, Universal Computation via Self-assembly
of DNA: Some Theory and Experiments, Proceedings of the 2nd DIMACS Meeting on DNA
Based Computers, Princeton University, June 20-12, (1996)

12) André Leier, Christoph Richter, Wolfgang Banzhaf, Hilmar Rauhe, Cryptography with DNA
binary strands. (Biosystems, submitted)

13) D.T. Burke, G.F. Carle, M.V. Olson, Cloning of large segments of exogenous DNA into yeast
by means of artificial chromosome vectors. Science 236(4803), 806-812, (1987)

14) Jens Niehaus, DNA Computing: Bewertung und Simulation, Diploma thesis at the University
of Dortmund, Dept. of Computer Science, LS11, 116-123, (1998)

15) Udo Feldkamp, Ein DNA-Sequenz-Compiler, Diploma thesis at the University of Dortmund,
Dept. of Computer Science, LS11, (1999)

16) D. Sen, W. Gilbert, A sodium-potassium switch in the formation of four-stranded G4-DNA.
Nature 344, 410-414, (1990)

