
Enhancing the Computational Efficiency
of Genetic Programming Through

Alternative Floating-Point Primitives

Christopher Crary1(B) , Bogdan Burlacu2 , and Wolfgang Banzhaf3

1 Department of Electrical and Computer Engineering, University of Florida,
Gainesville, FL, USA
ccrary@ufl.edu

2 Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences
Upper Austria, Hagenberg, Upper Austria, Austria

bogdan.burlacu@fh-ooe.at
3 Department of Computer Science and Engineering, Michigan State University,

East Lansing, MI, USA

banzhafw@msu.edu

Abstract. Can evolution operate effectively with noisy floating-point
function primitives? In this paper, we are motivated by recent work
that aims to accelerate genetic programming (GP) through specialized
hardware and field-programmable gate arrays (FPGAs), for which it
has been shown that additional performance and power/energy benefits
could likely be achieved with floating-point function primitives that trade
off enhanced computational efficiency for increased error. Although GP
is known to be robust in filtering out certain forms of noise (e.g., within
input data), it is not immediately clear that less-accurate function primi-
tives would be viable for GP, since GP formulates arbitrary compositions
of its primitives, which could potentially compound error to a prohibitive
level. In addition, when introducing more complex forms of computa-
tion, such as function differentiation and local optimization techniques,
it is not readily apparent that using rougher primitive implementations
would be tenable. Here, we address both situations by employing the
state-of-the-art CPU-based Operon tool on a diverse set of 15 regression
problems, and we show that tree-based GP is capable of evolving very
similar (and sometimes better) results with alternative high-performance
approximations of standard function primitives, while often also allowing
for faster CPU runtimes. Most importantly, in the context of specialized
hardware, we conclude that our proposed techniques can likely allow for
significant speedups over general-purpose computing platforms, as well
as improved power/energy efficiency.

Keywords: Genetic programming · Field-programmable gate arrays ·
Approximate computing · Floating-point · Symbolic regression

This material is based upon work supported by the National Science Foundation under
Grant Nos. CNS-1718033 and CCF-1909244.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15148, pp. 322–339, 2024.
https://doi.org/10.1007/978-3-031-70055-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70055-2_20&domain=pdf
http://orcid.org/0000-0002-4953-9344
http://orcid.org/0000-0001-8785-2959
http://orcid.org/0000-0002-6382-3245
https://doi.org/10.1007/978-3-031-70055-2_20


Enhancing the Efficiency of GP Through Alternative Primitives 323

1 Introduction

Recent trends in machine learning highlight the need for energy-efficient com-
putation, during both training and inference [19,33,50]. For example, despite
widespread success, neural networks often consume prohibitive amounts of power
and energy for many use cases [5,50], in addition to posing considerable scaling
challenges for well-established use cases, such as data centers [1,5,40,50]. Such
limitations can motivate other learning systems, such as genetic programming
(GP) [4,30,43], where it has been widely shown that the pairing of evolutionary
search with alternative model structures (e.g., trees, assembly languages, tan-
gled program graphs, etc.) can sometimes allow for significantly more compact
solutions and enhanced efficiency during inference [26,31,43]. However, training
often remains complex with current GP techniques, which motivates the explo-
ration of improvements to training efficiency [7,13,14].

There are various ways to improve the training efficiency of GP, and they
generally involve either increasing performance (i.e., throughput) or enhancing
energy efficiency, for which there are at least four key benefits: (1) with increased
performance, useful solutions can potentially be found in a shorter amount of
time; (2) with improved energy efficiency, there is the potential for lower oper-
ational costs, which (3) can allow for more cost-effective multi-computer GP
systems, in turn allowing for higher performance; and (4) with either improved
performance or improved energy efficiency, better solutions can potentially be
found when allowing the system to consume a similar amount of runtime/energy.

In this paper, we explore the possibility of improving the training efficiency of
GP by way of alternative floating-point math approximations for standard func-
tion primitives.1 As described further in Sect. 2, we are motivated by recent work
that suggests modern field-programmable gate array (FPGA) devices are capable
of providing significant improvements to both the runtime and energy efficiency
of GP, when compared to solutions employing general-purpose CPU/GPU sys-
tems [11]. Importantly, for floating-point applications, it is suggested in [11]
that a key optimization needed for achieving significant computational effi-
ciency with an FPGA relies on the idea of implementing GP function primi-
tives with a minimal amount of shared single-precision floating-point multiply-
add (MAD) resources, for which modern FPGA devices have native support.
Unfortunately, designing this resource-sharing mechanism for standard imple-
mentations of floating-point operators is challenging, due to high-performance
requirements of the relevant algorithms often leading to overly complex or obfus-
cated realizations. However, this begs the question: are standard floating-point
operators even needed in the context of GP? Could more efficient implementa-
tions that more roughly approximate the corresponding continuous operators
suffice for evolution? We answer such questions in this paper.

As a proof-of-concept, we consider fifteen diverse benchmark problems within
the application domain of symbolic regression [28,39,42,52], and we extend the

1 We specify “alternative” since standard implementations of floating-point functions
are themselves approximations of continuous counterparts [20].



324 C. Crary et al.

recent state-of-the-art tool Operon [7] with several new computational backends,
in order to compare various single-precision floating-point approximations that
trade off increased error for enhanced performance. Notably, we find that not
only can the set of approximations with the highest amount of error perform
very similar to standard implementations, such approximations can even allow
evolution to evolve more compact and higher-quality models (in terms of fitness)
within a shorter period of time, depending on the dataset.

