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Abstract. Evolutionary ensemble learning methods with Genetic Pro-
gramming have achieved remarkable results on regression and classifica-
tion tasks by employing quality-diversity optimization techniques like
MAP-Elites and Neuro-MAP-Elites. The MAP-Elites algorithm uses
dimensionality reduction methods, such as variational auto-encoders,
to reduce the high-dimensional semantic space of genetic programming
to a two-dimensional behavioral space. Then, it constructs a grid of
high-quality and diverse models to form an ensemble model. In MAP-
Elites, however, variational auto-encoders rely on Euclidean space topol-
ogy, which is not effective at preserving high-quality individuals. To
solve this problem, this paper proposes a principal component analysis
method based on a cosine-kernel for dimensionality reduction. In order
to deal with unbalanced distributions of good individuals, we propose a
zero-cost reference points synthesizing method. Experimental results on
108 datasets show that combining principal component analysis using
a cosine kernel with reference points significantly improves the perfor-
mance of the MAP-Elites evolutionary ensemble learning algorithm.

Keywords: Evolutionary ensemble learning · Quality diversity
optimization · Multi-dimensional Archive of Phenotypic Elites

1 Introduction

Ensemble learning methods have gained popularity in recent years due to their
ability to reduce the variance of unstable machine learning algorithms without
increasing bias. Typically, the generalisation loss of an ensemble model EF for a
given dataset {X,Y } can be decomposed into two terms, as shown in Eq. (1):

EF = Ef∈F

[
(f(X) − Y )2

]

︸ ︷︷ ︸
average loss

−Ef∈F

[
(f(X) − Ef ′∈F [f ′(X)])2

]

︸ ︷︷ ︸
ambiguity

(1)
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Fig. 1. The workflow of MAP-Elites

On the right side of this equation, the first term represents the average loss
between the prediction of each model f(X) and the target Y , and the second
term ambiguity represents the difference between the prediction of each model
f(X) and the average prediction among models in the ensemble Ef ′ [f ′(X)]. For
an evolutionary ensemble learning method, having two groups of base learners
with the same average fitness values often means they have the same average
loss. However, they may have different predictive accuracy, due to the difference
in their ambiguity. Typically, a more diverse group of base learners has larger
ambiguity and thus provides a more accurate prediction. In theory, we can opti-
mize Ef with an evolutionary algorithm. However, evaluating the fitness value
of an ensemble model may be computationally expensive in practice, and a more
practical way is to implicitly optimize Ef by maintaining a set of high-quality
and diverse individuals during the evolutionary process.

In this work, we focus on using genetic programming (GP) [2] to evolve a
set of high-quality and diverse regressors for ensemble learning. GP has been
widely used in regression tasks due to its flexible representation. However, the
traditional GP framework mainly focuses on finding regressors minimizing the
training error during the evolutionary process, making it ineffective at obtaining
a diverse set of regressors in a single run. In order to obtain a set of complemen-
tary regressors, one idea is to take the semantics of regressors into consideration.
The semantics of each GP individual represents the predictions for a set of sam-
ples. The target semantics is a point in the semantic space representing the
target labels {y1, . . . , yn}. In semantic GP for ensemble learning for regression, a
desired ensemble model is a set of regressors with complementary semantics, thus
the combined prediction of this kind of regressor can be approximately equal to
the target semantics. To generate a desired ensemble model, it is important to
develop novel selection operators that highlight both quality and diversity.

In the field of evolutionary computation (EC), there are a variety of tech-
niques for finding diverse individuals with high quality. The Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) [22] is a representative example. As
shown in Fig. 1, MAP-Elites defines a behavioral space for a given problem that
describes the desired property of high-quality solutions. In this example, a cosine-
kernel-based principal component analysis (KPCA) method that only considers
the angle distance between individuals is used to define the behavioral space.
The general concept behind MAP-Elites is to divide the behavioral space into
multiple cells and retain the best individual in each cell to maintain population
diversity. Based on this idea, the MAP-Elites algorithm has been used to evolve
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an ensemble of classifiers [24], where the MAP-Elites algorithm employs a grid
to record a diverse set of well-performing classifiers with different semantics from
an ensemble model in a single run.

