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Abstract
Opinion dynamics is a crucial topic in complex social systems. However, existing models rarely study limited information
accessibility, sparse interactions, and the coevolution of opinion and an open-ended structure. In this paper, we propose the
Sparse COevolutionaryOpen-Ended (SCOOE) model. We address the sparse interaction limitation through extrinsic collec-
tive interaction and intrinsic observation based on incomplete neighborhood information. We also consider the coevolution of
opinion and open-ended structure by studying structure-opinion co-dynamics when dissidents are leaving and when newcom-
ers with novel opinions are joining. From an opinion dynamics perspective, we find that the proposed mechanisms effectively
form lean and fast decision strategies to reduce conflicts under uncertainty. The model is robust in boosting and enhancing a
global consensus with only small odds of extreme results. The structure evolves toward a small-world network. We find that
an emergent dialectic relationship exists between community segregation and community cohesion viewed from a structural
dynamics perspective. We also study the influence of agent heterogeneity under different cognitive ability distributions.

Keywords Opinion dynamics · Sparse interactions · Collective decision-making · Open-endedness · Coevolution

Introduction

The study of opinion dynamics, i.e., the study of the forma-
tion and dynamics of public opinions, is a crucial research
topic in complex systems and social networks. The topic
has been widely explored for several decades in theoret-
ical models and real-world applications among different
disciplines, including social science, control engineering,
statistical physics, and computer science. Elucidation of the
mechanismsbehindmacro-level opiniondynamics is vital for
understanding social interactions/dynamics, complexity, dis-
tributed control, and decision-making. It also holds valuable
lessons to apply to real-world empirical studies and applica-
tions like marketing and social media [37].
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An agent-based model is a type of computational model
focusing on the bottom-level (micro) interactions and their
effects on the holistic (macro) system. It is a powerful
tool to study evolutionary phenomena in both the natural
and social sciences. Many classic agent-based models have
been explored under various assumptions to study opin-
ion dynamics from different perspectives. For example, the
Hegselmann–Krausemodel [23] studies opinion polarization
with the bounded-confidence assumption, i.e., agents interact
only if their opinions are sufficiently close to each other by
fallingwithin a confidence interval. The Sznajdmodel and its
variations [51] study the evolution of consensus in a closed
society through majority voting. In that model, a focal agent
polls its complete neighborhood (i.e., the group of agents
sharing connections with the focal agent in the social net-
work) and selects the opinion of themajority. However, some
assumptions in existing models, e.g., polling the complete
neighborhood, seem to be no longer suitable, notably when
people with bounded rationality only have a partial view
and cannot access the complete neighborhood information
in their social networks. Meanwhile, when we interact with
neighbors, the literature from psychology suggests that we
are mainly concerned with the overall opinion of neighbors
(e.g., a joint opinion through collective decision-making),
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and we adjust our own opinions according to this feed-
back [15]. Some other work uses the bounded-confidence
assumption [52] applying dense interactions and serial opin-
ion updates through interacting with all selected neighbors.
While existing models thoroughly describe the dynamics of
opinions and interactions, they ignore the built-in structural
dynamics caused by opinion dynamics and open-endedness,
e.g., through the effects of newcomers, leavers, and their
impact on structure-opinion coevolution.

To address the preceding limitations, this paper’s contri-
bution can be summarized as follows.

– We develop the Sparse COevolutionary Open-Ended
(SCOOE) model, and then use this model to answer two
questions: How do opinions evolve under conditions of
sparse interactions and incomplete information, and how
do opinion dynamics guide the coevolution of an open-
ended society?

– We propose a framework for collective sparse interac-
tion among bounded-rational agents. The focal agent
in our model has a limited view of a partial neighbor-
hood. It is first assimilated into the extrinsic environment
via collective information derived from its incomplete
neighborhood rather than interacting with all neighbors
or polling the entire neighborhood. Then, it is driven by
intrinsic motivation to voluntarily adjust its opinion by
observing the incomplete neighborhood and social learn-
ing without direct interactions.

– We examine structural co-dynamics and pay close atten-
tion to the open-endedness property. Opinions and the
open-ended society coevolve in the model: The opinion
dynamics affect which agent will become a dissident,
exiting society, and the associated structural dynamics.
Meanwhile, a joiner with possibly novel opinions affects
its neighbors, and its opinion might cascade through
the system via sparse interactions. We also carry out
experiments to study the structural dynamics and opinion
dynamics searching for answers to the two questions.

It is also worth noting that a large body of computer sci-
ence research (e.g., multi-agent system community) aims to
raise the cooperation rate or speed to state of the art (SOTA)
through advanced deep learning methods [24]. We are inves-
tigating a relatively unexplored social phenomenon, namely,
the sparse interactions and coevolution of structure and opin-
ion under open-ended networked assumptions. As discussed
in our contribution, we design a new model to improve the
limitation of prior works, and it yields theoretically and
empirically plausible results. However, we do not attempt
to demonstrate the superiority of this model over competing
models.

