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How the Combinatorics of Neutral 
Spaces Leads Genetic Programming to 
Discover Simple Solutions 

Wolfgang Banzhaf, Ting Hu, and Gabriela Ochoa 

4.1 Introduction 

A very general class of input-output systems has been found to have a very interesting 
property, conveyed by its features of being (i) discrete, (ii) computable, (iii) non-
linear, together with some other smaller restrictions. Input-output systems of this 
type are found everywhere, from the molecular world of RNA, where the sequence-
to-structure map can be conceptualized in those terms, via the maps of financial 
process models (like the Ornstein-Uhlenbeck financial model), to computational 
systems like L-systems for plant morphology or Boolean function maps as applied 
in simple models of evolutionary processes in Genetic Programming. More generally, 
many genotype-phenotype maps in Evolutionary Computation fulfill the conditions 
of such systems. 

The property of interest is the fact that simpler outputs, i.e. patterns with less 
complexity are exponentially more abundant in such search spaces than more com-
plex patterns. This result is, under certain conditions discussed in [ 5], independent 
of the particular mapping being applied. The genotype-phenotype map (G-P map, 
for short) of Genetic Programming systems can be seen a special case of this class 
of I/O systems. 
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Here we use a simple Linear Genetic Programming (LGP) system working in a 
Boolean function space as a study tool to show that the combinatorial possibilities 
of neutral variations (modeled as neutral networks) provide the material by which 
the variation of abundances of phenotypes can be understood. This will allow us to 
better understand how individuals can move in such search spaces by the evolutionary 
process. We shall find that those phenotypes that have larger neutral networks will 
be more abundant and thus easier to find by an iterative stochastic process like 
evolution. In fact the relation between the dimension of the neutral subspaces and 
the abundance of phenotypes is exponential, providing a natural explanation for the 
above mentioned property. 

The consequences of this property are wide-ranging. The realization that evolu-
tion in systems with neutral variations will be biased to find the simplest possible 
solutions to a problem first will allow to explain and predict that evolution in systems 
with neutrality will always prefer short-cuts, i.e. the simplest solutions, a fact that has 
caused surprise and consternation in the evolutionary computation community [ 15]. 
Second, the same property leads us to expect that evolutionary search will yield com-
pact and most often simple, i.e. explainable, models in typical AI/ML applications 
such as pattern recognition or system modeling. 

At the same time it helps to justify the use of repeated attempts (either independent 
in the form of multiple restarts or dependent in the form of populations) to search these 
spaces. As we shall show, the characteristics of neutrality will ultimately determine 
success or failure of a search algorithm. So what is indispensably required for such 
systems, is the existence of neutral variations, i.e. the fact that phenotypes can have 
different numbers of genotypes that map to them, thus providing the possibility of 
their variation in abundance. 

In an earlier study [ 9] we examined the above mentioned LGP system and visual-
ized the search process by looking at search trajectories in its network of solutions. 
This yielded a clear signal for the preference of such an evolutionary search process 
for pathways through the search space that lead via abundant intermediate stepping 
stone solutions. Here we shall extend this work by manipulating the degree of neu-
trality of phenotypes which requires us to change the connectivity in the neutral 
networks that comprise each of these phenotypes. We shall achieve this by mak-
ing use of certain symmetries in the problem search space, as it refers to the logic 
equivalence of Boolean functions. 

4.2 Related Work 

4.2.1 I/O Systems 

Dingle et al. report that discrete input-output systems of the form. f : I → O which 
are governed by a mapping function. f can be characterized using algorithmic infor-
mation theory as having the interesting feature that the probability of finding an
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output . O , given a random input . I , is determined by the Kolmogorov complexity of 
that output [ 5]. 

This is not true for all discrete input-output maps, but for a large general class 
of such maps, which include simple genotype-phenotype maps in Biology, e.g. the 
map from primary RNA sequences to their folding patterns [ 6], among others. In 
particular, the authors report that the probability .P(x) to find an output .x ∈ O is 
bounded by a quantity that depends exponentially on the Kolmogorov complexity of 
. O: 

.P(x) ≤ 2−(K (x | f,n)+O(1) (4.1) 

where .K (x | f, n) is the shortest program that produces . x , given the computable 
input-output map . f : I → O and the parameter . n that characterizes the size of the 
input space. In other words, this probability is negatively exponentially related to the 
conditional Kolmogorov complexity of the output. 