Despite the many benefits MAP-Elites can bring, it is still not widely adopted
in evolutionary ensemble learning due to the difficulty in defining the behavioral
space. Initially, defining behavioral descriptors requires domain knowledge, such
as a handcrafted descriptor named the entropy of instructions in linear genetic
programming (LGP) [11], which is a GP variant with a sequence of instruc-
tions to represent GP programs. Recent research demonstrates that behavioral
descriptors for each GP individual can be automatically obtained based on its
semantic vector [25]. For a regression problem with n training samples, its seman-
tic vector is n-dimensional. When n is large, the curse of dimensionality causes
exponential growth of the number of cells in a MAP-Elites grid. Recently, auto-
encoders (AE) have been used to automatically discover behavioral descriptors
on robot control tasks [7] and classification tasks (Neuro-MAP-Elites) [25]. AE
is a deep-learning-based dimensionality reduction method that uses a bottle-
neck architecture to compress high-dimensional data into low-dimensional rep-
resentations. For evolutionary machine learning tasks, the optimal behavioral
space should be able to describe the distribution of high-quality individuals.
This means that AE for generating the behavioral space should be trained on
high-quality individuals. To achieve this goal, Neuro-MAP-Elites trains a vari-
ational auto-encoder (VAE) [14] on good individuals from the final population
of a GP run. Then, the pre-trained VAE can define a good MAP-Elites grid for
evolving diverse and high-performing individuals in another GP run.

There are two potential limitations with Neuro-MAP-Elites. First, the behav-
ioral descriptor generated by VAE may not be effective to find complementary
learners. Considering a case where letting the semantic vectors of three individ-
uals A,B,C be A = {y1 − 100, . . . , yn − 100}, B = {y1 − 500, . . . , yn − 500}, C =
{y1 + 100, . . . , yn + 100}. If selecting two individuals with the largest Euclidean
distance to form an ensemble model, they will be {B,C}. However, the opti-
mal set is {A,C} because the average prediction results of these two individu-
als match the semantic target {y1 . . . yn}. Unfortunately, Euclidean-space-based
VAE may prefer {B,C} and thus does not perform well for evolutionary ensemble
learning. The second issue is that training a VAE on good individuals obtained
from the final population of a GP run is inefficient and may misguide the evo-
lutionary process. Compared with using good individuals in a single GP run,
it is more efficient to use the target semantics in supervised learning tasks to
generate reference points to train a dimensionality reduction model. Moreover,
due to the mismatched distributions of the initial and the final populations in
GP, a VAE trained on well-performing individuals in the previous GP run might
not be helpful to the initial population.

In this paper, we propose a new ensemble learning method based on MAP-
Elites and GP, named MEGP, with the following objectives:

– Considering that it is difficult for Euclidean-space-based VAE to find comple-
mentary individuals, we propose using cosine-kernel-based PCA for dimen-
sionality reduction in MAP-Elites to better find complementary base learners.
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KPCA with cosine-kernel focuses on the relative angle to the target seman-
tics, thereby encouraging GP to find diverse and complementary regressors
to create an ensemble model.

– We propose a zero-cost method for generating reference points representing
good solutions in the semantic space for training a dimensionality reduction
model. A dimensionality reduction model trained on reference points can be
viewed as a good behavioral descriptor and can be used in MAP-Elites.

2 Related Work

2.1 Semantic GP

In recent years, semantic GP has attracted considerable attention. The key idea
of semantic GP is to use semantic information in genetic operators or selection
operators to generate offspring with high behavioral correlation with their par-
ents. In terms of genetic operators, a considerable number of semantic-based
crossover and mutation operators have been developed to fulfill the semantics
for the new generation [21,30]. As for selection operators, there are some works
that consider selecting parent individuals based on semantic vectors instead of
fitness values [8,16], which improves population diversity and thus results in
better performance.

2.2 GP-Based Ensemble Learning

The idea of using multiple GP models to form an ensemble model can be traced
back to BagGP [15], where multiple runs of GP are performed within the bag-
ging framework. However, it is possible to maintain a diverse set of models in a
single GP run since it is a population-based method. In spatial structure with
bootstrapped elitism (SS+BE) [10], the niching method [13] and a bootstrap-
ping strategy are used to form an ensemble of GP models in a single GP run. A
similar idea of using niching in GP to form an ensemble has been applied to vehi-
cle routing problems [35]. Recently, an algorithm named 2SEGP [34] shows that
purely relying on the bootstrapping strategy can also yield satisfactory results.
In a GP-based feature construction scenario, it is also possible to rely on the
randomness of base learners to produce an ensemble model that outperforms
XGBoost [37]. When the base learner is not random enough and the bootstrap-
ping strategy is not allowed, a diverse set of base learners can still be produced
by using the quality-diversity optimization framework [25].