The rest of the paper is organized as follows: We crit-
ically review the related literature and comment on the

current limitations in “Previous work”. Our SCOOE model
is then introduced in “Sparse coevolutionary open-ended
(SCOOE) model”, including agent design/model initializa-
tion (“Agent design and model initialization”) and model
dynamics (“Model dynamics”). Experimental results are
reported in Sect. “Experiments”. In “Discussion”, we present
a comprehensive discussion of the model. We conclude by
pointing out future research directions in “Conclusions”.

Previous work

Research in opinion dynamics models is mainly conducted
in two directions. If the focal entity (agent) chooses opinions
from a discrete set of opinions, the model is called a discrete-
opinion model [13], whereas if the focal agent’s opinions are
represented by a continuous interval, the model is called a
continuous-opinion model [12,23]. In the general framework
of an opinion dynamics model, agents update their opinions
according to interactions with randomly chosen others or
with connected neighbors in a networked structure. Stable
patterns of opinions will evolve over time, e.g., group agree-
ment, polarization, or multiple local opinions distributed in
different communities [34].

Recent work has revised the following three perspec-
tives to improve the two basic models: (i) the representation
of opinions, (ii) the opinion fusion methods, and (iii) the
heterogeneity of agents. Some work has explored novel rep-
resentations of opinions with multiple topics [55]. Liu et
al. [36] propose a fuzzy set-based representation of opin-
ions reflecting the attitudes of tolerance and stubbornness of
humans. Some work has introduced different mechanisms
for opinion fusion, e.g., the multi-level bounded-confidence
model [30], where society is divided into multiple subgroups
with different levels of confidence intervals. There, agents
prefer to only interact with others whose opinions are falling
into their corresponding confidence intervals. Somework has
introduced different types of heterogeneity, including antag-
onistic agents [32], leader–follower relationships [14], and
stubborn agents [58].

Although this previousworkhas offered important insights,
it also involves two important limitations. First, a widely
adopted assumption in existing models is complete infor-
mation, i.e., rational agents have perfect information to poll
their neighborhoods or conduct interaction preferences (e.g.,
selecting neighbors) to update their opinions. For example,
in the model of [48], the interaction partner is selected by a
probability function generated from the opinion difference.
However, this assumption is unrealistic, notably when the
complete information of the neighborhood is inaccessible.
We can indeed be affected by many people. However, the lit-
erature from psychology suggests that agents are primarily
influenced by taking the collective opinions of others (e.g.,
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neighbors in the social network) into account, rather than
updating their opinions serially and densely by interacting
with all their neighbors or certain selected neighbors with
similar opinions [15,42]. Sparse interactionswith incomplete
information have rarely been studied previously [8,21].

Second, the majority of previous extensions are carried
out in closed or static systems. Insufficient attention is paid
to the built-in system dynamics. The majority of work on
structural dynamics is concerned with manipulating struc-
tures. That is, how to influence the networked society toward
consensus and, further, how to influence the agents toward a
predetermined opinion via structural factors, such as adding
a minimum number of edges to the network [7,22]. Rather
than manipulating the structure to achieve more effective
propaganda, we argue that it is worthwhile to consider an
open-ended evolutionary system where new agents can join
and dissidents can leave, and where agent opinions are
updated continuously (opinion evolution) and the structure
coevolves simultaneously with opinion evolution (the coevo-
lution of structure and opinion). Coevolutionary phenomena
have been extensively studied in the field of social networks,
for example, the SIENA and ERGM models [49], but are
rarely considered in models of opinion dynamics.

We address these limitations in the proposed SCOOE
model,which takes into account the bounded rationality (e.g.,
incomplete information) of agents and the coevolution of
structure and opinion in an open-ended society.

Sparse coevolutionary open-ended (SCOOE)
model

This section describes the two main aspects of the proposed
model, model initialization and model dynamics.

Agent design andmodel initialization

First, we describe the basic building blocks of the SCOOE
model, heterogeneous agents and opinion representation.

Heterogeneous agents

The majority of previous work has aimed to assign agents’
different role-based or function-based heterogeneity (e.g.,
leader–follower) to empower the model describing differ-
ent real-world behaviors. In this paper, we ask the following
question: What factors primarily influence the integration
of a new opinion with an original opinion? Literature from
psychology suggests that the most critical factor in opin-
ion fusion is the built-in cognitive heterogeneity of humans.
For instance, the Big Five personality traits model asserts
that people’s personality exists on a spectrum with multiple
dimensions, e.g., inventive/curious v.s. consistent/cautious

[27]. Cognitive dissonance theory describes the psychologi-
cal stress when people are exposed to contradictory opinions
and reconcile them to be consistent [34]. For agent i being
exposed to a new opinion, we assume that agent i has a
built-in probability of sticking to its opinion, i.e., a stub-
bornness probability wi . It describes the degree to which an
agent relies on its original opinion. In contrast, the comple-
ment of stubbornness, i.e., an openness probability 1 − wi ,
quantifies the degree to which agent i is willing to adopt a
new opinion derived from the interaction with other agents.
Heterogeneity is produced when agents hold different built-
in cognitive features represented by different stubbornness
(or openness) probabilities. We assume that stubbornnesswi

follows a probability distribution in the population, like a
Poisson or Gaussian distribution. In the experimental sec-
tion, we report on the influence of different stubbornness
distributions.