Ultimately, there are several important takeaways from this work. First,
within the context of specialized hardware, it is clear that there is the poten-
tial to leverage high-performance approximations of single-precision floating-
point math without dramatically reducing the solution quality of evolution,
even when performing complex operations that compound approximation error,
such as local optimization through gradient-based techniques. Second, when
applying such approximations to CPU systems, there is the possibility for
practically-significant performance enhancements, especially for problems with
larger datasets. For our tests using an AMD Ryzen 5950X CPU, with 16 cores,
3.4 GHz clock frequency, and AVX2 instruction optimizations, we achieved aver-
age speedups of up to 2.02×, and average energy reductions of up to 1.78×.
Third, on a more theoretical level, it has been shown in other ML paradigms
that noise is beneficial to produce simpler and more general solutions [15,32],
a result that can be readily applied in GP [3,55]. Using alternative function
implementations can be similar to injecting noise into solutions, with the added
benefit that it is faster. Thus, our results give further credence to the idea that
evolution can robustly deal with various, sometimes significant, forms of noise
and discretization. Overall, our current work represents a significant first step in
the direction of enhancing the computational efficiency of GP systems through
the use of alternative implementations of standard floating-point function prim-
itives, and it helps lay the foundation for how specialized hardware could exhibit
significant performance and energy advantages over general-purpose CPU/GPU
systems.

The rest of this paper is organized as follows. In Sect. 2, we present addi-
tional background and motivation for the proposed techniques. In Sect. 3, we
overview some related work. In Sect. 4, we describe our chosen floating-point
math approximations. In Sect. 5, we detail our design of experiments. In Sect. 6,
we present and analyze results. In Sect. 7, we conclude the study.

2 Background

Within GP, the performance bottleneck for training and the primary candi-
date for efficiency improvements is generally the evaluation of individuals [4,43].
Although this subroutine is normally an embarrassingly parallel procedure [43],
it can be challenging to accelerate with general-purpose CPU/GPU systems,
primarily due to the need for evaluating dynamically-evolving programs [11].
More specifically, although GPUs have numerous computation cores, the need
for conditional program execution (e.g., to decide which function primitive to



Enhancing the Efficiency of GP Through Alternative Primitives 325

execute) and large cache sizes generally limits acceleration capabilities, and even
though CPUs are better equipped for conditional execution, it is prohibitively
expensive to continually scale up the number of CPU cores/threads [7,11,22].

To address such limitations of general-purpose systems, recent work has
explored the possibility of creating specialized hardware accelerators for GP
using modern field-programmable gate array (FPGA) devices [11]. In brief,
FPGAs are programmable computing platforms for which specialized digital
circuits can be designed, without the need to manufacture integrated circuits.
When compared to FPGA technologies leveraged by some older GP systems
(e.g., [17,18,29,47]), contemporary FPGAs are better equipped to handle GP
acceleration due to the availability of significantly more resources, as well as
more powerful resources, e.g., native components for floating-point multiply-add
(MAD) operations [9].

Importantly, for floating-point applications, it is suggested by [11, Sect. 7.2,
item 2] that a key optimization needed for achieving significant computational
efficiency with an FPGA relies on the idea of designing GP function primitives
that both minimize and share low-level floating-point MAD resources, referred to
as “floating-point DSPs” in [11]. For example, suppose that we have the function
set F = {+,−, ∗, x2}, where x2 represents the squaring operation. In essence, if
computation cores are meant to compute only one primitive during any given
clock cycle, then rather than implement this set of function primitives with four
MAD components (where each MAD is a multiplier followed by an adder), a
core could instead share a single MAD component across all functions—since
no operation here independently requires more than one—which would free up
more FPGA resources for more parallel computation.

Perhaps the most important consequence of this aforementioned strategy is
that the number of MAD resources required for a single computation engine
is dictated by the primitive that requires the maximum number of MAD oper-
ations. Considering the prior example, if we were to include a primitive that
required ten MADs, the minimum amount of MADs that would be required for
the sharing scheme would be ten. Therefore, there is significant motivation to
minimize the maximum number of MAD operations across all functions.

To minimize the maximum number of MADs, the most obvious option is to
remove complex function primitives. Unfortunately, even relatively straightfor-
ward operations such as divide or logarithm can potentially take a significant
number of MADs, which then limits the potential throughput and power/energy
benefits of specialized hardware. Fortunately, there is another possibility: replace
complex function primitives with approximations that are more efficient in terms
of MADs and any other low-level device resources. In this case, we would gen-
erally be trading off increased error for enhanced performance: the higher error
that we can allow, the more likely that we can simplify the relevant hardware
implementation. However, we must first establish whether or not GP can operate
effectively with primitives containing non-negligible amounts of error.

Although GP is known to be robust in filtering out certain forms of noise
(e.g., within input data), it is not immediately clear that approximating function



326 C. Crary et al.

primitives would be viable for GP, since GP formulates arbitrary compositions
of its primitives, which could potentially compound error to a prohibitive level.
In addition, even if standard program evaluation could effectively leverage more
coarse-grained approximations, it is not readily apparent that using such approx-
imations for other forms of computation—such as function differentiation and
local optimization—would be tenable. In this paper, we address both situations.

3 Related Work

Approximate computing is an emerging paradigm that exploits the accept-
able error in applications in order to enable more effective approximations that
improve application performance/energy [35,46]. Although the widespread usage
of machine learning (ML) has made approximation a mainstream design strat-
egy, various forms of approximate computing remain limited within evolutionary
computation (EC) domains [46]. Regarding genetic programming (GP) [4,43],
numerous works have employed GP in order to construct high-performance solu-
tions, e.g., [24,53], but comparatively few works have developed approximations
for GP itself, especially for floating-point applications [46].

Approximate computing often goes unused because most developers are
unaware of existing approximations, and they are unlikely to create new approxi-
mations, especially for different applications or architectures. However, the auto-
matic nature of EC can potentially alleviate such issues [46]. For example, recent
work has demonstrated how competitive floating-point function approximations
can be automatically found from scratch using EC [45]. Such techniques are
complementary to our current work, which explores how high-performance and
less-accurate primitives may affect evolutionary search.