The authors of [ 5] further show that under not too onerous additional conditions 
this estimate becomes independent of the particulars of the map itself: 

.K (x | f, n) ≈ K (x) + O(1) (4.2) 

Those conditions apply in GP and are: (i) The map should have limited complexity, 
i.e. .K ( f ) + K (n) << K (x) + O(1); (ii) the existence of redundancy, i.e. number 
of inputs .NI is much larger than number of outputs .NO , .NI >> NO , which allows 
.P(x) to vary considerably, in principle, over the set of all outputs; (iii) the avoidance 
of finite size effects by requiring .NO >> 1; (iv) the nonlinearity of . f , a feature 
fulfilled by many realistic maps. 

4.2.2 RNA Studies 

In earlier studies of the genotype-phenotype maps of RNA primary to secondary 
structure mappings it was found that many neutral networks exist which allow mul-
tiple RNA primary structures to map to few secondary structures [ 19]. The distribu-
tion of the number of primary structures to secondary structures was not uniform, 
but highly skewed: There were many secondary structures with just a few primary 
structures in their neutral networks and a small number of secondary structures with a 
large number of primary structures. This and other studies pointed to the importance 
of neutral networks and to the mechanisms by which they allow a search to succeed. 

4.2.3 GP on Boolean Functions 

Boolean functions were an early study object in Genetic Programming [ 13]. In [ 14] 
the fitness landscape of Boolean functions was systematically examined in the context
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of a tree-based GP system and found to yield a curious feature—some of the Boolean 
functions were easy to find with small trees, while many were not found under such 
restrictions. If one allowed larger trees, the number of different Boolean functions 
increased, until at some point all of them could be found. The proportion of each 
Boolean function in the search space seemed to approach a certain asymptotic density. 
If one increased the number of allowed nodes in the tree, no further increase in the 
concentrations of a certain Boolean function could be found. 

4.2.4 Neutral Networks 

Neutrality itself has long been found to play a key role in the mechanisms of evolution. 
It was even stated that neutral evolution is the main engine of evolution [ 12]. Our 
own interests in neutral evolution go back to this inspiration from Biology [ 1]. While 
these ideas were formulated in a less formal system, the advent of the concept of 
neutral networks [ 22] brought a new perspective into these considerations which 
subsequently led to a study of neutral networks in Genetic Programming [ 2]. 

In [ 23] the authors examined some newly defined statistical measures of Boolean 
functions, in particular in connection with the neutrality features of many genotypes. 
The Boolean functions themselves were more complicated than in other work (mul-
tiplexers, parity problem), and the definition of neutrality made use of the notion of 
neutral networks. 

Recently, Wright and Laue [ 25] examined the distribution of genotypes in a Carte-
sian Genetic Programming (CGP) representation, with a focus evolvability and com-
plexity properties brought about by the genotype-phenotype maps in those systems. 

4.2.5 Our Earlier Work 

In our previous research, we used a Linear Genetic Programming (LGP) system, 
where a genotype is defined as a unique genetic program and a phenotype is defined 
as a Boolean relation a program represents, and constructed neutral networks to quan-
titatively study neutrality and related properties including robustness and evolvability 
in the system [ 7, 8, 10]. We reported a highly redundant G-P map and heterogeneous 
distribution of mutational connections among phenotypes. 

Meanwhile, a recent graph-based model, search trajectory networks (STNs) 
[ 17, 18, 20], was developed to analyse and visualise search trajectories of any meta-
heuristics. Search trajectory networks are a data-driven, graph-based model of search 
dynamics where nodes represent a given state of the search process and edges rep-
resent search progression between consecutive states. 

In our most recent work [ 9], we adopt STNs for an examination of the statistical 
behavior of searchers navigating the corresponding genotype space in Boolean LGP. 
Nodes are genotypes/phenotypes and edges represent their mutational transitions.
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We also quantitatively measure the characteristics of phenotypes including their 
genotypic abundance (the requirement for neutrality) and Kolmogorov complexity. 
We connect these quantified metrics with search trajectory visualisations, and find 
that more complex phenotypes are under-represented by fewer genotypes and are 
harder for evolution to discover. Less complex phenotypes, on the other hand, are 
over-represented by genotypes, are easier to find, and frequently serve as stepping-
stones for evolution. 

4.3 Genotypes, Phenotypes, Behavior, Fitness 

In order to have a clearer understanding of what is going on in evolution, we have 
to get a grasp on the search process and define terms carefully. Figure 4.1 shows a 
sketch of the search process at different levels of the (discrete) fitness in our Boolean 
function system. At each level of fitness we can imagine a neutral network (solutions 
with equal fitness) connected through edges symbolizing mutational (or variational) 
moves. There are connections between levels as well (moves that allow fitness to 
change), which usually go through portal nodes, nodes that provide connections 
between different fitness levels. 