Opinions of agents

The opinion Oi of an agent i is represented by a real num-
ber in the continuous interval [0,1]. It describes the degree
to which an agent believes the propagated information, e.g.,
news or rumors. A higher value of opinion Oi means that
agent i believes the propagated information more strongly.
Initially, each agent is assigned a random opinion, i.e., a ran-
dom number in the range [0,1].

Note that the opinion represented by Oi is independent of
the stubbornness probability. The former refers to the atti-
tude of an agent toward news items. It will be expressed and
updated by taking the opinions of others into account. The lat-
ter describes the personality and cognitive ability of an agent.
It is built into an agent, only refers to the agent itself, and will
not be expressed or changed. In the real world, people (e.g.,
agents i) could initially believe a piece of news by selec-
tively collecting information themselves (confirmation bias,
i.e., people collect information trying to follow their origi-
nal beliefs or biases, e.g., original opinions). However, they
might easily be persuaded to change their opinions through
some new evidence or short-term interactions with others.
In such a case, the initial opinion of an agent i is Oi ≈ 1,
while its stubbornness is wi ≈ 0. In contrast, agent i might
disagree with the news and could be difficult to convince. In
such a case, Oi ≈ 0, while wi ≈ 1. It is common to find
that stubbornness and belief-based opinions are not clearly
differentiated in the existing work.

Model dynamics

Here, we describe the mechanisms of the SCOOE model
dynamics, i.e., the sparse interaction protocol of opinion
dynamics and the coevolution of opinion and open-ended
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Fig. 1 The whole picture of the SCOOE model dynamics. Opinion
dynamics with two components of sparse interactions (extrinsic and
intrinsic forms): The focal agent with a limited view can only access
a partial neighborhood. It aggregates a joint opinion of the incomplete
neighborhood by collective decision-making. Then, the focal agent only
takes this joint opinion from the extrinsic incomplete neighborhood
into account by the interaction with the joint opinion, rather than by
dense interactions with all neighbors or certain neighbors with similar
opinions selected by polling the neighborhood. Imitation is also intro-
duced to drive opinion intrinsic adjustments based on observation of the
incomplete neighborhood environment without direct interactions with
neighbors. The coevolution of open-ended structure and opinion: The
opinion dynamics affect the leaver exiting society and associated struc-
tural dynamics. A joiner with a random opinion joins. It changes the
structural features and the neighborhood settings, and the neighborhood
settings in turn affect the opinion dynamics

structure. An overall picture of the SCOOE model is shown
in Fig. 1.

Opinion dynamics with sparse interactions

We first discuss the opinions dynamics. The critical theme of
opinion dynamics is sparse interaction and incomplete infor-
mation. As we pointed out in the introduction and related
work section, people do not serially poll the neighborhood
in their social networks to update the opinion, but are mainly
influenced through considering the joint opinion of others
as their feedback [15]. This contrasts with most agent-based
models which are formulated with such complete informa-
tion assumptions, e.g., polling the entire neighborhood to
select neighbors and conduct dense interactions serially to
update opinions [15,42].

The literature from psychology suggests two types of
motivations for humans to change behavior, extrinsicmotiva-
tion (people are assimilated into extrinsic environments) and
intrinsic motivation (people are motivated by internal desire)
[45]. We take inspiration from this and assume two types of
actions forming the sparse interaction, extrinsic collective
interactions and an intrinsic observation mechanism. The
interplay between these two actions enhances group opin-
ion evolution. However, they play different roles in various
stages of the model dynamics reported in the experimental
section.

Extrinsic collective interaction with incomplete informa-
tion

Here, we introduce a collective decision-making approach to
incorporate the sparse joint opinion formation and interaction
based on a limited neighborhood (i.e., incomplete informa-
tion). Though several collective decision-making approaches
have been proposed in discrete-opinion models, e.g., major-
ity voting [9], this approach in continuous-opinion models
has not been fully developed so far.

Suppose a focal agent i with a connection degree di in
its social network is able to only access a random subset
of neighbors i1, i2,..., i j , where j is randomly chosen and
satisfies 1 ≤ j ≤ di . This assumption means incomplete
information by a limited view and only partial access to
neighbors, and it allows more dynamic interactions, e.g., an
agent will not interact with its entire neighborhood. Agent i
generates a joint opinion OJoint

i of its random partial neigh-
borhood, rather than by interacting with all its neighbors or
certain neighbors with similar opinions serially. An intuitive
way to generate a joint opinion is by taking the weighted
average of the selected neighbors’ opinions [16]. Theweights
assigned to different neighbors are proportional to their rel-
ative connection degree strength, as shown in Eq. 1, where
dik is the degree of neighbor ik , k ∈ [1, j]

OJoint
i =

j∑

k=1

⎛

⎝dik/
j∑

k=1

dik

⎞

⎠ × Oik . (1)

Thus, the more a neighbor is connected in the local net-
work (measured by its relative connection strength), the
greater its weight and influence on the joint opinion in the
collective decision-making process.