As with other ML domains, the use of low-precision numerical systems (e.g.,
8/16-bit floating-point or fixed-point) can likely lend itself to more energy-
efficient computation for GP applications [11,21]. Such strategies are comple-
mentary to our proposed technique, in which we implement standard GP func-
tion primitives with alternative approximations, rather than with alternative
number systems. For our current work, we employ the IEEE-754 single-precision
floating-point format [20], but future work could potentially employ any numer-
ical format. In addition, we target symbolic regression as a proof-of-concept, but
approximate primitives could likely be used for other types of problems.

4 Methodology

For this study, we consider various alternative approximations for several com-
monly used mathematical primitives, but we leverage standard implementations
for addition and multiplication, since standard multiply-add (MAD) operations
are natively supported by the FPGA technologies that we intend to target
(Sect. 2) [9,23,51]. Ultimately, we use alternative approximations for computing



Enhancing the Efficiency of GP Through Alternative Primitives 327

program outputs and for computing derivatives when performing local optimiza-
tion techniques. Other computation such as that for fitness measures are imple-
mented using standard math implementations. These other procedures could
potentially be approximated as well, but we leave this for future work. Care
must likely be taken if approximating fitness measures, since poor approxima-
tions might deceptively promote inappropriate solutions.

The math primitives that we choose to approximate are division, sine, cosine,
natural exponentiation, natural logarithm, square root, and hyperbolic tangent.
For these primitives, we consider three different implementation sets, where we
generally trade off lower complexity in terms of maximum number of MAD
resources for lower function accuracy, since the maximum number of MADs
directly affects the possible throughput of specialized hardware (Sect. 2):

MAD-16 (16 MADs). Lowest function error—see Table 1—but also the lowest
theoretical performance for hardware. This implementation is based on the
VDT library, which has been successfully used at CERN [41].

MAD-10 (10 MADs). Notable middle ground between the number of MAD
resources and function error. The threshold of ten was defined primarily based
on the number of MAD resources needed to significantly improve the error of
sine/cosine when compared to the MAD-04 implementation.

MAD-04 (4 MADs). Highest performance and highest error, when compared
to the other implementations. Very little complexity, in terms of MADs.

With recent higher-end FPGA devices, thousands of MAD components can
potentially be available [9]. For example, if we suppose that 9,000 (roughly 75%)
of the 12,300 MAD resources for the “AGM 039” device listed in [23] could be
utilized for specialized GP computation cores (Sect. 2) [11], and if we suppose
that a moderate clock frequency of 300 MHz could be utilized [9,37,49,51], then
our three proposed primitive set implementations could allow for a theoretical
peak throughput of 168.75 billion, 270 billion, and 675 billion node operations per
second, respectively. (We divide total number of MAD resources by the numbers
listed for our primitive set implementations, and then multiply by 300 million.)

Notably, other optimizations are possible in order to increase throughput
even further. First and foremost, the design could be optimized for timing, so
that a higher clock frequency may be used [9,51]. Then, in contexts where local
optimization is expected and a weight term is to be allocated to each program
node—similar to Operon—there effectively can be up to 3× as many nodes in
each program once accounting for the multiplication operations, and we can
compute the extra multiplication for each node in parallel to a computation
core with just one extra MAD resource, which would allow theoretical peak
throughput values to be multiplied by three. (Given the assumptions of the
previous example, it is possible to allocate the extra MAD resource for each
computation core.) In fact, we plan to consider also adding bias terms to the
Operon system, in which case a similar argument could allow for up to a 5×
improvement in peak throughput. We leave other optimizations for future work.

Our work also motivates two novel model deployment strategies: (1) train-
ing and deploying with the same alternative primitive implementations, and (2)



328 C. Crary et al.

training with alternative implementations and deploying with standard imple-
mentations, where we apply linear scaling in both cases [25]. Due to the fact that
we are using approximations for the standard single-precision floating-point for-
mat [20], item (1) offers a clear path to both energy-efficient training and energy-
efficient inference, either with general-purpose or specialized computer systems.
However, if the use of such primitives during inference is not desirable for any
reason, then item (2) offers a meaningful strategy for using standard primitives.

Approximation Details

Below, we discuss the algorithms used by our implementation sets. As a side note,
when we employ approximations defined by the VDT library [41], we usually
perform additional input validation. Refer to our code for more details [10].

Division. We use div(x1, x2) = x1 × 1
x2

= x1 × (x−1
2 ), and we approximate

x−1
2 by first exploiting some well-known numerical properties of the single-

precision floating-point encoding [20], and then by improving an initial estimate
with Newton-Raphson (NR) iterations [36]. The number of NR iterations distin-
guishes performance and error among our three sets. We use 4, 4, and 1 iterations
for the MAD-16, MAD-10, and MAD-04 sets, respectively.

Sine/Cosine. We use polynomial approximations of varying accuracy. For the
MAD-16 and MAD-10 sets, we employ the approximation given by the VDT
library [41]; for the MAD-04 set, we augment the following simple approxima-
tion of a particular sine wave once reducing the input x to the range [−1, 1]:
x · (1 − abs(x)). We note that sine and cosine were the primary bottlenecks
for reducing the maximum number of MAD resources; it is challenging to con-
struct practical implementations of these functions that require less than four
MADs. In addition, we note that our chosen approximations necessitate a limited
input domain, due to limited capabilities in transforming arbitrary floating-point
inputs to a relevant range like [−1, 1], although future work can explore using
other methods at the cost of increased complexity.

Natural Exponentiation. For the MAD-16 set, we employ the approximation
given by the VDT library [41]. For the other two sets, we use exp(x) = 2x/log(2).
We split t � x/log(2) into an integer i and fraction f such that t = i + f and
0 ≤ f < 1. From this, we can compute 2x/log(2) = 2f · 2i by first approximating
2f with a polynomial, and then by scaling with 2i, the latter of which can be
performed simply by adding i to the encoded exponent value of the floating-
point result 2f [20]. When approximating 2f , we use polynomials of degree-6
and degree-2 for the MAD-10 and MAD-04 sets, respectively.