Fig. 4.1 Sketch of a network of neutral networks. Each level depicts one neutral network, with a 
discrete fitness value corresponding to its level. Nodes depict genotypes (genetic programs) which 
are connected within a level, reachable by neutral moves, with few nodes allowing jumps to a lower 
level (better fitness). The fitness of a node is measured by executing it and comparing the function it 
stands for with a target relation. The neutral networks are connected through what are called portal 
nodes to other neutral networks at a lower (better) fitness level
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4.3.1 Discrimination of Genotypes and Phenotypes 

The use of the term phenotype is somewhat ambiguous in Evolutionary Computation, 
extending a tradition from Biology. In Biology, an organism can have many different 
phenotypes. Phenotype is simply what is being observed, whether it is a structural 
trait of an organism, or its behavior. Here, we shall take a closer look and offer a 
more crisp definition. 

Before we go there, let us start with the easiest definition—genotypes. A genotype 
is the pattern which is subject to the evolutionary operators of mutation and crossover, 
i.e. subject to genetic manipulation, see also Fig. 4.2. As a side: The reader might 
know Cartesian GP [ 16] which is frequently characterized as a graph GP system. 
However, we should emphasize that Cartesian GP with its linear sequence of numbers 
encoding graphs is actually a type of linear GP system. 

Phenotypes are more difficult to define. There are different definitions of pheno-
types, but generally, we understand phenotypes to be what is observed and subject 
to selection. The definition can be based on 

1. its fitness; 
2. its behavior; or 
3. its effective structure. 

What do we suggest adopting in the context of Genetic Programming? - We 
suggest discarding 1, since it is very clear in even this simple example of Boolean 
functions that different Boolean functions can have the same fitness, but that does 
not make them identical phenotypes! We have a choice of either 2 or 3. If we adopt 
3, we are at the lowest level of resolution, but such a suggestion would run counter 
to what has been traditionally considered a phenotype in Biology. If we adopt 2, we 
are following at least part of that tradition. But we then need to discriminate further 

Fig. 4.2 The genotype maps to a phenotype which produces behavior that is judged by a fitness 
function
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regarding the effective structure of the phenotype, since there are in GP many ways 
to produce a single behavior. Hence we suggest calling the different effective struc-
tures that produce the same behavior isotypes. Isotypes are semantically neutral, but 
different programs. Traditionally, they are considered the same phenotype, because 
they result in the same behavior. 1

4.3.2 The Difference of Structural and Semantic Neutrality 

This brings back a difference we made earlier between structural (or syntactic) and 
semantic neutrality/introns. Structural introns are parts of different genotypes that are 
structurally neutral variations, i.e. they don’t affect the effective structure or isotype. 
Semantic introns, on the other hand, affect effective structure of a program, but not 
its behavior. 

Given this situation, a remark is due on tree-based GP (TGP): Most (if not all) 
neutral variations in TGP runs are semantic, where most (if not all) neutral variations 
in LGP are structural. However, it is much easier to identify structural neutrality than 
it is to identify semantic neutrality. For the former, one only has to analyze a program 
once and this analysis is of order .O(L) with . L being the length of the program. For 
semantic neutrality, one has to run the program and analyze the semantics for each 
node on. k fitness cases, which for large. k is possible only on a sample, and still time 
consuming. 

Note that both GP representations can in principle have both types of neutrality. 
So, one would need to run both a structural and a semantic analysis on both repre-
sentations to identify the full amount of neutrality in each individual. One would do 
the easier analysis first - for structural neutrality—then exclude those parts of the 
program from the second type of analysis. But the majority of reduction in complex-
ity would come for LGP from the first step, while for TGP it would only come at the 
second step. That is why LGP is easier to handle, because one could just do the first 
step, and still end up with a good approximation of complexity, while for TGP the 
first step does not yield a good approximation. 

If one wants to get a handle on the complexity of an evolved solution, it is impor-
tant to identify the neutrality in a representation. What makes this difficult for tree 
GP is not only that semantic introns are time-consuming to identify, but also that 
genotype and phenotype in TGP are both trees, making it difficult to see the smaller 
(phenotypic) tree within the larger (genotypic) one. In other words, only a part of the 
GP tree genotype can count as the tree phenotype.

1 An alternative is to divide phenotypes into a static (structural) and a dynamic (behavioral) part. 
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4.4 Methods 

In this section, we describe the LGP system we used, the Boolean programs investi-
gated in this study, and our visualization method using STNs. 