Another critical factor in designing an interaction proto-
col is confirmation bias. That is, people collect and interpret
information selectively by trying to follow their original bias
(e.g., their original opinions) [44]. The most widely adopted
interaction protocol with confirmation bias is a bounded
confidence model where rational agents owning the perfect
information poll their entire neighborhoods and select oth-
ers to interact only if their opinions fall within a confidence
interval [12,20,52]. Here, we take inspiration from game
theory and model this as an opinion interaction game with
confirmation bias among bounded-rational agents with lim-
ited information. Therefore, after generating a weighted joint
opinion based on limited neighborhood information, agent i
with opinion Oi receives a payoff Ri represented by Eq. 2

Ri = 1 − |Oi − OJoint
i |. (2)

Equation 2 means that if the opinion Oi of agent i is
very different from the joint opinion in its selected neigh-
borhood (the local environment), it receives a low payoff.
Neighborhoods with more similar opinions are considered
more trustworthy, thus, resulting in a higher payoff.
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After considering the collective interaction by the game-
playing and interaction with the joint opinion, the focal agent
i adapts to the neighborhood. Suppose the stubbornness of
i is ωi and its openness is 1 − ωi , then the adapted opinion
OAdapted
i of agent i is calculated by Eq. 3. It represents a

combination of relying on its original opinion and accepting
a new opinion [8,16]

OAdapted
i = Oi × ωi + OJoint

i × (1 − ωi ). (3)

The interaction (opinion adaption) in our model, as shown
in Eq. 3, can be understood as a Bayesian process: Stubborn-
ness is viewed as a type of prior (the extent to which agents
adhere to established beliefs); openness is viewed as a type of
posterior (the degree to which agents adopt a new opinion). It
isworth noting that in computer science, reinforcement learn-
ing is also frequently used tomodel agent interaction [23,57],
while it is applied infrequently in the (computational) social
science community [1,6]. The primary reason, in our opin-
ion, is that the interaction in our model (and the vast majority
of socially inspired models) is not an optimization pro-
cess. Indeed, in themulti-agent computing community, agent
interaction is primarily traced back to robot “foraging” or
trial-and-error to escape the maze—which can be clearly
viewed as an optimization process involving maximizing the
cumulative (discounted) reward, in the majority of socially
inspired models—including ours—opinion change occurs as
a result of assimilation and adaptation to the neighborhood in
society [1,19,33]. “Learning” typically refers to a Bayesian
process, which is precisely the idea in the SCOOE model.

Intrinsic self-adjustments We have now seen how agents
take advantageof extrinsic collective informationwithin their
incomplete neighborhoods. Agents also observe the local
environment to adjust their opinions to seek a higher pay-
off. This is driven by intrinsic motivation. People sometimes
engage in an activity just because they are drawn to do it
[18,45].

We apply the imitation rule here that does not need
direct interactions, transforms information in the population
through observation and self-adjustment [43,50]. Again, a
focal agent i only accesses a random partial neighborhood
as its observation environment1. For these random neigh-
bors, the focal agent i holds a probability Wi,ir to imitate
the local best-performing neighbor ir (i.e., the neighbor with
the highest cumulative payoff) by adopting ir ’s opinion as its
own opinion. The imitation probabilityWi,ir is expressed by

1 These random partial neighbors for observation are different from the
interaction neighborhoods as we allow more randomness. People also
do not always consult with the same group within their social networks.

Eq. 4 [50]

Wi,ir = 1

1 + exp[(Ei − Eir )/μ] . (4)

Ei and Eir are cumulative payoffs of agent i and the local
best-performingneighbor ir . They reflect the long-termadap-
tation and assimilation into the society as stubborn agents
with fairly different opinions will ultimately have a low
cumulative payoff.μ is a noise parametermodeling irrational
choices, and we set μ to μ = 1.5 [50]. 2 μ allows the possi-
bility to imitate opinions of agents with a lower cumulative
payoff due to making an irrational choice. Agents observe
the environment and keep a close eye on the cumulative pay-
off gap. They then adjust their opinions voluntarily without
direct interactions to achieve a greater payoff and a better
position in society.

In summary, we introduce (i) sparse opinion updates
by taking incomplete information-based collective decision-
making into account, and (ii) observation and self-adjustment
of opinions without direct interaction with neighbors. Sparse
interactions are achieved.

Open-ended structural dynamics

This section presents the open-ended structural dynamics
with leaving and joining agents and the opinion-structure
coevolution.

Leavers: At each time step, the agent with the lowest cumu-
lative payoff leaves the society, which models an intention
to exit a society where most individuals have fairly different
positions (e.g., opinions). The stubbornness and openness of
a leaver are recorded. All adjacent edges of this agent are
removed from the society upon leaving. As society evolves,
leaver-driven structural dynamics will demonstrate the con-
firmation bias more strongly, because stubborn agents with
opinions fairly different from others will have a low payoff
leading to their removal from the model. Opinion dynamics
affect the cumulative payoff, influence which agents become
leavers, and thus drive the structural coevolution of the sys-
tem.