Natural Logarithm. For the MAD-16 set, we employ the approximation given
by the VDT library [41]. For the other two sets, we consider inputs to be of the
form x = m · (2e), where e is the unbiased exponent value of the floating-point
input [20], and where m is 1.0 + m′ for mantissa 0 ≤ m′ < 1. Then, we use



Enhancing the Efficiency of GP Through Alternative Primitives 329

log(x) = log(m) + e · log(2). To compute log(m), we use polynomials of degree-6
and degree-2 for the MAD-10 and MAD-04 sets, respectively.

Square Root. We employ sqrt(x) = x · (x−0.5), and we approximate x−0.5 with
the fast inverse square root approximation [36], employing 4, 2, and 1 N-Raphson
iterations for the MAD-16, MAD-10, and MAD-04 sets, respectively.

Hyperbolic Tangent. For the MAD-16 and MAD-10 sets, we use tanh(x) =
1− 2/(exp(2x)+1), saturating to −1 or +1 when outside of the range [−32, 32],
and we use methods similar to what was previously described for approximating
the exponentiation and reciprocal operations. For the MAD-04 set, we use a
simple polynomial approximation and saturate when outside of the range [−3, 3].
Similar to sine/cosine, it is challenging to construct practical implementations
of this function that require less than four MADs.

Table 1. Median relative percentage error for the proposed functions and their asso-
ciated derivatives. See the text about results of tanh derivative for MAD-04.

Mad-16 Mad-10 Mad-04

f ∂f f ∂f f ∂f

div 0 0 0 0 0.08353 0.25052

sin 0 0 0 0 6.87843 5.30876

cos 0 0 0 0 5.30876 6.87843

exp 0 0 9.28e−6 9.28e−6 0.11890 0.11890

log 0 0 0 0 0 0.08327

sqrt 0 0 0 0 0 0

tanh 5.96e−6 1.71e−4 1.43e−4 2.24539 0.00897 100

Following from the above, we list in Table 1 median relative percentage error
values for each function and its associated derivative(s), for each MAD backend.
We include derivatives since we leverage gradient-based local search. For each
primitive, we use a set of one million random inputs, uniformly distributed in
the interval [−10, 10], and we use the NumPy Python library as a baseline when
computing relative error [38]. Note that the relative error of each partial deriva-
tive for arity-two functions independently contributes to the relevant error listed.
Also, note that the derivative of the tanh function for MAD-04 was frequently
zero, which caused the median relative error to be 100%, even though absolute
error was reasonable. Ultimately, we consider the listed errors to be acceptable.

5 Empirical Study

We investigate the empirical validity of our proposed methodology on a collection
of real-world and synthetic symbolic regression problems, which are described in



330 C. Crary et al.

Table 2. Summary of the chosen benchmark problems. F4 to F15 are synthetic.

Id Name Features Instances Training range

F1 Airfoil Self Noise [6] 5 1503 [0, 1000)

F2 Chemical-I [28] 57 1066 [0, 711)

F3 Concrete [54] 8 1000 [0, 500)

F4 Friedman-I [16] 10 10 000 [0, 5000)

F5 Friedman-II [16] 10 10 000 [0, 5000)

F6 Poly-10 [42] 10 500 [0, 250)

F7 Pagie-1 [39] 2 1676 [0, 676)

F8 Vladislavleva-1 [52] 2 2125 [0, 100)

F9 Vladislavleva-2 [52] 1 321 [0, 100)

F10 Vladislavleva-3 [52] 2 5683 [0, 600)

F11 Vladislavleva-4 [52] 5 6024 [0, 1024)

F12 Vladislavleva-5 [52] 3 3000 [0, 300)

F13 Vladislavleva-6 [52] 2 93 666 [0, 30)

F14 Vladislavleva-7 [52] 2 1300 [0, 300)

F15 Vladislavleva-8 [52] 2 1206 [0, 50)

Table 2. In particular, we are interested to observe the extent of GP’s ability to
evolve solutions when standard function primitives exhibit significant numerical
deviations (Table 1), as well as how such noise is compounded by compositional
expressions and, separately, by gradient-based local search [7]. We incorporate
the proposed MAD implementations in Operon [7], and we compare with three
other backends based on the Eigen, STL, and VDT C++ libraries [7,41].

We employ the NSGA-II algorithm [12] with a population of 1,000 individuals
and a computational budget that stops evolution after either one million solution
evaluations or 1,000 generations. The remaining parameters are given in Table 3.
For each combination of computational backend and benchmark problem, we first
perform a set of 100 runs without local search. Then, we repeat this experiment,
but with three iterations of local search using the Levenberg-Marquardt (LM)
algorithm [27], which consumes the computational budget much faster.

The different numerical properties of GP primitives from each backend affect
the underlying genotype-to-phenotype maps, thus affecting the evolvability of
the representation [2]. Therefore, it is possible to obtain solutions which rely on
certain approximate behavior in order to maximize fitness. For this reason, it
is important to consider re-evaluating and deploying all solutions with a com-
mon computational backend. However, our work also enables the possibility of
deploying GP models with the same backend employed during training. Here,
we consider both forms of deployment, and when using the former, we leverage
the STL backend to re-evaluate all solutions. For both forms of deployment, we
apply linear scaling using the training data [25]. When performing linear scaling,



Enhancing the Efficiency of GP Through Alternative Primitives 331

rather than have default weight/bias values of 1.0 and 0.0 when encountering
not-a-number (NaN) program outputs, we replace such outputs with zero.

