Supervised Learning in Robotic Swarms: From
Training Samples to Emergent Behavior

Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

Abstract Emergent behavior in swarm robotic systems is key to obtaining com-
plex behavior by a group of relatively simple agents. The question is how to design
the individual behaviors of agents in such a way that the desired global behavior
emerges. Different approaches have been proposed to solve this problem: from bi-
ologically inspired probabilistic behavioral models to evolutionary techniques. In
some situations, however, creating a complex probabilistic model of the behavior
or developing a proper setup for an evolutionary process can be challenging. In this
paper we propose a new method, based on supervised learning on a relatively small
number of training samples. We apply our method to the well-known clustering
problem and show that this approach yields the desired global clustering behavior.

1 Introduction

Emergent behavior in swarm robotic systems has been a subject of extensive re-
search for the last two decades [1, 2]. A robotic swarm, provided that it has been
designed in a particular way, can produce global behavior, that is often conceptually
more complex than the behaviors of the individual agents. For example, a group of
robots can collect scattered objects into a single cluster, although each individual
robot follows a simple pick-up-and-deposit procedure without any explicit knowl-
edge of where the cluster has to be formed [3, 4, 5]. This phenomenon is widely
known in biology. For example, ants exhibit an astonishing degree of collaboration
and coordination in wars against other ant colonies and even other animals, with

Gregory Vorobyev
Memorial University of Newfoundland, St. John’s, NL A1B 3X5, e-mail: gvorobyev@mun.ca

Andrew Vardy
Memorial University of Newfoundland, St. John’s, NL A1B 3X5, e-mail: av@mun. ca

Wolfgang Banzhaf
Memorial University of Newfoundland, St. John’s, NL A1B 3X5, e-mail: banzhaf@mun.ca



2 Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

attacks and retreats and, in the worst case, evacuation of the queen and larvae car-
ried out by the whole ant colony as if it is controlled by someone who is always
aware of the current situation in the world [6]. Other species, honeybees, have been
observed as they select a new place as home: this process is truly democratic and
involves “voting”, i.e., collective decision making, in which the entire colony partic-
ipates [7]. Due to the degree of self-organization, coordination and unity exhibited
by these groups of animals, some scientists consider these groups as superorganisms
[8].

The emergence of global behavior is a result of actions taken by individuals;
thus, relatively simple behavioral patterns followed by the individuals eventually
produce the more ’intelligent’” behavior of the swarm. The question is therefore how
to design individual behaviors in such a way that they will construct the basis from
which the desired global swarm behavior will emerge [9]. One way to do this is to
take inspiration from biology. For example, clustering behavior is observed in ants
as they collect their dead peers into piles [6], or in honeybees distributing pollen into
cells in their hives [7]. The results of experiments conducted by biologists have led
to probabilistic models of individual behavior [3]. The feasibility of these models
is further confirmed by observing the global swarm behavior in simulated (or real)
robotic systems and comparing it with what is observed in nature [10]. Another ap-
proach exploits evolutionary techniques. In this methodology, individual behaviors
evolve in such a way that the global behavior is improved [11, 12, 13, 14].

While both methods of designing individual behaviors have proved to be suc-
cessful, they have their own issues. In the first case, a swarm designer needs to have
feasible behavioral models, which may not be available (for example, if a behav-
ior which is desired for the swarm has not been observed in nature). In the other
case, the problem of a proper set-up for the evolutionary process arises (for exam-
ple, which parameters of the behavior are subject to evolution and which are not);
moreover, computational costs are typically high for the evolutionary approach.

In this paper, we propose an alternative simple method of designing the individ-
ual behaviors of agents for the clustering problem. In our approach, the designer
considers a small number of characteristic situations that an agent might encounter.
While it is hard to predict each possible configuration of the environment in which
the agent may find itself and to generate a corresponding rule for this situation, it
is much easier to accomplish this task if the number of situations being considered
is relatively small (in our work, only 4). Yet, as we demonstrate in this paper, such
a small number of training samples is sufficient for the agents to learn the task of
clustering in such a way that the swarm starts to produce the desired behavior. We
conduct experiments to test our approach in a custom 3D simulator with a realis-
tic physics engine, and we show that our agents are capable of accomplishing the
clustering task without any explicit probabilistic models embedded into them.