2.3 Quality Diversity Optimization

In recent years, quality diversity (QD) optimization has been widely used to
tackle the problem of deceptive landscapes [36] and produce diverse solutions [9].
QD algorithms can be classified into grid-based and archive-based methods,
based on whether they rely on a discretized behavioral space to maintain pop-
ulation diversity or not. Grid-based QD optimization methods discretize the
behavioral space to preserve diversity, with MAP-Elites being a typical example.
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Fig. 2. All components in MEGP.

As shown in Fig. 1, MAP-Elites first maps an individual from a high-dimensional
semantic space to a low-dimensional behavioral space. Then, it divides the behav-
ioral space into multiple grids and retains only the best individual in each cell,
where all individuals in the MAP-Elites grid can be used to form an ensemble
model. MAP-Elites was initially developed for robot design [22], but it has been
applied to a variety of other problems, including agent control [27], airfoil opti-
mization [12], workforce scheduling [32], and the traveling thief problem [26]. In
the GP domain, MAP-Elites was initially applied to program synthesis and sym-
bolic regression tasks [4,11]. Subsequently, it has been extended to classification
tasks for evolving an ensemble of classifiers [24].

As for archive-based methods, a typical example is Novelty Search with Local
Competition (NSLC) [18]. The key idea of NSLC is to use an external archive
to keep diverse individuals and use a multi-objective optimization algorithm to
breed individuals based on diversity and local ranking. There are a lot of differ-
ences between MAP-Elites and NSLC. One key difference is that the MAP-Elites
algorithm uses a grid to explicitly keep the structure, while NSLC implicitly
keeps the structure based on a distance measure. In the evolutionary ensem-
ble learning domain, both grid-based and archive-based QD methods have been
studied [3,25], but a comparison between them is still lacking.

3 The Proposed Ensemble Learning Algorithm

This work presents a MAP-Elites-based ensemble GP method, named MEGP.
First, we introduce the algorithmic framework. Then we describe dimensionality
reduction methods in MEGP and a method for generating reference semantic
points that can be used in training a dimensionality reduction model.

3.1 The Overall Framework

MEGP introduces MAP-Elites into the GP-based ensemble learning scenario.
The pseudocode for MEGP is presented in Algorithm 1, and all components of
MEGP are shown in Fig. 2. MEGP follows the conventional framework of GP,
but differs from it in the following ways:
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Algorithm 1. MEGP
Input: Population Size N , Number of Generations max gen, Dimensionality of the

MAP-Elites Grid G, Training Data {(x1, y1), . . . , (xn, yn)}
Output: MAP-Elites Grid E
1: Randomly initialize a population of GP individuals P = {Φ1 . . . ΦN}
2: E ← MAP-Elites grid initialization with P � MAP-Elites Grid
3: gen ← 0
4: while gen ≤ max gen do � Main loop
5: P ← mutation and crossover(P )
6: for Φ ∈ P do � Evaluation
7: {ŷ1, . . . , ŷn} ← cross-validation(Φ, {x̂1, . . . , x̂n})
8: ŶΦ ← {ŷ1, . . . , ŷn}
9: PE ← selecting top-50% individuals from P ∪ E

10: {R1, . . . , R2|PE|} ← reference point synthesis ({y1, . . . , yn}, {Ŷ1, . . . , ˆY|PE|})
11: {Z1, . . . , Z|PE|} ← dimensionality reduction (PE, {R1, . . . , R2|PE|})
12: E ← grid division (PE, {Z1, . . . , Z|PE|}, G)
13: E ← elites selection(E)
14: P ← random selection(E) � Selection
15: gen ← gen + 1

return E

– Multi-tree Representation: MEGP uses multiple GP trees to represent a single
individual, and a linear model is used to combine these GP trees to make a
prediction. The multi-tree GP is used due to its more expressive and flexible
representation ability [17].

– Cross-validation Loss: MEGP uses an efficient leave-one-out cross-validation
method [6] in the fitness function to evaluate each GP individual Φ based on
a ridge regressor, which allows mitigating the over-fitting issue.

– Ensemble Learning: MEGP uses all individuals e ∈ E in the final MAP-Elites
grid to form an ensemble model. For an unseen data point x′, the prediction
result is the average of all prediction results, i.e.,

∑
e∈E e(x′)

|E| .