Table 3. Run parameters for Operon

Tree constraints Depth ≤ 10, Length ≤ 50

Fitness function R2 (coefficient of determination)

Crossover probability 100%

Mutation probability 25%

Selection mechanism Crowded tournament selection, size of 5

Function set +, −, ×, ÷, sin, cos, exp, log, sqrt, tanh

Terminal set constant, constant · variable

Stop criterion 1M solution evaluations or 1,000 generations

To effectively compare backends, we define various performance/energy mea-
sures. First, we generalize the traditional notion of the performance measure “GP
operations per second (GPops/s)” [8] to allow for node derivative calculations,
and we concisely name this measure “nodes per second (NPS)” to better align
with our following measures. When a total number of node operations is needed,
we use an estimate based on average population statistics [10].

From NPS, we relate performance to energy consumption with the “nodes
per watt (NPW)” measure:

NPW � NPS
Total power (Watt)

=
Total number of node operations

Total energy (Joule)
. (1)

Note that, as with standard “performance-per-watt” measures, the units of
time cancel, and we equivalently calculate work per unit energy. Separate from
NPW, we define another performance-per-watt measure named “fitness per watt
(FPW),” where we consider “performance” to be the self-explanatory “fitness
per second (FPS),” and where the GP fitness measure is to be maximized:

FPW � FPS
Total power (Watt)

=
Fitness

Total energy (Joule)
. (2)

Overall, the NPS/FPS measures quantify forms of throughput, with FPS
allowing one to draw conclusions about how solution quality relates to runtime,
whereas the NPW/FPW measures additionally relate performance to energy,
which is useful when considering operational costs. Note that all measures are
to be maximized. Here, we measure energy/runtime via the Linux perf tool.

Lastly, we note that we can meaningfully generalize the above measures to
represent aggregate values across different datasets as long as we compute only
one ratio involving total sums over all datasets, similar to how it has been doc-
umented for the “floating-point operations per second (FLOPS)” measure [48].



332 C. Crary et al.

6 Results

All of the following results except those described for Fig. 2 are given within the
context of the first deployment strategy listed in Sect. 4, i.e., scaling the outputs
of learned solutions based on re-evaluation with the STL backend.

F1
F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Eigen

without NLS with NLS

F1
F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Stl
F1

F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Vdt

F1
F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Mad-16
F1

F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Mad-10
F1

F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Mad-04

Fig. 1. Median R2 scores on test sets, for each backend, for each problem

First, we consider the median test R2 fitness scores for all backends, for
all problems, without/with local search using nonlinear least squares (NLS), as
depicted by the radar charts in Fig. 1. Immediately, we see that the shapes and
area of the polygons given for all the backends appear largely similar, which
intuitively suggests that the different implementations of the relevant function
primitives do not cause catastrophic discrepancies in solution quality. This result
is not too surprising for the Eigen, STL, VDT, and MAD-16 backends, since the
relative difference in function outputs between these backends is more or less
negligible, but this result is remarkable for our proposed MAD-10 and MAD-
04 implementation sets, due to the presence of significantly higher amounts of
function error, which can become further pronounced via arbitrary function com-
positions and the use of automatic differentiation for local search.

In Table 4, we further compare each MAD backend against Eigen—the default
backend of Operon—using the Mann-Whitney U statistical test [34] between R2

test set values obtained for each problem, for runs without/with local search.



Enhancing the Efficiency of GP Through Alternative Primitives 333

Table 4. Statistical significance of Eigen’s test R2 values being “statistically greater”
than the MAD backends, and relative percentage differences between median R2 values.
White/black squares indicate runs without/with local search.

Mad-16 Mad-10 Mad-04

F � � � � � � � � � � � �
F1 8.4e−01 4.31 7.9e−02 −2.64 1.9e−01 −2.91 4.6e−01 0.17 5.5e−01 −0.76 1.4e−03 −6.07

F2 8.3e−01 0.45 6.3e−01 0.35 8.4e−01 2.07 6.8e−01 0.40 9.8e−01 4.21 3.1e−01 −1.38

F3 4.5e−01 −0.75 6.4e−01 3.62 7.8e−01 1.79 5.7e−01 1.37 4.2e−01 −2.32 9.7e−01 4.72

F4 4.9e−01 −0.01 2.2e−01 0.00 1.0e−02 −0.12 7.2e−02 0.00 1.6e−25 −1.72 9.5e−01 0.02

F5 8.2e−01 0.02 2.7e−01 −0.01 5.2e−01 0.01 3.9e−01 −0.01 1.8e−03 −0.32 5.4e−19 −0.33

F6 6.6e−01 0.00 8.1e−01 0.14 3.6e−02 −0.26 3.8e−01 −0.11 1.9e−08 −0.61 2.9e−05 −0.73

F7 6.4e−01 0.34 8.2e−01 1.47 4.1e−01 0.03 8.3e−01 1.37 2.6e−01 −0.29 2.6e−02 −7.66

F8 5.7e−01 0.10 7.8e−01 0.08 1.3e−01 −0.23 7.4e−01 0.09 3.6e−02 −0.34 8.5e−10 −0.98

F9 4.2e−01 −0.02 7.3e−01 0.03 2.6e−01 −0.09 6.1e−01 0.02 1.2e−06 −0.60 9.1e−17 −0.26

F10 8.9e−01 0.22 4.7e−01 0.00 2.4e−01 −0.09 7.3e−01 −0.02 8.7e−05 −1.28 2.3e−13 −0.33

F11 3.2e−01 −0.02 9.4e−01 3.88 7.1e−01 0.00 9.5e−01 3.58 8.4e−05 −0.32 2.0e−02 −6.23

F12 1.4e−01 −0.06 1.0e+00 0.00 2.4e−01 −0.02 4.1e−02 0.00 2.0e−02 −0.21 1.2e−13 −0.02

F13 1.4e−02 −0.02 9.9e−01 0.00 2.1e−01 0.00 9.4e−01 0.00 2.0e−13 −0.63 1.8e−30 −0.72

F14 7.8e−01 0.05 4.7e−01 0.00 4.9e−01 0.07 4.5e−01 0.00 2.4e−02 −0.69 1.2e−06 −3.07

F15 2.0e−01 −6.84 5.6e−01 1.35 4.4e−01 1.95 1.6e−01 −2.11 1.6e−01 −5.57 8.2e−01 3.48

The test operates under the null hypothesis that the R2 values have the same
underlying distribution, and under the alternate hypothesis that Eigen’s results
are “statistically greater,” i.e., that Eigen delivers better R2 values. In addition to
p-values (shown in white cells), we list the relative percentage difference between
Eigen’s median test R2 score and the median test R2 score of each MAD backend
(shown in gray cells), where a negative value can be interpreted as the relevant
MAD backend typically performing worse than Eigen.