Joiners: At each time step, a newcomer vwill join.As society
evolves, the community structure constantly changes. Agent
v has incomplete information about different communities.
It detects the real-time community structure and attempts
to join a random communityv by connecting to randomly
selected nodes within communityv . We assign a random
opinion Ov to v and the recorded stubbornness/openness of

2 When conducting long-term interactions, the cumulative payoff could
reach several hundred. Thus, the value of noise is chosen to be slightly
greater than the range [0,1] in previous work.
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the leaver (see above) to v to keep the cognitive ability dis-
tribution stable within the society. Note that the cumulative
payoff Ev of the incoming agent v is not comparable to that
of existing agents when calculating the imitation probability
and removing leavers, especially for long-term experiments
(see Eq. 4). We accordingly assume that given v joining at
time step tv , agent v’s initialized cumulative payoff Ev is
adjusted by the corresponding payoff Rtv

v at time tv mul-
tiplied by the number of completed interactions tv . After
initialization, the cumulative payoff Ev is calculated by reg-
ularly adding the corresponding payoff Rt

v at each time step
t until v is removed or the system terminates globally.

After joining a community, the newcomer v chooses and
connects to a node u in another community. We apply the
preferential attachment principle (i.e., nodes with a higher
connection degree have a stronger ability to attract new nodes
added to the network), because “the rich getting richer” phe-
nomenon iswidely observed in real-world societies [5]. Thus,
the probability pv,u for v choosing u to connect follows
Eq. 5:

∀u ∈ (G − communityv) : pu,v ∝ du/
∑

du . (5)

G − communityv represents all of the other communities
except for communityv , which the new node v joins. du rep-
resents the degree of node u. If only one community exists as
the society evolves, the new node joins by connecting to only
one node following preferential attachment. An algorithmic
view of the SCOOE model is shown in Algorithm 1.

It is worth noting that opinion dynamics with sparse inter-
actions provide criteria (i.e., cumulative payoff) for agents
to leave society. Then, agents actively behave to drive struc-
tural evolution and opinion evolution. In the SCOOE model,
we believe that both structural and opinion mechanisms
contribute to the rich emergent dynamics observed in the
experimental section.

Experiments

In this section, we describe our experiments and their results.

Experimental settings

We create two small-world networks holding 500 nodes
each to model two physically separated groups of people
interacting to a certain degree. Therefore, randomly chosen
edges connect the two small-world networks. We apply the
Watts–Strogatz model to generate an individual small-world
network [53]. Each node is connected to four nearest neigh-
bors. The rewiring probability is set to 0.05. This structure
constitutes the agent society, with each node representing
an agent. A focal agent will only consider those agents con-

Algorithm 1: The SCOOE Model
1 Initialize society, opinions, stubbornness, openness, payoffs, and
neighbors;

2 for each time step t(t = 1, · · · , T ) do
3 //Opinion Dynamics with Sparse Interactions;
4 for each agent i in the society do
5 Agent i accesses partial random neighbors and generates

a joint opinion OJoint
i (see Eq. 1);

6 Agent i receives the corresponding payoff Ri and updates
the cumulative payoff Ei by OJoint

i (see Eq. 2);
7 Agent i is assimilated into the neighborhood with the

adapted opinion OAdapted
i (see Eq. 3);

8 Agent i voluntarily adjusts its opinion with an imitation
probability Wi,ir (see Eq. 4);

9 end
10 //The Coevolution of Open-ended Structure and Opinions;
11 The agent with the lowest cumulative payoff leaves the

society;
12 Assign a random opinion Ov to a newcomer v;
13 Assign the stubbornness/openness of the leaver to v;
14 Adjust the cumulative payoff Ev of v;
15 v detects the real-time community structure;
16 if multiple communities (≥ 2) can be found in the society

then
17 v joins a random community by connecting to partial

random nodes within this community;
18 An edge is generated connecting v to a node u in another

community, following the preferential attachment (see
Eq. 5);

19 else
20 v connects to a node u in the society following the

preferential attachment (see Eq. 5);
21 end
22 end

nected by edges as neighbors and conduct sparse interactions
based on the neighborhood. For initialization,we followprior
work from the psychology and computing realms [11,40] and
set the stubbornness distribution to a Gaussian distribution
with a mean of 0.5 and a standard deviation of 0.25. These
parameters are chosen, so that most values lie between 0 and
1. In addition, we apply a cut-off, so that generated random
numbers can only lie between 0 and 1, i.e., we constrain stub-
bornness to the interval between 0 to 1, as shown in Fig. 2a.
Imitation noise is set to μ = 1.5. The simulation is run for
450 Monte Carlo time steps.

Experimental results and analysis

Here, we report our experimental results by answering the
following questions. We will explain and discuss the phe-
nomena found in the discussion section.