4.4.1 Linear Genetic Programming 

Linear Genetic Programming (LGP) [ 4] is a variant of GP [ 3] where a sequential 
representation of computer programs is employed to encode an evolutionary individ-
ual. Such a linear genetic program often consists of a set of imperative instructions 
to be executed sequentially. Registers are used to either read input variables (input 
registers) or to enable computational capacity (calculation register). One or more 
registers can be designated as the output register(s) such that the final stored value(s) 
after the program is executed will be the program’s output. 

4.4.2 Boolean Function Programs/Circuits 

We use an LGP algorithm for a three-input, one-output Boolean function search appli-
cation, similar to our previously examined LGP system [ 7, 10, 11]. Each instruction 
has one return, two operands and one Boolean operator. The operator set has four 
Boolean functions {AND, OR, NAND, NOR}, any of which can be selected as the 
operator for an instruction. Three registers .R1, .R2, and.R3 receive the three Boolean 
inputs, and are write-protected in a linear genetic program. That is, they can only be 
used as an operand in an instruction. Registers .R0 and .R4 are calculation registers, 
and can be used as either a return or an operand. Register .R0 is also the designated 
output register, and the Boolean value stored in .R0 after a linear genetic program’s 
execution will be the final output of the program. All calculation registers are initial-
ized to FALSE before execution of a program. An example linear genetic program 
with three instructions is given as follows: 

. I1 : R4 = R2 AND R3

I2 : R0 = R1 OR R4

I3 : R0 = R3 AND R0

A linear genetic program can have any number of instructions; for the ease of 
sampling in this study, we use linear genetic programs that have a fixed length of 6 
or 12 instructions. 

The genotype in our GP algorithm is a unique linear genetic program. Since we 
have a finite set of registers and operators, as well as a fixed length for all programs, 
the genotype space is finite and we can calculate its size. For each instruction, two
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registers can be chosen as return registers and any of the five registers can be used as 
one of two operands. Finally, an operator can be picked from the set of four possible 
Boolean functions. Thus, there are .2 × 5 × 5 × 4 = 200 unique instructions. Given 
the fixed length of six instructions for all linear genetic programs, we have a total 
number of .2006 = 6.4 × 1013 possible different programs. For 12 instructions, that 
number grows to .4 × 1027 different programs in the search space. 

The phenotype in our GP algorithm is a Boolean relationship that maps three 
inputs to one output, represented by a linear genetic program, i.e., . f : B3 → B, 
where . B = {TRUE, FALSE}. There are thus a total of .22

3 = 256 possible Boolean 
relationships. Having .6.4 × 1013 genotypes to encode 256 phenotypes, our LGP 
algorithm must have a highly redundant genotype-phenotype mapping. We define 
the abundance/redundancy of a phenotype as the total number of genotypes that map 
to it. 

We choose the fitness of a linear genetic program as the deviation of the phe-
notype’s behavior from a target Boolean function and want to minimize that devi-
ation in the search process. Given three inputs, there are .23 = 8 combinations of 
Boolean inputs. The Boolean relationship encoded by a linear genetic program can 
be seen as an 8-bit string representing the outputs that correspond to all 8 possi-
ble combinations of inputs. Formally, we define fitness as the Hamming distance 
of this 8-bit output and the target output. For instance, if the target relationship 
is . f (R1,R2,R3) = R1 AND R2 AND R3, represented by the 8-bit output string of 
00000001, the fitness of a program encoding the FALSE relationship, i.e., 00000000, 
is 1. Fitness is to be minimized and falls into the range between 0 and 8, where 0 is 
the perfect fitness and 8 is the worst. 

4.4.3 Visualization Method 

We use Search Trajectory Networks (STNs) [ 18], to analyze and visualize the behav-
ior of the studied fitness functions and program lengths. STNs are a graph-based tool 
to study the dynamics of evolutionary algorithms and other metaheuristics. Origi-
nally, the model was used to track the trajectories of search algorithms in genotype 
space, where nodes represent visited solutions (or genotypes) during the search pro-
cess, and edges represent consecutive transitions between visited genotypes. How-
ever, for large search spaces, this approach renders unmanageable models. Therefore, 
coarser models have been proposed where nodes represent sets of related genotypes 
rather than single ones. In particular, nodes can group genotypes expressing the same 
behavior or phenotype [ 9, 21]. 

This is the approach we follow here. We generate and visualize Phenotye Search 
Trajectory Networks, where the search space locations (nodes) are unique pheno-
types, and edges represent consecutive transitions between phenotypes. 