The rest of the paper is organized as follows. In Section 2, a short review of
the relevant work is given. Section 3 describes the methodology used to solve the
behavioral design problem. In Section 4, we conduct experiments and discuss the
results. Finally, conclusions and future work are given in Section 5.



Supervised Learning in Robotic Swarms: From Training Samples to Emergent Behavior 3

2 Related work

In one of the pioneering works in the area of swarm robotics, Deneubourg et al. con-
sider a generic sorting problem, where a swarm of robots collect objects (pucks) of
different types into homogeneous clusters [4]. Each agent moves randomly between
cells in a grid-based environment. Whenever the agent encounters a puck (i.e., en-
ters a cell with a puck), it decides whether or not to pick it up. This decision is based
upon how many objects of the same type this agent has encountered in the recent
past. This information is stored in a short-term memory which is represented as an
array of 10 items, for instance 00AAAOBOOA (4 pucks of type A, 1 puck of type B,
and 5 empty cells encountered during the last 10 time steps). The more pucks of a
given type the agent remembers from his recent experience, the less is the probabil-
ity of picking up a puck of that type. Further on, if an agent carries a puck and enters
an empty cell, it decides whether or not to put the puck down. Intuitively, the more
pucks of the same type as the puck which is being carried the agent has encountered
in the recent past, the larger is the probability of depositing this puck. Ultimately,
these simple rules result in a global sorting behavior of the swarm. There is no com-
munication between agents or centralized control in the swarm: agents effectively
are not aware of each other and act completely independently.

The idea of creating probabilistic behavioral controllers similar to what was pro-
posed by Deneubourg et. al. has been applied to many different problems [1, 2]. For
example, the task of collective aggregation has been solved by a group of cockroach-
like robots with probabilistic controllers [15, 16]. The robots move randomly and
stop with a certain probability which is a function of the number of other robots
in immediate proximity (note that this mechanism is very similar to what has been
used by Deneubourg et. al., although the task is slightly different). Thus, the be-
havior Stop is activated with a certain probability Py,,. In [17], the aggregation
task is accomplished by robots with 4 atomic behaviors: ObstacleAvoidance,
Repel,Wait, and Approach, with last three organized into a probabilistic finite-
state automaton. A robot approaches the largest group of robots with a probability
Preturn, waits for a random period of time, and then runs away from it with the
probability P.q... The results of this work demonstrate that the best performance
is achieved with the Preryrn = Pleave = 1; in this case, the probabilistic behavior is
reduced to deterministic, or procedural, behavior.

Deterministic behaviors of swarm agents have also been systematically studied
in [9], where 6 basic behaviors are presented and tested: Aggregation, Homing,
CollisionAvoidance, Following, Dispersion, and Flocking. Each
behavior is a simple procedure; for example, CollisionAvoidance can be
summarized as "If there is another robot on the right, turn left; otherwise, turn
right”. In more recent work, [18], relatively simple deterministic behaviors of the
agents have been applied to the chain formation problem.

In [5], similar deterministic rules have been embedded into a subsumption ar-
chitecture to solve the clustering problem. For example, if an obstacle is detected
in front of the robot, the ObstacleAvoidance behavior is activated. Different
behaviors are activated depending on certain conditions. Similar experiments have



4 Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

been conducted in [19]. However, the condition checks used to trigger the behav-
iors in this work are “encoded” as the weights of neural connections going from
the sensors rather than hard-coded procedural boolean expressions. The neural net-
works approach for activating behaviors based on a certain perception snapshot has
been more explicitly used in [12] for the aggregation problem. In [20], the similar
approach has been applied to the problem of self-assembly in a swarm-bot.