How do group opinions evolve with sparse interactions?

We study how far the group opinions evolve away from their
initial states, measured by the variance dynamics shown in
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(a) Default Gaussian stubbornness (b) Opinion initialization

(c) Evolved opinions under Gaussian stub-
bornness distribution

(d) Variance dynamics

Fig. 2 Opinion dynamics in the population with Gaussian stubbornness

Fig. 2. The opinions of agents are reasonably different at
the start, because agents are assigned random opinions ini-
tially. As society evolves, we find two stages of evolution:
a fast-decay phase (i.e., the variance of group opinions dra-
matically decreases from0.084 to 0.005) and a slow-decrease
phase (i.e., the variance slowly continues dropping to 0.003
at the end of the simulation). It is interesting to find that
the final opinions are in a relatively narrow band and less
polarized without firmly believing or strongly unbelieving
the rumors among the agent population, even with some
agents never changing their opinions (stubbornness =1) but
being removed by the model. The Gaussian stubbornness
distribution is also evenly distributed. The majority of the
population keeps a balance between maintaining their origi-
nal opinions and accepting a new opinion. Mirroring reality,
we find that agents are more likely to stay open-minded to
propagated news/rumors during long-term interactions in an
open-ended society.

How do the opinion dynamics shape the structural
co-dynamics?

For this question, we primarily focus on the dynamics of
the clustering coefficient, average path length, degree distri-
bution, and community structure. For real-time community
detection, we use the most widely used method, namely the
modularity-based method [10].3

The society coevolves to be a holistically dense small-world
structure with a heavy-tailed degree distribution

As shown inFigs. 3 and4,wefind an increase in the clustering
coefficient and average degree, as well as a decrease in aver-
age path length and the number of communities.We initialize
the society as two interconnected small-world networks. The
random edges between them change the initialized small-

3 We have compared several community detection methods. We find
they do not strongly affect the results.
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(a) Clustering coefficient (b) Average path length (c) The Number of communit-
ies

(d) Initialized degree distribu-
tion

(e) Coevolved degree distribu-
tion

(f) The relationships
between node degree and
node proportion

Fig. 3 Structural dynamics

world features by randomizing them to a certain degree.
Thus, we find a chaotic society initially with 26 detected tiny
communities and a coevolved society with nine segregated
communities by the modularity-based method [10]. We also
observe that the coevolved society has a small-world feature
with a high clustering coefficient. It coevolves to be a more
tightly knit group with dense connection degrees, high infor-
mation transmission efficiency, and a low average path length
due to network homophily. That is, the final opinions of the
population are relatively consistent, leading to an increase in
payoff and a decrease in conflicts (e.g., confirmation bias for
fairly different opinions) in the game-playing upon interac-
tions. This coevolutionary trend of the structure in turn boosts
the evolution of a global opinion [39].

Although some small-world generation models, e.g., the
Kleinberg model [28], do not generate heavy-tailed degree
distributions, it is not surprising to find a heavy-tailed degree
distribution appearing in the SCOOE model. The advan-
tages of “the rich” become significant eventually because of
preferentially added joiners. Specifically, we calculate the

proportion P(d) of nodes with connection degree d. We
find that the relationships between node proportion P(d)

and node degree d can be approximated by a linear rela-
tionship log[P(d)] ∝ (−γ ) × log(d) with a negative slope
−γ ≈ −2.758 through linear regression within a 95% con-
fidence interval. Note that the data points in Fig. 3f represent
the averagedegree and the nodeproportion in different degree
ranges. We only study the nodes in these degree ranges,
because theyfillmost of the network. These nodes are enough
to illustrate a linear relationship.

An emergent dialectic relationship between community seg-
regation and cohesion

Cohesion is a concept of togetherness and connectedness
among nodes within a network. There is no unified defini-
tion of cohesion, because it depends on the context. Previous
literature has referred to it as cliques/communities, clusters,
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Fig. 4 The coevolved society after 450 time steps. The nodes and edges
within a community are set with the same color. The color of external
edges connecting two communities is set to black

or average degree [29].4 Figure 4 shows our assessment of
the community segregation and cohesion.

As shown in Fig. 4, the initialized society is desegregated
and chaotic with a low level of cohesion (i.e., with a low aver-
age degree and clustering coefficient). As society coevolves,
we find that it has a clear pattern of fewer segregated commu-
nities that become densely clustered (i.e., with a high average
degree and clustering coefficient). Agents have disconnected
social networks initially but highly cohesive social clusters
eventually.

It is interesting to note that society becomes segregated
but dense spontaneously and simultaneously with a global
consensus and cohesion, but without multiple local-opinion
“barycenters” that might emerge aligned with segregated
communities [20]. Mirroring reality, as Neal et al. [41]
suggest, a widely observed example in the real world is
policy-making to reduce detrimental residential segregation.
A widely adopted approach to introduce desegregated neigh-
borhoods and reduce residential segregation is to improve
cohesion, e.g., dense connections. However, a paradox exists
between community segregation and cohesion. The society
evolves to be dense with segregated communities, whereas a
desegregated society is not as cohesive as we would expect.