For constructing the Phenotype STN models, multiple adaptive walks (100 to 
be precise) are performed for each fitness function and program length. Adaptive 
walks are search trajectories in the fitness landscape that accept both neutral as well
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as improving moves, with deteriorating fitness moves being prohibited. A move in 
our implementation is a single genotype mutation (change of a symbol for another 
selected uniformly at random). For each run, the sequence of genotypes visited is 
recorded. Thereafter, in a post-processing step, the visited genotypes across all runs 
are grouped into their corresponding phenotypes and the transitions between pairs of 
grouped nodes are also aggregated into single edges to construct a single graph model. 
Notice that some nodes and transitions may appear multiple times during the sampling 
process. However, the graph model retains as nodes each unique phenotype, and as 
edges each transition between pairs of visited phenotypes. Counters are maintained 
as attributes of the nodes and edges, indicating their sampling frequency. These 
counters are later used as visual attributes to depict the size of nodes and the widths 
of edges. 

Once network models are constructed, we can proceed to visualize them and 
compute relevant network metrics. Node-edge diagrams are the most familiar form 
of network visualization, where nodes are assigned to points in the two-dimensional 
Euclidean space and edges connect adjacent nodes by lines or curves. Nodes and 
edges can be decorated with visual properties such as size, color and shape to highlight 
relevant characteristics. 

Our STN visualizations use node colors to identify four types of nodes: (1) best 
nodes, which have the minimum possible fitness (zero) (2) neutral nodes, whose 
adjacent outgoing nodes have the same fitness, (3) portals, which link to a node with 
improved fitness, and (4) portals to best, which are portal nodes with a direct link to 
best solutions. 

The shape of nodes identifies three positions in the search trajectories: (1) start 
of trajectories, (2) best node (fitness zero), (3) end of trajectories (which are not the 
best node), (4) intermediate locations in the trajectories. 

Edges color indicate whether an edge is neutral or improving. Node sizes and 
edge thickness are proportional to their sampling frequency. 

A key aspect of network visualization is the graph-layout, which accounts for the 
positions of nodes in the 2D Euclidean space. Graphs are mathematical objects, they 
do not have a unique visual representation. Many graph-layout algorithms have been 
proposed in the literature. Here, we use the layout we designed in [ 9] to visualize 
the phenotype STNs. This layout uses the fitness values as the nodes’. y coordinates, 
while the . x coordinates are placed as a horizontal grid according to the number of 
nodes per fitness level. This layout allows us to appreciate the search progression 
towards smaller (better) fitness values, as well as the amount of neutrality present in 
the search space. 

4.5 The Role of Neutrality 

In the literature of GP, there has been a discussion about the benefits of neutrality for 
a long time. It has often been said that neutrality harms, since it robs the evolutionary 
algorithm of a guidance toward the goal, as neutral networks have identical fitness 
for all its genotypes or phenotypes, depending on which level one studies.
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Fig. 4.3 The amount of neutrality of phenotype A, B depends on the space left for neutral variation 
(yellow part). The larger the neutral part, the more variants are available to that phenotype. At the 
same time, the shorter the effective part of the solution 

However, it turns out that there are subtle differences between individuals, even 
if their fitness does not change on a neutral network. Two major differences are the 
abundance and the connectivity of phenotypes. As the results on discrete input-output 
maps discussed in the introduction show, some phenotypes are very frequently rep-
resented, compared to others, based on their complexity. Some are better connected 
in the network. The differences in abundance and connectivity guide a stochastic 
algorithm like evolution, even in the absence of fitness differences. This will lead 
to a higher probability of using highly abundant and better connected nodes in the 
network. These are two counter-acting tendencies: In a size limited search space 
(with a limit on the dimensionality of individuals - in our case 6 or 12 lines of code), 
abundance is tied to the amount of neutrality a phenotype gains via its neutral geno-
types. If the total length of a program is fixed at . L , the effective length is .E and the 
neutral length is . N , the following simple relation has to hold: 

.N = L − E (4.3) 

Figure 4.3 shows two examples. Note that the degree of neutrality depends expo-
nentially on the number of neutral instructions. Thus a phenotype represented by 
genotype .A will be more represented in the search space, and easier to find, com-
pared to a phenotype represented by genotype . B. It will be shorter in its effective 
part, thus less complex. This explains the phenomenon described earlier, of an nega-
tive exponential dependence of abundance on Kolmogorov complexity. On the other 
hand, a phenotype represented by genotype .B has a better connectivity to other fit-
ness because it has more effective instructions. This will make it easier to move via 
mutation from one phenotype to the other. These are counteracting tendencies that are 
able to explain why evolution in the longer run (when neutrality dominates) prefers 
low complexity solutions, while in the shorter run (when fitness effects dominate) it 
prefers to access solutions with higher complexity. 