3.2 Angle-Based Dimensionality Reduction

The mapping of individuals from a high-dimensional semantic space to a low-
dimensional behavior space is a key step in MAP-Elites. We propose to employ
cosine-kernel principal component analysis (KPCA) for dimensionality reduction
in MEGP. A dimensionality reduction algorithm maps the semantics {ŷi

1, . . . , ŷ
i
n}

of an individual i in the semantic space to a low-dimensional point {zi1, z
i
2} in the

behavior space, where n is the number of data points/instances in the training
dataset. PCA is a simple and efficient algorithm for dimensionality reduction
tasks. However, the standard PCA algorithm focuses on capturing the variance
in Euclidean space. Sometimes, individuals with bad fitness values can have
large Euclidean distances from others, but they are not good candidates for an
ensemble model and should not be included in the behavior space. In order to
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Fig. 3. An illustrative example of different dimensionality reduction techniques for
inducing a behavioral space.

solve this problem, a cosine kernel function defined as cos(i, j) = i·j�

‖i‖‖j‖ for
any two points i, j in the semantic space is used to transform points from the
n-dimensional semantic space to another n-dimensional implicit feature space.
In the implicit feature space, each dimension represents the cosine similarity
between a data point and the others. Next, PCA is applied to the implicit feature
space to generate a two-dimensional behavior space. Because cosine similarity
ignores scale, the implicit feature space only preserves the angle distance between
points. Thus, individuals are only considered novel if they approach the target
semantics from a different angle, i.e., from a different direction.

To illustrate why the cosine-kernel-based PCA method is suitable for MAP-
Elites, Fig. 3 provides an example of dimensionality reduction results for a three-
dimensional semantic space, where the central point represents the optimal pre-
dictive result. The purple data points in Fig. 3 represent a group of bad individu-
als located far from the target semantics. The remaining data points represent a
group of good individuals. A perfect behavioral space should keep the best indi-
vidual in each cell and remove all inferior individuals. However, Fig. 3 shows that
many conventional dimensionality reduction methods fail to achieve this goal.
For example, with PCA, large parts of behavioral space are filled with purple
data points, indicating that several bad individuals will be retained due to their
excellent diversity. In this example, only KPCA with a cosine kernel and Isomap
place good individuals in the entire space. However, Isomap focuses to preserve
the local structure in a low-dimensional space. Thus, it may fail to perform well
if good and bad points are connected and distributed on a single manifold, such
as the “Swiss roll” data [1]. In contrast, KPCA with a cosine kernel only con-
siders the angles between points during the dimensionality reduction procedure.
Thus, individuals with different fitness values will fall within the same region if
the cosine similarity between predicted values is high.
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Fig. 4. An illustrative example to show the effect of constructing a dimensionality
reduction model on the current population and symmetrical reference semantic points.

3.3 Reference Semantic Points

To train a dimensionality reduction model to generate a behavior space capturing
the distribution of high-quality individuals only, previous research [24] used the
semantics of good individuals in the final population of a GP run. These seman-
tic points are used to construct a behavior space and are referred to as reference
points. However, the target semantics {y1, y2, . . . , yn} is available for supervised
learning tasks. Consequently, for each semantic point {ŷ1, ŷ2, . . . , ŷn} in the cur-
rent population P and the current MAP-Elites grid E, a reference point can be
generated with {(1−α)∗y1 +α∗ ŷ1, (1−α)∗y2 +α∗ ŷ2, . . . , (1−α)∗yn +α∗ ŷn},
where α is a hyperparameter indicating how close a synthetic reference point is
to the target semantics. α is empirically set as 0.1 in this paper. Notably, for each
individual, we not only synthesize a reference point based on α but also generate
a symmetric reference point with −α. Generating a symmetric reference point
guarantees that the average of all reference points equals the target semantics.
After obtaining reference points, we can train a dimensionality reduction model
using these points and then apply the trained model to the semantic points of
the current population to construct a MAP-Elites grid.

Figure 4 shows the behavioral space of two imbalanced sets of data points
using reference points or not. As shown in Fig. 4B, if constructing a KPCA
model on the current population, the blue points representing individuals over-
estimating the value of the first sample and the green points representing indi-
viduals under-estimating the value of the first sample will be mixed. This mix
makes it very hard to obtain complementary base learners by selecting the best
one from each cell. Conversely, if KPCA is constructed with symmetrical refer-
ence points, complementary points will be dispersed across distinct regions of a
behavioral space. MAP-Elites can easily obtain a collection of complementary
base learners.