What factors affect the evolved global opinion?

It is reasonable to suspect that the degree of stubbornness
affects the emergence of a global opinion. Additionally, the
SCOOE model incorporates multiple types of dynamics.
What effect do these dynamics have on the evolution of a
final opinion? This section will address these questions.

To study the influence of stubbornness distributions, we
also test a Beta distribution and a Poisson distribution. We
initialize theBeta distributionwith two positive shape param-

4 Some work has also applied the k-component for measuring network
cohesion. The k-component of a network is the maximum sub-graph
in which we need to remove at least k nodes to break this sub-graph
into more components. We do not study the k-component here, because
the “giant component” that fills most of the network is always found
in an undirected network, while the rest of the network is divided into
many scattered small components [31]. This does not help us understand
cohesion and segregation but works for connectivity.

eters α = 7 and β = 1, and the Poisson distribution with the
expected rate of occurrences λ = 1. We normalize the two
generated distributions with the maximum value represent-
ing stubbornness = 1. The evolved opinions in these two
cases are shown in Fig. 5. The variance comparison with
different stubbornness distributions is shown in Fig. 6a. The
variance comparison is defined as the ratio of the opinion
variance for the Poisson/Beta stubbornness distributions to
that for the baseline Gaussian stubbornness distribution at
each time step t , t ∈ [0, 450]. The variance dynamics with
different sparse interaction mechanisms in a population with
a Gaussian stubbornness distribution are shown in Fig. 6b.

Stubbornness is generally small in a population with
Poisson stubbornness. Agents are very flexible to become
followers of the propagated news/rumor. As a result, it will be
easier to pass the fast-decay phase, and we observe an initial
lower variance than the baseline shown in Fig. 6a. Because
of the flexibility in updating opinions, evolved opinions are
still inconsistent at the end of 450 time steps, and the final
variance is relatively large. In contrast, the agent population
generally has much higher Beta stubbornness. Accordingly,
we find an initial increase in the variance ratio to pass the
fast-decay phase shown in Fig. 6a. Because of the high stub-
bornness, final opinions are stable with few changes, and
lower final variance than the baseline can be observed.

It is challenging to drive the global opinion evolution
among a stubborn population, e.g., the initially weak emer-
gence of the global opinion in the population with high Beta
stubbornness. However, it is interesting to find the most uni-
fied global consensus in such a society with many agents
only weakly changing opinions. This unusual phenomenon
is due to the open-endedness of society. The most stubborn
agents will be consideredmaladapted to the environment and
removed as society evolves. Agents will be assimilated by
agentswho surround them.Nomatter the initial opinions they
hold in stubborn crowds, they will finally have a relatively
unified group consensus after the long-term interactions and
the slow assimilation of opinions crowding out dissidents
in an open-ended society. We can say that these high stub-
bornness values serve as a “wall”—newcomers with similar
opinions will be accepted, while newcomers with opinions
out of this range will be removed quickly.

We additionally test the model without the intrinsic self-
adjustmentmechanism, as shown in Fig. 6b.Awidely studied
contagion phenomenon in social networks is that the chance
to adopt a contested “innovation” (e.g., firmly believing a
piece of news/rumor) will be smaller for an individual with
more neighbors [8,21]. When a focal agent aggregates the
joint opinion by collective decision-making, extreme opin-
ions (e.g., a strong endorsement) of selected neighbors are
neutralized by weighted averaging. This effect will be more
significant for high-degree nodes, given the larger share of
their neighbors. On the other hand, high-degree nodes with
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(a) Poisson stubbornness distribution (b) Beta stubbornness distribution

Fig. 5 The evolved opinions with different stubbornness distributions

(a) Variance comparison with different stub-
bornness distributions

(b) The dynamics of the variance of opin-
ions with/without self-adjustment mechan-
ism

Fig. 6 Opinion dynamics with different stubbornness distributions and sparse interaction mechanisms

a fewer likelihood of being extreme have a more substan-
tial impact on the weighted aggregation method and a more
extensive influence range. At the same time, collective inter-
actions decrease the probability of interacting directly with
extreme agents and being affected by them. Therefore, the
extrinsic collective interaction mechanism boosts the emer-
gence of a global consensus, as shown in the similar trends of
the fast-decay phase in the two cases in Fig. 6b. It plays fewer
roles when the population rapidly reaches a pre-consensus
(the start of the slow-decrease phase in variance dynamics),
given the constantly adapted local interaction environment
with the randomness to select neighbors, the joiners/leavers,
and a constant injection of newopinions. The intrinsic adjust-
ment mechanism continues to further the emergence of a

global consensus and weakens conflicts by direct imitation.
It can be said that extrinsic collective interactions primarily
play a role in the fast-decay phase of the variance dynam-
ics, whereas intrinsic adjustments mainly play a role in the
slow-decrease phase. Their interplay works to enhance the
evolution of a global opinion. Note that when we set the self-
adjustment noise μ to a very large value, we can observe
similar results to the case of removing the self-adjustment
mechanism.
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Discussion

It is crucial to design simple but practical agent-based mod-
els linked to the phenomena of interest. This section revisits
and discusses the proposed mechanisms by focusing on their
effects on the consensus evolution within groups.