The impact of different parameters of atomic behaviors on the overall perfor-
mance is commonly estimated through systematic experiments in these works. For
example, in case of probabilistic controllers, the parameters that are subject to test-
ing may include probabilistic thresholds, such as Pgpe OF Preryrn [17]. Such tests
proved to be important, because it is tricky to predict which values for these param-
eters will be optimal for each particular experimental configuration. If the number
of parameters is large, the designer’s task becomes even more challenging.

Evolutionary techniques have been introduced in swarm robotics as another ap-
proach to designing individual behaviors. In [12] the aggregation problem was
solved by evolving the weights of a perceptron using a fitness function which com-
putes the average distance from a robot to the largest group. This work has been
further improved in [11], where the authors deduced general rules for selecting evo-
lutionary parameters in the swarm design problem. In the most recent work, [13], the
evolutionary approach has been applied to obtain emergent self-organizing behavior
in a robotic swarm.

While evolutionary algorithms allow to avoid difficulties with fine-tuning param-
eters of the individual behaviors, they raise new issues. For example, as it is stressed
in [13], the designer of a robotic swarm should determine which behavioral param-
eters are fixed and which are subject to evolution. The most difficult part, however,
is probably the fitness function. Fitness functions, like those used in [12], tend to re-
quire some global knowledge (for example, distance between robots), which some-
times could hardly be obtained. Finally, the computational costs are usually large
for evolutionary algorithms: for example, in [13], 500 experimental trials have been
executed to evolve the individual behaviors.

In this paper, we present an alternative approach to designing the individual be-
haviors with application to the clustering problem. Our agent’s controller is based on
a neural network, which is similar to the networks described in [19] and [12]. How-
ever, we do not use hard-coded neural weights (as in, e.g., [19]), and we do not use
evolutionary algorithms to evolve the weights (as in, e.g., [12]). Rather, we consider
a set of 4 training samples. Each sample represents a perceptual snapshot. From a
set of 3 behaviors - BackUpAndTurn, Turn, and MoveStraightAhead - we
select the most suitable. For example, if a robot ’sees” a large number of pucks in
front of it, it should activate BackUpAndTurn. We show that this approach, being
extremely simple and easy to follow, yields the desired clustering behavior.



Supervised Learning in Robotic Swarms: From Training Samples to Emergent Behavior 5

3 Methodology

In this work we revisit the clustering problem, in which agents collect initially scat-
tered pucks into a single pile. Similar to [21], our agents have no specialized grippers
to manipulate the pucks. Rather, the agents push the pucks with a plow.

As mentioned above, a neural network is a central part of the agent’s architecture
in our work. We use a simple single-layer perceptron, with 2 inputs and 3 outputs.
Each time step, sensory data is used as an input to this neural network. The output
of the neural network is then interpreted as a code of the basic behavior to activate.

In the rest of this section, we discuss what kind of sensory data we use, describe
the basic behaviors, and explain how sensory data is normalized to be fed into the
neural network and how the network’s output is interpreted. Finally, we describe the
samples used to train the neural network.

3.1 Perception areas

We assume that a robot has a sensor that can detect pucks and their position relative
to it. Sensory data in our work are the number of pucks in perception areas. Two
such areas are provided for an agent (see Fig. 1). The Central area is important for
detecting clusters of pucks in the immediate vicinity in front of the agent. The size
of the Central area is approximately 6x6 puck diameters. The Exploration
area stretches forward and is used for detecting pucks that are relatively far from the
robot. The size of the Exploration area is approximately 4x25 puck diameters.

The input fed to the neural network reflects the number of pucks in the perception
areas. This input, however, must be normalized within the range [0, 1] (which is
conventional for neural networks). The normalization is done by dividing the actual
number of pucks in the area by the maximum number of pucks for that area. Thus,
the relative density of pucks in an area is calculated. The question is then how to
define the maximum numbers for the perception areas.