Nevertheless, it is important to note that pre-training a dimensionality reduc-
tion model based on reference points is risky. Figure 5 provides an example of
dimensionality reduction results based on online and offline modes. The online
mode means training a dimensionality reduction model on the current popula-
tion, whereas offline means training a model on reference points. Both kinds of
models will be applied to the current population for dimensionality reduction.
In Fig. 5, the colored points on the outer circle represent models in the current
population, while the red points on the inner circle represent synthetic reference
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Fig. 5. Online versus offline dimensionality reduction paradigms.

points. Figure 5B provides dimension reduction results in the offline mode, while
Fig. 5C provides a comparative example of dimension reduction results in the
online mode. Comparing these two plots reveals that VAE fails to generate an
appropriate behavioral space for mismatched population distribution, as colored
points are highly concentrated in the center. In contrast, if we train a VAE on the
current population, the behavioral space can maintain the current population’s
structure, proving that the problem is the mismatched distribution, not using
a VAE. Furthermore, Fig. 5D shows that KPCA with a cosine kernel is not sig-
nificantly affected by this issue, illustrating another advantage of using KPCA.
To sum up, synthesizing reference points is helpful to generate a good behav-
ioral space, but it should be paired with an appropriate dimensionality reduction
method to alleviate the negative impact of the mismatched distribution.

4 Experiment Settings

In this section, several experiments are conducted to answer the following ques-
tions:

– Does the cosine kernel PCA-based dimensionality reduction method result in
a better ensemble model in MEGP when compared to the commonly used
dimensionality methods?

– Does a behavioral space generated by reference points improve the predictive
performance of the ensemble model?

4.1 Datasets

In this paper, we conduct experiments on the Penn Machine Learning Benchmark
(PMLB) [28], a curated list of datasets derived from OpenML datasets [33].
For comparison of dimensionality reduction algorithms and reference points,
experiments are carried out on 108 datasets in PMLB with less than 10000
instances due to limited computational resources. For comparison with other
algorithms, experiments are performed on standard PMLB with 122 datasets.
Among these datasets, 63 were synthesized by the Friedman function and are
synthetic datasets, while the remaining 59 are real-world datasets.
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Table 1. Parameter settings for MEGP.

Parameter Value

Population Size 1000

Maximal Number of Generations 50

Crossover and Mutation Rates 0.9 and 0.1

Maximum Tree Depth 8

Maximum Initial Tree Depth 2

Number of Trees in An Individual 10

Dimensionality of the MAP-Elites Grid 10

Functions +, -, *, AQ, Sin, Cos, Abs,
Max, Min, Negative

4.2 Experimental Protocol

For the following experiments, we follow a conventional experimental protocol
in the evolutionary computation domain, i.e., each algorithm is tested on each
dataset with 30 independent runs. In each run, 80% of the data is used as
the training data, and the remaining is used as the test data. After runs are
finished, a Wilcoxon rank sum test with a significance level of 0.05 is used to
verify the effectiveness of the proposed method. As for the comparison with
other machine learning algorithms, we follow the convention of SRBench [5], i.e.,
each algorithm is tested on each dataset with 10 independent runs. The hyper-
parameters of benchmark algorithms are tuned using the halving-grid search
method [19] to ensure that the prediction performance of benchmark algorithms
is fully exploited.

4.3 Parameter Settings

Table 1 presents the parameter settings of MEGP. The population size and
crossover rate are conventional settings for GP [8]. Analytical quotient (AQ)
is used in MEGP to replace the division operator in order to avoid division by
zero. AQ is defined as AQ(a, b) = a√

1+b2
, where a and b represent two input

variables.

4.4 Benchmark Dimensionality Reduction Methods

Here, we select 9 popular dimensionality reduction methods for comparisons
because these methods are widely used in the machine learning field [29]. A brief
introduction of investigated methods is as follows:

– Principal Component Analysis (PCA) [31]: PCA is a linear dimensionality
reduction method that finds new dimensions to maximize variance in the
data.