For the MAD-16 and MAD-10 backends, we observe many p-values greater
than 0.05 and many non-negative relative percentage differences, which allows us
to conclude that the use of these implementation sets often allows for similar or
better fitness scores than the standard Operon system. For the MAD-04 backend,
the analysis needs to be more nuanced. First, although we see many smaller
p-values and many negative relative differences, the median relative difference
is always greater than −7.7% and on average greater than −1.1%. Thus, the
practical difference in fitness may be negligible depending on the dataset, but
importantly, we are not yet considering the trade-offs involving performance and
power/energy that may be possible when allowing for the MAD-04 backend.

In Table 5, we consider various average measures for the entire set of bench-
mark problems, which identify in their own regard that the MAD-04 backend
is generally more efficient than other backends—consider the bold values. (We
can safely compute an average across all problems by computing only one ratio,
as described in Sect. 5.) For example, we see that the MAD-04 backend achieves
the highest mean scores for almost all of the “nodes per second (NPS),” “nodes



334 C. Crary et al.

per watt (NPW),” “fitness per second (FPS),” and “fitness per watt (FPW)”
measures defined in Sect. 5, often achieving values between 2–10% greater than
Eigen. This sharp contrast in results between Tables 4 and 5 illustrates how
considering only plain fitness scores can lead to incomplete conclusions.

Table 5. Various average measures for the set of benchmark problems. See Sect. 5 for
details on NPS, NPW, FPS, and FPW. Runtime and energy are given in seconds and
Joules, respectively. Size is for final models. ΔR2 is the mean difference in test R2

values when compared to Eigen, and ΔR2 (Rel.) is a relative percentage equivalent.
The “NLS” subscript identifies runs with local search.

Eigen Stl Vdt Mad-16 Mad-10 Mad-04

NPS 2.12e+10 1.12e+10 2.05e+10 1.96e+10 1.99e+10 2.23e+10

NPSNLS 3.07e+10 2.39e+10 3.07e+10 3.00e+10 3.02e+10 3.01e+10

NPW 1.61e+08 1.00e+08 1.47e+08 1.39e+08 1.43e+08 1.65e+08

NPWNLS 3.05e+08 3.08e+08 3.00e+08 2.90e+08 2.97e+08 3.17e+08

FPS 0.615 0.323 0.595 0.562 0.581 0.639

FPSNLS 0.488 0.383 0.496 0.480 0.484 0.499

FPW 4.6e−03 2.9e−03 4.3e−03 4.0e−03 4.2e−03 4.7e−03

FPWNLS 4.8e−03 4.9e−03 4.9e−03 4.6e−03 4.8e−03 5.3e−03

Runtime 1.35 2.59 1.39 1.47 1.42 1.28

RuntimeNLS 1.73 2.22 1.71 1.78 1.76 1.67

Energy 178.17 307.25 193.15 207.02 197.25 172.60

EnergyNLS 174.22 190.32 174.30 183.46 178.78 158.17

Size 29.5 29.7 29.4 29.7 29.2 30.0

SizeNLS 38.6 38.7 38.4 38.9 38.6 37.8

ΔR2 0 7.08e−03 −1.64e−03 −2.68e−03 −6.20e−03 −1.09e−02

ΔR2
NLS 0 6.86e−03 2.37e−03 7.46e−03 5.16e−03 −1.18e−02

ΔR2 (Rel.) 0 0.855 −0.197 −0.324 −0.749 −1.32

ΔR2
NLS (Rel.) 0 0.812 0.281 0.883 0.611 −1.40

Most importantly, we emphasize that the values reported in Table 5 are for a
CPU, whereas our ultimate intention is to leverage specialized hardware, which
can likely exhibit even more attractive performance and power/energy trade-
offs [11]. For example, the aggregate nodes-per-second (NPS) values for Operon
in this study are frequently on the order of 20–30 billion, whereas our discussion
in Sect. 4 illustrates how leveraging the proposed MAD backends with an FPGA
could potentially allow for NPS values in the hundreds of billions, if not trillions.
Separately, it has been widely shown that FPGA devices can often infer signifi-
cant power/energy benefits [37,44,49,51]. Therefore, with considerable potential
for improving both performance and power/energy when employing an FPGA



Enhancing the Efficiency of GP Through Alternative Primitives 335

device, it is clear that any minor differences in fitness scores caused by the pro-
posed MAD implementations may be far outweighed by practical improvements
in runtime and operational costs when using such systems. At the very least,
these results should validate the introduction and future consideration of alter-
native floating-point primitives for improving the computational efficiency of
GP, which was the overarching goal of this work.

F1F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Mad-16

Original STL-corrected

F1F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Mad-10
F1F2

F3

F4

F5

F6

F7
F8 F9

F10

F11

F12

F13

F14

F15

0.2
0.4

0.6
0.8

Mad-04

Fig. 2. Comparing median test R2 scores between both deployment strategies

To conclude this section, we briefly consider the second deployment strategy
listed in Sect. 4, i.e., training and deploying with the same computational back-
end. In Fig. 2, we examine the MAD-based runs without local search. Overall,
the figure shows that median test R2 values when employing the same backend
used during training are very similar or better when compared to median R2

values for STL-corrected models. (Trends for mean test R2 values and for local
search were similar.) Therefore, we establish that GP inference may also benefit
from alternative backends, for the purposes of better computational efficiency.