The neural signal from the Central region is saturated at 1 (is maximized)
when the number of pucks in this region, assuming that they are uniformly dis-
tributed, is large enough to form a single cluster!. In our setup, this number (further

Fig. 1 Perception areas of
an agent (blue). 1. The
Central area is directly
in front of the agent. 2.
The Exploration area 1 2
stretches ahead.

! We define clusters as follows. Suppose that at time ¢ we have a graph with P vertices, where P
is the number of pucks in the experiment. There is a one-to-one correspondence between the set
of pucks; i.e., each vertex i is a mathematical representation of a corresponding puck p;. An edge
between vertices a and b in this graph exists if and only if the d;(p,, pp) < h, where d;(x,y) is the



6 Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

referred to as MaxCentral) is equal to 16. Experiments have shown that if the
MaxCentral parameter is chosen to be significantly lower, for example, 8, perfor-
mance of the swarm is unsatisfactory?.

For the Exploration area the interpretation of the maximum number is differ-
ent. This area is intended to serve for searching pucks, and not for detecting clusters.
Hence, it is only important whether there is at least one puck in this area or not. The
maximum number for the Exploration area is therefore 1.

Saturating linear function is used to normalize the number of pucks for both
perception regions. Thus, if the number of pucks in either of the regions is larger
than the corresponding maximum number, the input to the associated neuron will be
saturated at 1.

3.2 Basic behaviors

Three behaviors are available for agents. BackUpAndTurn behavior is inspired
by work in [4], where it has been proved to be efficient and the most important
for the clustering behavior. Turn behavior is used for locating pucks. Finally,
MoveStraightAhead behavior, as the name implies, moves an agent forward.
The description of the behaviors is given in Table 1.

Table 1 Description of the behaviors

BackUpAndTurn Back up for N time units, then turn at random angle*.
Turn Turn at a small angle.
MoveStraightAhead Move straight ahead.

*To implement this behavior, the procedure Update, which is called each time step and which is
responsible for collecting data, feeding it into the neural network, getting the output and activating
behaviors, needs an additional condition. If BackUpAndTurn behavior is currently being exe-
cuted, then Update immediately returns without referring to the neural network. This is repeated
until N times units have passed. After that, the Update procedure is executed normally.

The output of the network is an array of three floating point numbers. The
methodology “winner-takes-all” is used to convert this array to an array of three
integers: the maximum element of the array is rounded to 1, while two other ele-
ments are rounded to 0. The interpretation of the resulting integer array is given in
Table 2.

distance between x and y at time 7 and / is a distance threshold. In our work, we define /4 as the
diameter of a puck. Each connected component in this graph will then represent a cluster of pucks.

2 Further discussion of this question is given in Section 4.



Supervised Learning in Robotic Swarms: From Training Samples to Emergent Behavior 7

Table 2 Interpretation of the output.

[1, 0, 0] Activate BackUpAndTurn behavior.
[0, 1, 0] Activate Turn behavior.
[0, 0, 1] Activate MoveStraightAhead behavior.

3.2.1 Obstacle avoidance

The obstacle avoidance behavior, which is used in many works (for example, [5,
9, 17, 19]; see Section 2) is not explicitly present here. Rather, to avoid collisions
between robots we use BackUpAndTurn behavior: in the same manner as we
avoid disturbing large clusters, we avoid collisions between robots. This way, we
do not require an additional behavior for obstacle avoidance; thus, we reduce the
complexity of learning.

Therefore, another robot should be perceived in a similar way as a large cluster.
To achieve that, we maximize (make it equal to 1) the input from the Central area
if a robot is detected within this region.

3.3 Network training

The sketch of the neural network used in this paper is presented in Fig. 3.

It may be hard to develop a probabilistic behavioral model even for such a simple
task as clustering. However, it is relatively simple to define qualitative rules. The
short summary of these rules, partially inspired by works discussed in Section 2, is
as follows.

1. Ifthere is a cluster directly in front of an agent, it should back up and turn
(to avoid disturbing the clusters).

2. If'there is no cluster directly in front of an agent, it should always move to
the puck in the Exploration area (this would help to bring some of the
pucks the agent is plowing, if any, to that puck).