94 H. Zhang et al.

Table 2. Experimental results of nine dimensionality reduction methods in MEGP
(“+”, “∼” or “-” mean that a method in a row is significantly better than, similar to,
and worse than the method in the column).

t-SNE(COSINE) PCA KPCA(RBF)

KPCA(COSINE) 12(+)/96(∼)/0(–) 45(+)/63(∼)/0(–) 62(+)/45(∼)/1(–)

TSNE(Cosine) — 30(+)/78(∼)/0(–) 54(+)/54(∼)/0(–)

PCA — — 46(+)/60(∼)/2(–)

KPCA(POLY) TSNE Beta-VAE

KPCA(COSINE) 74(+)/34(∼)/0(–) 58(+)/50(∼)/0(–) 71(+)/37(∼)/0(–)

TSNE(Cosine) 75(+)/33(∼)/0(–) 53(+)/55(∼)/0(–) 67(+)/41(∼)/0(–)

PCA 70(+)/38(∼)/0(–) 12(+)/94(∼)/2(–) 47(+)/61(∼)/0(–)

KPCA(RBF) 70(+)/37(∼)/1(–) 0(+)/69(∼)/39(–) 8(+)/81(∼)/19(–)

KPCA(POLY) — 0(+)/39(∼)/69(–) 5(+)/39(∼)/64(–)

TSNE — — 32(+)/76(∼)/0(–)

Isomap SpectralEmbedding

KPCA(COSINE) 63(+)/45(∼)/0(–) 64(+)/44(∼)/0(–)

TSNE(Cosine) 58(+)/50(∼)/0(–) 55(+)/53(∼)/0(–)

PCA 31(+)/76(∼)/1(–) 30(+)/77(∼)/1(–)

KPCA(RBF) 7(+)/64(∼)/37(–) 1(+)/82(∼)/25(–)

KPCA(POLY) 0(+)/41(∼)/67(–) 0(+)/42(∼)/66(–)

TSNE 20(+)/87(∼)/1(–) 17(+)/91(∼)/0(–)

Beta-VAE 2(+)/87(∼)/19(–) 1(+)/94(∼)/13(–)

Isomap — 8(+)/97(∼)/3(–)

– Kernel PCA with RBF/Polynomial/Cosine Kernel [31]: These three meth-
ods are based on PCA, with the difference of using RBF/Polynomial/Cosine
kernels to calculate the similarity between points instead of the covariance.

– T-distributed Stochastic Neighbor Embedding (t-SNE-Euclidean/Cosine)
[20]: t-SNE is a non-linear dimensionality reduction method that keeps
both the local and the global structure. The key idea is to minimize the
Kullback-Leibler divergence between high-dimensionality representation and
low-dimensionality representation through gradient descent.

– Beta-VAE [14]: Beta-VAE is a deep-learning-based dimensionality reduction
method. It maps input variables into a multivariate latent distribution. Unlike
AE, it optimizes the reconstruction error and Kullback-Leibler divergence
simultaneously to make the latent distribution approximate the expected dis-
tribution. A hyperparameter β is used to control the tradeoff between mini-
mizing the reconstruction error and Kullback-Leibler divergence.

– Isomap [1]: Isomap is a manifold learning method to keep the local structure.
It tries to keep the geodesic distance between points the same in the high-
dimension and the low-dimension space.

– SpectralEmbedding [23]: Spectral embedding is similar to KPCA, but with
the difference in that the eigen-decomposition is performed on a Laplacian
matrix rather than on a kernel-matrix.