Given the role of neutrality in influencing search performance, a natural question 
to ask is whether and how we can increase the degree of beneficial neutrality in 
a search space. In the following two subsections, we shall discuss two ways of 
increasing neutrality that seem to have a positive effect on search efficacy.
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4.5.1 Longer Programs 

The simplest way to introduce more neutrality in the search space is to allow an 
increase in the length of programs, i.e. the number of instructions. While this does 
not change the ratio of abundances between phenotypes, at least beyond a certain 
minimum length (see [ 14]), it allows more connectivity between different phenotypes 
(i.e., non-neutral changes) through an expansion of the neutral networks of those 
different phenotypes. That is to say that the 1-mutant neighborhood of phenotypes 
includes more other phenotypes in larger networks than in smaller ones. 

4.5.2 A New Fitness Function 

The second method is to consider the fitness function to be used in the search 
space more carefully, according to the problem. If there is a symmetry in the prob-
lem, we might want to exploit that for the fitness function, allowing those pheno-
types/solutions that show invariance under a certain transformation to be grouped 
together in the fitness function. 

For example, in symbolic regression (SR), it is a well-known fact that a root mean 
square error (RMSE) fitness function which judges every data point separately, can 
be replaced by a correlation fitness function plus a post-processing step that uses the 
fact that all best fitness solutions under the correlation criterion are equally correct, 
modulo a linear scaling transformation at the end. This opens up multiple pathways 
to a good solution for the symbolic regression problem, where RMSE would only 
allow a very limited number. 

4.5.2.1 A Failed Attempt 

Here, we apply the same method in the context of Boolean functions. The equivalent 
of a symmetry (an invariance under certain transformations), is, for instance, the fact 
that a negated Boolean function is also a solution, provided one adds a negation gate 
at the output. As in the case of SR, it is only the local, relative difference of outputs 
between different input patterns for the function that are important. Thus, we define 
a new fitness function called relative distance (RD) between two bit strings .b(1) and 
.b(2) as follows: 

.RD(b(1), b(2)) =
N−1E

i=1

(b(1)i − b(2)i+1) (4.4) 

Minimizing RD will allow phenotypes that have the same local pattern change to 
be identically treated. If one reaches distance 0, a final decision has to be made 
for the first bit, which determines the bit pattern completely. Consider an example: 
Two 8-bit bitstrings .b1 = 10100101 and .b2 = 01000010 have a Hamming distance
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of .HD = 6. If looked at from the perspective of the relative distance, though, their 
distance is much smaller:.RD = 2. This can be measured by transforming them into 
relative bit patterns .b1,r = 1110111 and .b2,r = 110011. 

The phenotype of the solution is thus either the phenotype already found, or its 
negation. But during the search process prior to hitting fitness 0, both types of patterns 
are treated equally, which allows more pathways towards a solution. It should thus 
be easier to find solutions with the help of the RD fitness function than it is with the 
help of the Hamming distance (HD) fitness function (which is the equivalent of MSE 
in the binary space). 

Unfortunately, that is not the case with this particular relative distance metric. 
While the additional symmetry of relative fitness might enhance the chances of 
finding the desired phenotype in a binary search space, this is balanced out by the 
countervailing influence of the enlarged search space. However, there is another 
symmetry that can serve to increase the neutrality of the search space: Applying a 
negation to the inputs of the Boolean function will produce three equivalent behaviors, 
those, together with the original behavior of the program, can be evaluated as the 
.NegativeInputDistance fitness measure and minimized. This is what we are going 
to explore in the following in more detail. 

4.5.2.2 The Negative Input Fitness Function 

We are going to lump together the distances of 4 different phenotypic behaviors into 
one distance measure. For each of these behaviors we calculate Hamming distance 
. d to the target . t , then select the minimum as the .NegativeInputDistance (.ND): 

.ND(b, t) = min
i=1...4

di (4.5) 

where 

. di =
{
b for i = 1
d(b̄i , t) for i = 2...4

with .b̄i symbolizing a single negated input . i . Once .ND has converged to . 0, we  
know we have hit the target, and it is only a matter of resolving which of the 4 
possible phenotypes (lumped together in .ND) produced the target behavior. This 
can be resolved in a post-processing step in constant time by testing which of the 4 
possibilities produces the target phenotype behavior.
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4.6 Results 

4.6.1 A Comparison of Success Rates 

Figure 4.4 shows the effects of longer programs and the new fitness function.ND on 
the success rate of finding different phenotypes. Each of the 256 phenotypes is used as 
the target. A search starts with a randomly generated program and continues for 2,000 
steps of point-mutations. 100 runs are collected for each experiment with a specified 
target phenotype. We plot the success rate, computed as the proportion of 100 runs 
that reach the target, as a function of the logarithm of the redundancy/abundance of 
the phenotype in the system. 