3. If there are no pucks in the Exploration area, an agent should turn
around until it finds at least one. (Extrusions on the sides of the plow will
help the agent keep the pucks that it has plowed.)

Given this summary, we define characteristic situations that an agent may en-
counter (i.e., a training set) and provide a ’solution” for each of these situations (see
Fig. 2 and Fig. 4). We then use the backpropagation learning method to train the



8 Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

a b C d

Fig. 2 The sketch of the training set. The lower rectangle is the Central area, the rectangle
above is the Exploration area. Red circles are pucks. In situations @ and b, BackUpAndTurn
behavior should be activated, because the relative density of pucks in the Central area is high.
In ¢, MoveStraightAhead should be activated: this will increase the number of pucks in the
Central area; therefore, a larger cluster will be created. Finally, in d the agent should activate
Turn behavior in attempt to find a puck in the Exploration area.

neural network until it starts producing correct output for all training samples>. It
appears that although we considered only 4 possible situations from more than 3,200
possible combinations (0.00125%) of the numbers of pucks in the perception areas®,
the neural network interpolates to recognize all other situations correctly. The pro-
posed method is somewhat similar to linear support vector machines (SVMs) used
in supervised learning and statistical analysis [22], though we do not follow this

approach directly.

4 Experiments

Experiments have been conducted using a custom simulator written in C#. The sim-
ulator uses the MOGRE engine’ for 3D visualization and the MogreNewt engine®
for modeling realistic physics in the simulation. The process of clustering observed
in the simulator can be seen at Fig. 5.

3 Since we are using a single-layer perceptron, the backpropagation is effectively reduced to the
delta rule. However, in a more general case, neural networks with hidden layers can be used;
therefore, the backpropagation method will be needed.

4 In theory, the Central area can accommodate as many as 32 pucks (not 36, although its size
is 6x6 puck diameters; this is because the plow extrusions are located within the Central area,
leaving less space for pucks), provided that they are clustered in an extremely tight manner; the
Exploration area in a similar way provides space for about 100 pucks. Thefore, the total num-
ber of combinations of pucks in the perception areas is N = 32 x 100 = 3200.

5 http://www.ogre3d.org/tikiwiki/MOGRE
6 http://www.ogre3d.org/tikiwiki/MogreNewt



Supervised Learning in Robotic Swarms: From Training Samples to Emergent Behavior 9

Initially, 100 pucks are scattered randomly (using the uniform distribution) over a
squared area with sides of 40 puck diameters. Five agents’ start in random positions
within this area. There are no boundaries (walls) around the simulation area. Note,
however, that agents tend to keep pucks within the initial area, due to the Turn
behavior.

To measure the performance, we use the metrics from [5]: the average size of
a cluster and the size of the largest cluster. Statistics are collected every 10 time
units of the simulation. In Section 3.1 we have mentioned that we predefine the
maximum number of pucks for perception areas (for Central area this parameter
is named MaxCentral). These numbers are the only tunable parameters for the
learning mechanism. We can change these parameters by effectively reprogramming
a robot (i.e., modifying the “’software”). All other parameters, such as robot and
puck sizes, or the number and the sizes of perception areas, most likely cannot be
adjusted without affecting the “hardware” (we consider the "hardware” parameters
to be given as is). The efficiency of the proposed “software” can be estimated by
using trials with different values for the “’software” parameters. Thus, we conduct
experiments with different values for the MaxCentral parameter to determine the
performance of the proposed learning mechanism. Results, averaged for 10 runs for
each value of the MaxCentral parameter, can be seen in Fig. 6 and Fig. 7.