7 Conclusion

Can we allow for the use of rough approximations of floating-point primitives?
Our study indicates yes, with the performance and power/energy benefits being
notable for CPU devices, yet likely very significant for specialized hardware, e.g.,
with FPGA devices. Our study also indicates that such alternative primitives
can potentially be leveraged during both training and inference, thus allowing
for continued performance/energy benefits. Future work should explore how sim-
ple we can make the numerical system in order to extract additional efficiency.
For example, can we meaningfully utilize alternative primitives with 8/16-bit
floating-point encodings? Separately, although similar program sizes resulted
from the use of alternative primitives, future work should consider possible dif-
ferences in interpretability. Overall, this work marks a considerable initial step
toward improving the computational efficiency of GP systems through the use



336 C. Crary et al.

of alternative implementations of standard floating-point function primitives.
Furthermore, our findings help lay the groundwork for potential advancements
in specialized hardware for GP, which can likely offer notable performance and
power/energy advantages over traditional general-purpose CPU/GPU systems.

Disclosure of Interests. The authors have no competing interests to declare.

References

1. Acun, B., et al.: Carbon explorer: a holistic framework for designing carbon aware
datacenters. In: Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, vol. 2, pp.
118–132 (2023)

2. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear,
K. (ed.) Advances in Genetic Programming, vol. 1, pp. 47–74. MIT Press (1994)

3. Bakurov, I., Haut, N., Banzhaf, W.: Sharpness minimization in genetic program-
ming. In: Winkler, S., et al. (eds.) Genetic Programming - Theory and Practice
XXI, p. forthcoming. Springer (2025). https://arxiv.org/abs/2405.10267

4. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming - An
Introduction. Morgan Kaufmann, Estes Park (1998)

5. Bashir, N., et al.: Enabling sustainable clouds: the case for virtualizing the energy
system. In: Proceedings of the ACM Symposium on Cloud Computing, SoCC 2021,
pp. 350–358. Association for Computing Machinery, New York (2021)

6. Brooks, T.F., Pope, D.S., Marcolini, M.A.: Airfoil self-noise and prediction. Tech-
nical report 1218, NASA (1989)

7. Burlacu, B., Kronberger, G., Kommenda, M.: Operon C++: an efficient genetic
programming framework for symbolic regression. In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference Companion, GECCO 2020,
pp. 1562–1570. Association for Computing Machinery, New York (2020)

8. Chitty, D.M.: Faster GPU-based genetic programming using a two-dimensional
stack. Soft. Comput. 21(14), 3859–3878 (2017)

9. Chromczak, J., et al.: Architectural enhancements in Intel Agilex FPGAs.
In: Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA 2020, pp. 140–149. Association for Computing
Machinery, New York (2020)

10. Crary, C., Burlacu, B., Banzhaf, W.: PPSN 2024 Conference Software Code (2024).
https://github.com/christophercrary/conference-ppsn-2024

11. Crary, C., Piard, W., Stitt, G., Bean, C., Hicks, B.: Using FPGA devices to accel-
erate tree-based genetic programming: a preliminary exploration with recent tech-
nologies. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds.) EuroGP 2023. LNCS,
vol. 13986, pp. 182–197. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-29573-7 12

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., Fast, A.: NSGA-II. IEEE Trans.
Evol. Comput. 6(2), 182–197 (2002)

13. Dı́az-Álvarez, J., Castillo, P.A., de Vega, F.F., Chávez, F., Alvarado, J.: Population
size influence on the energy consumption of genetic programming. Meas. Control
55(1–2), 102–115 (2022)

https://arxiv.org/abs/2405.10267
https://github.com/christophercrary/conference-ppsn-2024
https://doi.org/10.1007/978-3-031-29573-7_12
https://doi.org/10.1007/978-3-031-29573-7_12


Enhancing the Efficiency of GP Through Alternative Primitives 337

14. Fernández de Vega, F., Dı́az, J., Garćıa, J.Á., Chávez, F., Alvarado, J.: Looking
for energy efficient genetic algorithms. In: Idoumghar, L., Legrand, P., Liefooghe,
A., Lutton, E., Monmarché, N., Schoenauer, M. (eds.) EA 2019. LNCS, vol. 12052,
pp. 96–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45715-0 8

15. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization
for efficiently improving generalization. In: 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenRe-
view.net (2021). https://openreview.net/forum?id=6Tm1mposlrM

16. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67
(1991)

17. Funie, A.I., Grigoras, P., Burovskiy, P., Luk, W., Salmon, M.: Run-time reconfig-
urable acceleration for genetic programming fitness evaluation in trading strategies.
J. Signal Process. Syst. 90(1), 39–52 (2018)

18. Funie, A.I., Salmon, M., Luk, W.: A hybrid genetic-programming swarm-
optimisation approach for examining the nature and stability of high frequency
trading strategies. In: 2014 13th International Conference on Machine Learning
and Applications, pp. 29–34 (2014)

19. Garćıa-Mart́ın, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy
consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019)

20. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. (CSUR) 23(1), 5–48 (1991)

21. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: International Conference on Machine Learning, pp.
1737–1746. PMLR (2015)

22. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 6th edn. Morgan Kaufmann Publishers Inc., San Francisco (2017)

23. Intel: Intel Agilex™M-Series FPGA and SoC FPGA Product Table [Online] (2015).
https://cdrdv2.intel.com/v1/dl/getContent/721636

24. Jia, H., Verma, N.: Exploiting approximate feature extraction via genetic pro-
gramming for hardware acceleration in a heterogeneous microprocessor. IEEE J.
Solid-State Circuits 53(4), 1016–1027 (2018)

25. Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5, 259–
269 (2004)

26. Kelly, S., Heywood, M.I.: Emergent solutions to high-dimensional multitask rein-
forcement learning. Evol. Comput. 26(3), 347–380 (2018)

27. Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter iden-
tification for symbolic regression using nonlinear least squares. Genet. Program
Evolvable Mach. 21(3), 471–501 (2020)

28. Kordon, A.K., Castillo, F.A., Smits, G., Kotanchek, M.E.: Application issues of
genetic programming in industry. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic
Programming - Theory and Practice III, pp. 241–258. Springer, Boston (2006).
https://doi.org/10.1007/0-387-28111-8 16

29. Koza, J.R., Bennett, F.H., Hutchings, J.L., Bade, S.L., Keane, M.A., Andre, D.:
Evolving computer programs using rapidly reconfigurable field-programmable gate
arrays and genetic programming. In: Proceedings of the 1998 ACM/SIGDA Sixth
International Symposium on Field Programmable Gate Arrays, FPGA 1998, pp.
209–219. Association for Computing Machinery, New York (1998)

30. Koza, J.: Genetic Programming - On Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

https://doi.org/10.1007/978-3-030-45715-0_8
https://openreview.net/forum?id=6Tm1mposlrM
https://cdrdv2.intel.com/v1/dl/getContent/721636
https://doi.org/10.1007/0-387-28111-8_16


338 C. Crary et al.

31. La Cava, W., et al.: Contemporary symbolic regression methods and their relative
performance. In: Advances in Neural Information Processing Systems, vol. 35, pp.
1–16 (2021)

32. Liu, J., Cai, J., Zhuang, B.: Sharpness-aware quantization for deep neural networks.
arXiv:2111.12273 (2023)

33. Mart́ın, E.G., Lavesson, N., Grahn, H., Boeva, V.: Energy efficiency in machine
learning: a position paper. In: Annual Workshop of the Swedish Artificial Intelli-
gence Society (2017). https://api.semanticscholar.org/CorpusID:44010140

34. McKnight, P.E., Najab, J.: Mann-Whitney U Test. The Corsini Encyclopedia of
Psychology, pp. 1–1 (2010)

35. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv.
(CSUR) 48(4), 1–33 (2016)

36. Moroz, L.V., Walczyk, C.J., Hrynchyshyn, A., Holimath, V., Cieśliński, J.L.: Fast
calculation of inverse square root with the use of magic constant - analytical app-
roach. Appl. Math. Comput. 316, 245–255 (2018)

37. Nurvitadhi, E., et al.: Can FPGAs beat GPUs in accelerating next-generation deep
neural networks? In: Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, FPGA 2017, pp. 5–14. Association for
Computing Machinery, New York (2017)

38. Oliphant, T.E., et al.: Guide to Numpy, vol. 1. Trelgol Publishing, USA (2006)
39. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol.

Comput. 5, 401–418 (1997)
40. Patros, P., Spillner, J., Papadopoulos, A.V., Varghese, B., Rana, O., Dustdar, S.:

Toward sustainable serverless computing. IEEE Internet Comput. 25(6), 42–50
(2021)

41. Piparo, D., Innocente, V., Hauth, T.: Speeding up HEP experiment software with
a library of fast and auto-vectorisable mathematical functions. J. Phys. Conf. Ser.
513(5), 052027 (2014). https://dx.doi.org/10.1088/1742-6596/513/5/052027

42. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E.
(eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36599-0 19

43. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises UK Ltd, Egham (2008)

44. Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter
services. IEEE Micro 35(3), 10–22 (2015)

45. Real, E., et al.: AutoNumerics-Zero: automated discovery of state-of-the-art math-
ematical functions. arXiv preprint arXiv:2312.08472 (2023)

46. Sekanina, L.: Evolutionary algorithms in approximate computing: a survey. arXiv
preprint arXiv:2108.07000 (2021)

47. Sidhu, R.P.S., Mei, A., Prasanna, V.K.: Genetic programming using self-
reconfigurable FPGAs. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.) FPL 1999.
LNCS, vol. 1673, pp. 301–312. Springer, Heidelberg (1999). https://doi.org/10.
1007/978-3-540-48302-1 31

48. Smith, J.E.: Characterizing computer performance with a single number. Commun.
ACM 31(10), 1202–1206 (1988)

49. Stitt, G., Gupta, A., Emas, M.N., Wilson, D., Baylis, A.: Scalable window gen-
eration for the Intel Broadwell+Arria 10 and high-bandwidth FPGA systems.
In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA 2018, pp. 173–182. Association for Computing
Machinery (2018)

http://arxiv.org/abs/2111.12273
https://api.semanticscholar.org/CorpusID:44010140
https://dx.doi.org/10.1088/1742-6596/513/5/052027
https://doi.org/10.1007/3-540-36599-0_19
http://arxiv.org/abs/2312.08472
http://arxiv.org/abs/2108.07000
https://doi.org/10.1007/978-3-540-48302-1_31
https://doi.org/10.1007/978-3-540-48302-1_31


Enhancing the Efficiency of GP Through Alternative Primitives 339

50. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for mod-
ern deep learning research. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 13693–13696 (2020)

51. Tan, T., Nurvitadhi, E., Shih, D., Chiou, D.: Evaluating the highly-pipelined Intel
Stratix 10 FPGA architecture using open-source benchmarks. In: 2018 Interna-
tional Conference on Field-Programmable Technology (FPT), pp. 206–213 (2018)

52. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)

53. Wilson, G., Banzhaf, W.: Linear genetic programming GPGPU on microsoft’s
Xbox 360. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), pp. 378–385. IEEE Press (2008)

54. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural
networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)

55. Zhang, H., Chen, Q., Xue, B., Banzhaf, W., Zhang, M.: Sharpness-aware mini-
mization for evolutionary feature construction in regression. IEEE Trans. Pattern
Anal. Mach. Intell. (submitted). https://arxiv.org/abs/2405.06869

https://arxiv.org/abs/2405.06869

	Enhancing the Computational Efficiency of Genetic Programming Through Alternative Floating-Point Primitives
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	5 Empirical Study
	6 Results
	7 Conclusion
	References