We can see that redundancy is not equally distributed, but clustered around a 
number of redundancy values. This is a reflection of the discreteness of the Boolean 
search space used. We can discern around 10 different clusters, from very low redun-
dancy (high difficulty) to very high redundancy (low difficulty). As shown in the 
figure, all 4 strategies are comparably successful when a target is very easy to reach 
(right side). For targets somewhat harder to discover strategies using the new fitness 
function .ND are clearly more successful, even at the 100 % level. More difficult 
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Fig. 4.4 Comparison of search strategies using fitness functions HD and ND, as well as program 
length 6 and 12. The 4 strategies are denoted using 4 different colors. Each data point represents 
one experiment using a specified phenotype as target. 256 distinct phenotypes are used as targets. 
Success rate is computed as the fraction of 100 runs in one experiment that reach a target phenotype 
within 2000 steps, and is plotted in relation to the target phenotype’s redundancy. Phenotypes with 
higher redundancies are easier to find
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phenotypes are found easier with the new .ND fitness function, down to the most 
difficult phenotypes. For very difficult phenotypes, longer programs (L12) are more 
successful, with again .ND fitness in the lead. 

4.6.2 Comparison of Search Trajectory Networks for Three 
Targets 

Next, we take a closer look at the search trajectories and investigate the effects of 
fitness .ND and longer programs on neutrality. We pick three representative pheno-
types as targets, phenotype 84 (redundancy 1,313,880), phenotype 140 (redundancy 
331,241), and phenotype 215 (redundancy 3,060), with increasing difficulties to dis-
cover. 

Figures 4.5, 4.6 and 4.7 show comparisons of STN visualizations for these three 
targets. Adapting the new fitness function.ND and increasing program length allow 
more neutral moves (edged colored in grey), especially among stepping-stone phe-
notypes with medium fitness values. There are also more paths explored that lead to 
the target. These effects are increasingly prominent when searching for more difficult 
targets. 

In addition to visualizing the STNs, we collect network metrics that quantitatively 
characterize these search networks. Figure 4.8 shows the comparison of these network 
metrics for the 4 search strategies. The number of nodes indicates distinct phenotypes 
explored. Neutral edges captures the proportion of neutral searches. While the differ-
ences are subtle, fitness .ND and longer programs facilitate more thorough searches 
in the space through allowing more neutral moves. Degree best is the number of 
incoming edges to best phenotypes (targets and their equivalents). Strength best is 
the weighted sum of those incoming edges to best phenotype, given that edges are 
weighted based on their visit frequencies. As seen in the figure, more difficult tar-
gets have few paths directly connected to them. But fitness function.ND and longer 
programs enable the discovery of more distinct paths finding the targets. 

4.6.3 Simpler Solutions 

It is a rather counter-intuitive fact that evolution seems to choose simpler solutions 
(phenotypes) over more complex ones. For many years our community has thought 
that evolution produces complex solutions. Bolstering this idea was the realization 
that above a certain complexity threshold there are many solutions to a problem, 
while below that threshold, there are none. In fact, there are normally only a few just 
above the threshold, and then there are many more as we increase the complexity. 
So it would seem that it is much easier to discover a complex solution than it would 
be to discover one of the few simple ones.
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Fig. 4.5 Search trajectory network (STN) for easy target phenotype 84, comparing fitness function 
HD (top) and ND (bottom) and program length 6 (left) and 12 (right). Nodes are distinct phenotypes 
and edges show mutational transitions among phenotypes during searches. The figure shows the 
aggregation of search trajectories of 100 runs. Node shapes denote positions, i.e., beginning pheno-
type (randomly chosen), best phenotypes (fitness 0), end phenotype, and intermediate phenotype. 
Edge colors denote if a mutation improves fitness 

But there is another influence at work in Genetic Programming—neutrality. Neu-
trality makes sure that simple solutions (in a limited search space) have many more 
neutral ‘siblings’ due to the combinatorics of the neutral space. As a result, the 
abundance of simple solutions is much higher and increases the chance of finding 
them. 