The MaxCentral parameter has proved to be critical for performance. If this
parameter is chosen to be too low (for example, 8), the BackUpAndTurn behavior
is often triggered prematurely. In this case, agents are highly unlikely to destroy
smaller clusters in order to push a few pucks to bigger clusters; thus, the size of
the largest cluster and the average cluster size grow slowly (see Fig. 7; the size of

Relative density

Of.el_jfl:s____ Neurons BackUpAndTurn
s e

i Central Turn

§ s

Expl. MoveStraightAhead
H —

Fig. 3 The neural network. The inputs (in picture, bounded by a dashed line) are normalized
relative densities of pucks in perception areas. (The normalization is made using saturating lin-
ear function, see Sect. 3.1.) The output is an array of floating-point numbers; we then apply the
’winner-takes-all” methodology to obtain one of the codes from Table 2. The operation of the neu-
ral network is described by the following equation: a = logsig(Wp + b), where a is the output
vector (a; ,az,a3)T, W is the weight matrix 3 X 2, p is the input vector (p; 7pz)T, and b is the bias
vector (by,by)T.

7 The number of agents has been chosen more or less arbitrarily; most works in the clustering
problem, including [4], [5], [19], and [23] tend to choose the number of robots in the range from 1
to 10, so we concluded 5 to be the most typical value.



10 Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

the largest cluster is growing approximately 4 times slower than for the value for
MaxCentral equal to 16). When the MaxCentral parameter is high enough
(for example, 16), agents are allowed to “’steal” pucks from one cluster to deliver
them to another one; therefore, the size of the largest cluster and the average cluster
size grow faster.

It is interesting that in the first 1000 times steps the performance yielded by
the smaller parameter value is better (see Fig. 6). This is because agents guided
by a smaller MaxCentral parameter tend to form many clusters of a relatively
small size (10-20 pucks), whereas “greedier” agents (with MaxCentral = 16)
start creating bigger clusters from the very beginning, and smaller clusters which
are occasionally formed are likely to be destroyed shortly. However, once several
big clusters have been formed, the average cluster size starts to grow relatively fast,
whereas in the first case it is growing more slowly. We conclude that the smaller
MaxCentral value can be used in case if the convergence to a single cluster is not
required, and a group of small or middle-sized clusters is preferred.

It appears that the probability of removing pucks from a cluster is a function of
its size. The only way to remove pucks from a big cluster is to follow a tangent line
to the cluster and to plow some pucks from its skirt. Due to the Turn behavior,
which is likely to be activated afterwards, the pucks are then either returned back
to the cluster (if there are no other piles of pucks outside), or pushed to another
cluster. If the cluster is relatively large, then the chance that the first puck that will
appear in the Exploration area will belong to the same cluster is large; the pucks

2 L 2 |
f=4

o

5

m

o

[8

>

w

L A
o

T T T T
0.0 02 04 0.6 0.8 1.0
Central

Fig. 4 Target outputs for the training set. The inputs for the neural network are coordinates of the
points; the output is denoted by symbols, which are interpreted as follows: B - BackUpAndTurn,
A - Turn, ¢ - MoveStraightAhead. Black solid lines are decision boundaries obtained by the
application of the delta rule. It can be seen that the given patterns are linearly separable. Note that
this particular problem could be solved by using only two neurons (one for each decision boundary)
with saturating linear transfer functions. The output of the network will then be the binary code
of a behavior. In this paper, however, we prefer to use three neurons (one for each behavior) with
log-sigmoid transfer functions; therefore, the output of the network is an array of floating-point
numbers which we interpret as the "confidence’ of the network in a given behavior.



Supervised Learning in Robotic Swarms: From Training Samples to Emergent Behavior 11

will thus be returned to the cluster. If the cluster is relatively small, there is a high
chance that a significant part of it (or even the entire cluster) would be removed
without activating BackUpAndTurn behavior. Hence, the smaller the cluster is,
the bigger is the probability to remove pucks from it. This probabilistic process is
functionally similar to what has been developed by Deneubourg et al. [4]. However,
no explicit probabilistic rules are present in our system. The global probabilistic
behavior emerges based on the geometrical shapes of the robots and pucks, and the
individual behaviors provided by neural-based controllers. More detailed theoretical
derivations related to this subject can be found in [24].