MAP-Elites with Cosine-Similarity for Evolutionary Ensemble Learning 95

5 Experimental Results

5.1 Comparisons of MAP-Elites Using Different Dimensionality
Reduction Methods

In this section, we present the experimental results of using 9 dimensionality
reduction methods in MAP-Elites. MAP-Elites with cosine-kernel-based PCA
significantly outperform beta-VAE on 71 out of the 108 datasets, see Table 2.
On the other 37 datasets, the two methods have comparable performance. To
examine the results in more detail, we plot curves of the test score of the ensemble
model, average fitness of individuals in the MAP-Elites grid, and mean negative
cosine similarity of individuals in the MAP-Elites grid against the number of
generations in Fig. 6, Fig. 7, and Fig. 8, respectively. Figure 6 demonstrates that
using KPCA with a cosine kernel is superior to using other methods in terms
of the test R2 score. To find out the reasons, Fig. 7 shows the average fitness of
all base learners in the MAP-Elites grid. It indicates that some dimensionality
reduction methods such as KPCA (POLY) and KPCA (RBF), make MAP-Elites
select individuals with an average fitness lower than 0.8 and this may impair the
accuracy of the ensemble model. Moreover, the superior performance of MAP-
Elites with KPCA not only comes from selecting good fitness individuals but
also from selecting individuals with a high level of diversity. To validate whether
cosine-kernel-based KPCA is useful for keeping archive diversity, the average
negative cosine similarity of base learners is presented in Fig. 8. Here, we use
cosine similarity as opposed to Euclidean distance because a large negative cosine
similarity indicates good complementarity between base learners, whereas a large
Euclidean distance may be caused by base learners with very low accuracy.
As shown in Fig. 8, the negative cosine similarity of base learners consistently
decreases as evolution goes on when using PCA as the dimensionality reduction
method. In contrast, the average negative cosine similarity of cosine-kernel-based
KPCA stays at a stable level after 30 iterations, and it is higher than the results
of PCA, providing evidence that using cosine-kernel PCA as a dimensionality
reduction method is beneficial. It is worth noting that cosine KPCA does not
have the best negative cosine similarity because half of the individuals with poor
performance will be filtered out as shown in Algorithm 1, and such an elimination
process may reduce the negative cosine similarity. Other methods, like KPCA
(POLY) and KPCA (RBF), are less affected by this process because they select
a large number of bad individuals.

5.2 Impact of Using Reference Points

In this section, we investigate whether inducing a behavioral space from reference
points is beneficial. We compare the prediction performance on the test set
with and without reference points. Several dimensionality reduction techniques,
such as t-SNE and spectral embedding, are omitted because they cannot predict
unseen data points. For the remaining methods, the results with and without
reference points are shown in Fig. 9. As shown, reference points improve the
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Fig. 6. Test R2 score with respect to the number of generations

Fig. 7. Average fitness of individuals in an archive with respect to the number of
generations

Fig. 8. Average negative cosine similarity of semantic vectors in the archive with
respect to the number of generations

predictive performance of cosine-kernel-based KPCA on 39 datasets and do not
degrade it on any other dataset. However, reference points do not work well
with PCA and Beta-VAE, and even worsen performance on 46 and 7 datasets,
respectively. These results validate our assumptions in Sect. 3. Consequently, we
can conclude that using reference points to develop a dimensionality reduction
model is useful, but it should be paired with suitable dimensionality reduction
techniques.

5.3 Comparison with Other Machine Learning and Symbolic
Regression Methods

To validate the efficacy of the proposed method, we compare MEGP to 14 sym-
bolic regression methods and 8 machine learning methods on 122 datasets from
SRBench. Figure 10 demonstrates the distribution of test R2 scores for various
algorithms. The red dot denotes the mean values of the median R2 scores for all
datasets. This figure depicts that MEGP outperforms other SR and ML methods
on average for both synthetic and real-world datasets. For example, on real-world
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Fig. 9. Impact of reference semantic points on different dimensionality reduction tech-
niques (“+”, “∼” or “-” mean that using reference points is significantly better than,
similar to, and worse than not using reference points on the specific dimensionality
reduction method).

Fig. 10. Experimental results on 122 PMLB datasets (Results for AIFeynman are out
of bounds and are therefore not shown).

datasets, MEGP has an average R2 score of 0.704, outperforming a representa-
tive GP-based ensemble learning method 2SEGP [34], which has an average R2

score of only 0.692. The advantage is significant with a p-value of 5 ∗ 10−5.

6 Conclusions

In this paper, a new GP-based ensemble learning method named MEGP is
proposed. First, MEGP uses an angle-based dimensionality reduction method
in MAP-Elites to preserve good and complementary individuals. Meanwhile,
MEGP synthesizes reference points to deal with an imbalanced distribution
of good individuals. Experimental results show that MEGP with cosine-kernel
KPCA outperforms MEGP with PCA on 45 datasets and is comparable to PCA
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on 63 datasets. Also, reference points improve its performance on 39 datasets
and do not hurt it on others. Experimental results on SRBench demonstrate
that MEGP outperforms 22 ML and SR algorithms across 122 datasets. This
paper only examines the performance of MEGP in the regression scenario, it
would be intriguing to study MEGP in the classification scenario in the future.
Furthermore, while this paper focuses on improving MAP-Elites, the findings
may also be applicable to archive-based quality-diversity optimization methods,
which merit further investigation in the future. Last, finding new ways to aggre-
gate GP models is also a promising direction to investigate in the future.
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