Lean and fast decision strategies with incomplete
information

A broad assumption in the widely cited bounded-confidence
model is that rational agents owning the perfect informa-
tion poll their neighborhood and select neighbors to interact
only if their opinions are sufficiently close to their own. This
assumption facilitates polarization and global conflicts [20].
It has been widely recognized that it is difficult to evolve
a global consensus for large population sizes [26,30,56],
because multiple local consensuses might be distributed in a
society. As a result, such a system needs more bottom-level
interactions to pass the formation of these local consensuses.
Our results validate several earlier findings with different
mechanisms and remarkably boost the evolution even in
a stubborn population [35,46,54]. Unlike some bounded-
confidence models, e.g., [12,20], here, we start by assuming
that bounded-rational agents only access a partial neighbor-
hood (incomplete information) to aggregate a joint opinion.
Confirmation bias is represented by the stipulation that adopt-
ing more similar opinions will bring a higher payoff. We find
that conflicts among bounded-rational agents are weakened
globally and rapidly. Bounded rationality with incomplete
information forms lean and fast decision strategies to reduce
conflicts under uncertainties, whereas complete information
weakens group coordination, as suggested by some literature
from psychology [17].

Open-endedness enables permanently novel
opinions

We find that eventually evolved opinions are wholly unified
in some closed-society models [46]. The continuous addition
and removal of agents and the structure/opinion dynamics
they bring with them influence neighbors and neighbors’
surroundings in a cascading fashion. Though the designed
mechanisms strongly facilitate the evolution, it is impossi-
ble to reach a highly unified global consensus. One can only
approach it nomatterwhether the randomness or noise exists,
as the slow-decrease phase in variance dynamics shown in
Figs. 2 and 6. It can also be said that the SCOOE model is
robust to boost and enhance the evolution of a global opin-
ion as it successfully defends against the interference of a
constant injection of novel opinions.

The interplay between sparse interaction and
open-ended structure reduces the echo chamber
effect

The echo chamber effect in social media studies describes
a situation where local opinions are reinforced by repetition
inside a closed society and insulated from rebuttal or differ-
ent opinions (confirmation bias). Surprisingly, a substantial
body of research indicates that people are not as polarized
as we would expect in the echo chamber, both empiri-
cally [2,4,25,47] and theoretically [35,46,54]. We offer two
possible theoretical justifications for this apparent discrep-
ancy between evidence and intuition: From the perspective
of opinion dynamics, the focal agent considers the collec-
tive opinion based on a limited view of the neighborhood,
which reduces polarization quickly, as discussed in “Lean
and fast decision strategieswith incomplete information” and
“What Factors Affect the Evolved Global Opinion?”. From
a structural dynamics perspective, the society in our model
(and also in the real world) is open-ended and constantly
changing. It imparts persistent dynamics on the neighbor-
hood structure, resulting in neighbors with whom the focal
agent interacts being neither isolated nor static. When we
examine previous models based on a closed structure, some
work has shown global/local polarization and extreme opin-
ions [3,23,38]. The open-endedness feature with a constant
injection of novel opinions in the SCOOE model helps a
population defend against the echo chamber effect and stay
open-minded. It reduces the chances of extreme results,
because extreme agents are likely to be removed fromsociety.
It also mirrors the findings of a global consensus formation
in a population with high Beta stubbornness. In general, we
believe that opinion and structural mechanisms are inextrica-
bly linked and that their interplay helps reduce polarization.

Conclusions

In this paper, we propose the SCOOE model, a coevolu-
tionary opinion dynamics model with sparse interactions in
an open-ended society. Two-phase evolution shows that the
extrinsic collective interaction mechanism boosts the evo-
lution; the intrinsic adjustment mechanism slowly reduces
conflicts. Their interplay facilitates the effective and robust
formation of a global opinion. The model also provides
a new direction for small-world network generation from
social complexity and interaction perspectives. As the model
evolves, agents tend to be connected closer to others. The
agent society shows a small-world characteristic with a
heavy-tailed degree distribution and emerges to becomemore
segregated and cohesive. Different emergent trends can be
found in flexible, normal, and stubborn populations, with a
link to a potential explanation in cognitive science and psy-
chology. We expect to apply the SCOOE model in a broader
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field, e.g., media and communication studies and decentral-
ized control of asynchronous systems.

Though the proposedmechanisms show promise in exper-
iments, there are someopenquestions.Whilewe successfully
introduced a limited view of focal agents, payoff information
is accessible to all agents. We are interested in a model with
even less information. Is it possible to design an incomplete
information model with hidden payoff information when
agents adjust the opinions according to the environmental
feedback? An empirical study based on real-world data to
calibrate the model and a further relaxation of assumptions
to make the model even simpler are also valuable directions
in the future.
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