5 Conclusions

Emergent behavior is a key to using a swarm of simple cheap robots for solving
complex tasks without centralized control. Different approaches have been proposed
to designing the agents’ behavior in such a way that the desired global swarm be-
havior emerges. However, in some situations these approaches may turn out to be

t=50 t =200 t =500

-?'J’.

t=1700

Fig. 5 Simulation of the clustering problem in process. Several phases of the process can be dis-
tinguished. In the first stage (0 < ¢ < 500, ¢ is time), the number of clusters is quickly decreasing
and a few large clusters (two in this case; sometimes it may be three or even four clusters) are
formed. In the second stage (500 < ¢ < 1700), the smaller cluster is gradually destroyed; pucks
from the second cluster are delivered to the bigger cluster. (This process, however, is statistical;
we have observed situations when, on the contrary, the bigger cluster was destroyed.) In the final
phase (r > 1700), a single cluster is formed. A few pucks may be removed from the cluster from
time to time, but they are then returned back. (All time intervals are given in simulation time units
and may vary from trial to trial.)



12 Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

i MaxCentral = 16 ==——MaxCentral= 8

70
g B0 m
& L
o |l
E 40
S

30 ~
&
el e IO
<10 oy

0 T T T T T T T T T 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Fig. 6 Average cluster size for different values of the MaxCentral parameter. With
MaxCentral = 16, the average of 33 (1 main cluster with 98 pucks and 2 clusters with a sin-
gle puck in each), 50 (1 main cluster with 99 pucks and a separated puck) or 100 is typical in the
final stage of the process, since pucks are occasionally removed from the cluster (but are quickly
returned back). With MaxCentral = 8, the average cluster increases slower.

MaxCentral = 16 MaxCentral= 8

11;: /.

20

Size of the largest cluster
& 3

Fig. 7 Size of the largest cluster for the different values of the MaxCentral parameter. The
horizontal axis (time) has been extended in this figure. Experiments with MaxCentral = 16
were stopped once a cluster of 100 pucks was formed. Experiments with MaxCentral = 8 took
approximately 4 times more time to converge to a single cluster. However, in a few experiments
with MaxCentral = 8 the convergence to a single cluster was not achieved even after 8000 time
units.

not applicable or not efficient. In this work, we have presented a simple method to
design a swarm behavior based on supervised learning a small number of samples
representing situations that an agent may encounter in the world of clustering.

While obtaining global probabilistic behavior which is functionally similar to
what has been described in [4] and subsequent works, we avoid creating explicit
probabilistic models of the individual behavior of the agents. Our approach is ex-
treme in its simplicity. We use no specialized grippers for the agents; the number of
behaviors is limited to three; the neural network is a single-layer perceptron. Yet,
such a simple approach yields the desired result: the swarm of agents accomplishes
the clustering task.

With increasing complexity of sensory input and the number of behaviors the
training will most probably become more complicated. However, the basic idea of



Supervised Learning in Robotic Swarms: From Training Samples to Emergent Behavior 13

swarm robotics implies an extreme minimalism of robots [23]; the number of sen-
sory inputs and behaviors is expected to be relatively small. If it is difficult to dis-
tinguish “characteristic”, or "boundary” situations from the set of possible sensory
inputs, the process of supervised learning can be made iterative: add one sample
after another, until the produced behavior becomes acceptable. With this assump-
tion, we think that the proposed approach may be efficient for other tasks studied in
swarm robotics.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bayindir, L., Sahin, E.: A Review of Studies in Swarm Robotics. Turkish Journal of Electrical

Engineering. Volume 15. Pages 115 - 147. (2007)

. Yogeswaran, M.: Swarm Robotics: An Extensive Research Review. Advanced Knowledge

Application in Practice. Pages 259 - 278. (2010)

. Bonabeau, E., Dorigo, M., G. Theraulaz: Swarm Intelligence: From Natural to Artificial Sys-

tems. Oxford University Press. (1999)

Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The
dynamics of collective sorting robot-like ants and ant-like robots. First International Confer-
ence on the Simulation of Adaptive Behaviour. Pages 356 - 363. (1991)

Beckers, R., Holland, O.: From local actions to global tasks: Stigmergy and collective
robotics. Artificial life. Volume IV. Pages 181 - 189. (1994)

Holldobler, B., Wilson, E. O.: Journey to the Ants: A Story of Scientific Exploration. Belknap
Press of Harvard University Press. (1994)

Seeley, T. D.: Honeybee democracy. Princeton University Press. (2010)

Holldobler, B., Wilson, E. O.: The Superorganism: The Beauty, Elegance and Strangeness of
Insect Societies. W. W. Norton & Company, Inc. (2009)

. Mataric, M.: Designing emergent behaviors: From Local Interactions to Collective Intelli-

gence. From Animals to Animats 2, Proceedings of the Second International Conference of
Simulation Adaptive Behavior. Pages 432 - 441. (1992)

Martinoli, A., Ijspeert, A.: A Probabilistic Model For Understanding And Comparing Collec-
tive Aggregation Mechanisms. Proceedings of the 5Sth European Conference on Advances in
Artificial Life. Pages 575 - 584. (1999)

Bahceci, E., Sahin, E.: Evolving Aggregation Behaviors For Swarm Robotic Systems: A
Systematic Case Study. Technical report METU-CENG-TR-2005-03, Middle East Technical
University, Turkey. (2005)

Trianni, V., Gross, R., Labella, T., Sahin, E., Dorigo, M.: Evolving Aggregation Behaviors
in a Swarm of Robots. Proceedings of the 7th European Conference on Artificial Life. Pages
865 - 874. (2003)

Trianni, V., Nolfi, S.: Engineering The Evolution of Self-Organizing Behaviors In Swarm
Robotics: A Case Study. Artificial Life, 17(3). Pages 183 - 202. (2011)

Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours in Groups
of Autonomous Robots. Springer (2008)

Jeanson, R., Rivault, C., Deneubourg, J., Blancos, S., Fourniers, R., Jost, C., Theraulaz, G.:
Self-Organized Aggregation in Cockroaches. Animal Behaviour, 69. Pages 169 - 180. (2005)
Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., Theraulaz, G.: Col-
lective Decision-Making by a Group of Cockroach-Like Robots. Proceedings of the IEEE
Swarm Intelligence Symposium. Pages 233 - 240. (2005)

Soysal, O., Sahin, E.: Probabilistic Aggregation Strategies in Swarm Robotic Systems. Pro-
ceedings of the IEEE Swarm Intelligence Symposium. Pages 325 - 332. (2005)

Nouyan, S., Dorigo, M.: Chain Formation in a Swarm of Robots. Technical report
TR/IRIDIA/2004-18, IRIDIA - University Libre de Bruxelles, Belgium. (2004)



14

19.

20.

21.

22.

23.

24.

Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

Martinoli, A., Mondada, F.: Collective and cooperative group behaviours: Biologically in-
spired experiments in robotics. Proceedings of the Fourth International Symposium on Ex-
perimental Robotics ISER-95. Pages 3 - 10. (1997)

Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous Self-assembly in a Swarmbot.
Proceedings of the Third International Symposium on Autonomous Minirobots for Research
and Edutainment. Pages 314 - 322. (2006)

Parker, C., Zhang, H.: Blind bulldozing: multiple robot nest construction. Proceedings of the
International Conference on Robots and Systems. Pages 2010 - 2015. (2003)

Christianini, N., Shawe-Taylor, J.: An Introduction To Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press. (2003)

Vardy, A.: Accelerated patch sorting by a robotic swarm. Canadian Conference on Robot
Vision. (2012)

Kazadi, S., Abdul-Khaliq, A., Goodman, R.: On the convergence of puck clustering systems.
Robotics and Autonomous Systems. Volume 38. Pages 93 - 117 (2002)