Does that mean that evolution always finds the simplest solution? No, because 
it is not just the abundance of a phenotype that determines success, but also the 
connectivity of that phenotype. It is thus an effort (it requires optimization) to find 
the very simplest solution: Determining the Kolmogorov complexity of a bit string— 
in our case the phenotype’s behavior—is an effort, but it can be achieved by a suitably 
set up GP search. We can therefore assume that evolution will generally find a simple 
solution, but not the simplest. In the normal case, the simplest solution might just 
not have enough connectivity in the network to be easily accessible, except in very
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Fig. 4.6 Search trajectory network (STN) for medium target phenotype 140, comparing fitness 
function HD (top) and ND (bottom) and program length 6 (left) and 12 (right) 

simple problems. That is because it needs to be accessed from a different fitness 
level, not from the neutral level on which it has so many siblings. 

Here we consider the cumulative development of the complexity distribution over 
runs. Figure 4.9 shows the distribution of phenotypic complexity in 100 runs of target 
phenotype 140, L. = 12, with high difficulty. We can see that complexity of programs 
at the beginning of runs is quite low: Most random programs clock in at complexity 
1, 2 or 3. In fact, the median is 2. As the target phenotype with K-complexity 3 is 
reached, most solutions are beyond the minimum of 3, with the median of 5 at the 
time of discovery of the target. Beyond the initial discovery of the target, however, 
complexity of solutions trends downward, with a median of 4 at iterations 2000. 

4.7 Discussion and Future Work 

We have seen that evolution does something rather unexpected, if left to its own 
devices: It prefers simple over complex solutions, at least to the degree possible 
and achievable with reasonable effort. This is not a miracle but due to the higher
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Fig. 4.7 Search trajectory network (STN) for hard target phenotype 215, comparing fitness function 
HD (top) and ND (bottom) and program length 6 (left) and 12 (right). The differences on the level(s) 
shortly before reaching the target are dramatic between HD and ND runs. A huge increase in possible 
pathways demonstrates the advantage of searching with the RD metric over the simple HD metric 

abundance of simpler solutions over complex ones, at least in search spaces that are 
limited in size. 

While this is an observation that could, in principle, be made in all GP systems 
allowing neutral solutions to play a role (i.e. those that do not exclude neutral search), 
it is particularly obvious in linear GP due to the ease of developing structural introns. 
While the same process is expected to go on in tree-based GP, it is less visible 
there due to the semantic nature of neutrality in that representation. Still it would be 
worthwhile to consider the same phenomenon in a TGP system. The corresponding 
intron discovery algorithm is easy to formulate, yet computationally expensive to 
execute. 

The general result on input-output maps is based on algorithmic information 
theory. This should be expected to hold under many different circumstances, and 
it is no surprise that genotype-phenotype maps in GP fall under it. However, due 
to the nature of neutrality, a particularly intuitive explanation for the exponential 
distribution of abundance can be seen in our system: The increase in neutrality 
leads to exponentially more neutral solutions, due to the combinatorics allowed in
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Fig. 4.8 Metrics of STNs comparing two fitness functions HD and ND and two program lengths 
6 and 12. Number of nodes indicates how many distinct phenotypes are visited. The proportion of 
neutral edges shows edges in an STN that connect genotypes to phenotypes with the same fitness 
value. Degree best is the number of incoming edges to best phenotypes (fitness of 0). Strength best 
is the weighted degree (sum of edge weights) of best nodes 

the neutral space. We think this is a key insight and it is essential not to over-
engineer approaches to GP that do away with neutrality, or ignore it in favor of 
a presumed better efficiency of search algorithms by removing non-effective code 
during evolution. There is a reason for the emergence of neutrality from evolutionary 
processes, and it is counterproductive to fight this tendency. In fact it is not only an 
emergent process but it serves evolution at the same time to find simple solutions to 
problems faster than complex ones. 

To leave the reader with something more heavy to ponder at the end: Does this 
tendency to prefer simple solutions perhaps shed some new light on the “unreasonable 
effectiveness of mathematics in the natural sciences” [ 24], a question Eugene Wigner 
has pondered for Physics, but as easily applicable to Biology?
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Fig. 4.9 Histogram of complexity distribution of phenotypes with target 140 at.L = 12, HD fitness. 
Three cumulative distributions are shown, at the beginning of runs (random programs), at the 
moment they hit fitness 0, and at the end of 2000 iterations. The Kolmogorov complexity of the 
target phenotype is 3, thus no solution can be found with lower complexity. At the time of discovery, 
phenotypes are more complex than later
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