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Abstract We present a new method which allows a swarm of robots to sort arbitrarily
arranged objects into homogeneous clusters. In the ideal case, a distributed robotic sorting
method should establish a single homogeneous cluster for each object type. This can be
achieved with existing methods, but the rate of convergence is considered too slow for real-
world application. Previous research on distributed robotic sorting is typified by randomised
movement with a pick-up/deposit behaviour that is a probabilistic function of local object
density. We investigate whether the ability of each robot to localise and return to remembered
places can improve distributed sorting performance. In our method, each robot maintains a
cache point for each object type. Upon collecting an object, it returns to add this object to
the cluster surrounding the cache point. Similar to previous biologically inspired work on
distributed sorting, no explicit communication between robots is implemented. However, the
robots can still come to a consensus on the best cache for each object type by observing
clusters and comparing their sizes with remembered cache sizes. We refer to this method as
cache consensus. Our results indicate that incorporating this localisation capability enables
a significant improvement in the rate of convergence. We present experimental results using
a realistic simulation of our targeted robotic platform. A subset of these experiments is also
validated on physical robots.
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1 Introduction

Social insects such as ants, wasps, termites and bees act collectively to bring order to their
environments. In addition to the marvellous sophistication of their nest construction, they
also organise resources and waste materials in particular ways. Honeybees distribute honey,
pollen and brood in a concentric pattern (Beekman et al. 2008). Ants also organise their brood
in a concentric pattern according to size (Sendova-Franks et al. 2004). Another interesting ant
behaviour is their tendency to cluster waste material (e.g., dead ants) into groups (Deneubourg
et al. 1990). The models suggested by biologists to explain these various phenomena assume
decentralised control and local sensing. Many researchers have been inspired to design robotic
systems with the same characteristics in the hopes of inheriting advantages such as the flexible
and adaptive allocation of workers to tasks exhibited in social insect colonies (Gordon 1996).
In this paper we introduce a new mechanism to allow a swarm of robots to sort objects
such that a single cluster for each object type is quickly formed and persists as a stable
configuration.

The ability to sort distributed materials has a wide range of potential applications. Sorting
mixed materials is central to household recycling and waste management. In the context of
manufacturing, the gathering together of related parts is an important precursor to the assem-
bly process. Even when there is only one type of object, aggregating those objects together
has applications such as household cleaning and gardening (e.g., raking leaves into piles).

Deneubourg et al. (1990) proposed a model for the general capability of insects to cluster
like materials into larger and larger groups. The individual agents in this model pick-up and
drop objects with probabilities governed by the local object density. Isolated objects have a
high probability of being picked up by unladen agents, while agents already carrying objects
have a high probability of depositing them in high density areas. Over time this process
aggregates the objects into larger and larger clusters. Various authors have taken inspira-
tion from Deneubourg et al. or have proposed algorithms that apply a similar methodology
(Beckers et al. 1994; Maris and Boeckhorst 1996; Martinoli et al. 1999; Kazadi et al. 2002).
In their seminal paper Deneubourg et al. (1990) also adapted their model to the problem of
segregating objects by type. Melhuish et al. (1998) described this as patch sorting: ‘grouping
two or more classes of objects so that each is both clustered and segregated, and each lies
outside the boundary of the other’. Patch sorting has been studied by Melhuish and colleagues
(Melhuish et al. 1998, 2001, 2006) as well as Zhang and colleagues (Wang and Zhang 2003;
Verret et al. 2004). These researchers have continued in the tradition of Deneubourg et al. in
developing minimalistic agents.

In the majority of these papers the motion of the agents (simulated or physical robots)
is essentially a random walk with avoidance, deposit, or pick-up behaviours triggered by
colliding with an object such as another robot, a cluster of pucks, or an isolated puck. Verret
et al. (2004) simulated a more extended view for each robot using an overhead camera. This
allowed the robots to make a decision (still via a probabilistic rule) to approach an isolated
puck for pick-up or a cluster at which to deposit the carried puck. Verret et al. found that
sorting was accelerated with increased sensing range and with inter-robot communication.

In previous work we demonstrated accelerated sorting in comparison to a variant of
Deneubourg et al.’s model by considering clusters within the view of the robot’s camera as
potential targets for pick-up or deposit (Vardy 2012). The rule employed was quite straight-
forward. If the robot is not carrying a puck it should seek the smallest cluster in view. If
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already carrying and seeking a place to deposit, it should seek the largest cluster in view. The
general philosophy is to make the robots more proactive in seeking out isolated pucks for
pick-up and large clusters at which to deposit those pucks.

In this paper we consider the benefits of incorporating an ability for robots to localise and
return to remembered places. That is, we assume they can select a position in space as a refer-
ence and then localise with respect to that position. Localisation is an extremely well-studied
problem and many solutions are available. Examples include satellite-based positioning for
outdoor systems (e.g., GPS), overhead tracking systems, map-based probabilistic localisation
(Thrun et al. 2005) and visual homing (Vardy and Möller 2005; Möller et al. 2010).

Using our technique, known as cache consensus, the ability to localise enables a dramatic
acceleration in sorting performance. Each robot maintains a set of caches—one per object
type. In our experiments the objects consist of coloured pucks. A cache is represented as a
cache point which may have a cluster of pucks growing around it. A robot that is not carrying
a puck will wander randomly, examining visible clusters and considering each as a potential
target for pick-up. A Deneubourg et al. style probabilistic rule determines whether a cluster is
targeted and an individual puck is further selected for collection. Up to this point the method
is quite similar to that of Verret et al. (2004) or our previous work (Vardy 2012). However,
once a puck has been collected, the robot homes towards the cache point corresponding to the
carried object type and then deposits at that cache’s cluster. The qualitative behaviour of such
a system is fairly clear—some cache clusters may grow at the expense of others, but since
each robot defines its own caches there may be no clear trend towards global convergence
(one homogeneous cluster per object type). The innovation lies in cache reassignment. A
robot observes clusters and can choose to select the centroid of a cluster as its new cache
for that object type. Even when starting with an arbitrary distribution of pucks and caches,
this method yields an implicit consensus between robots such that they all come to share the
same caches. Once cache consensus is achieved, global convergence to a single homogeneous
cluster per type quickly follows.

In addition to the inspiration provided by insects which cluster and sort resources in their
environment, we are also inspired by insects which make collective decisions that require
consensus. Seeley provides an elegant and comprehensive account of the process used by
honeybees to identify a nest site for a new colony that has just separated off from its home
colony (Seeley 2010). Scout bees fly out to inspect potential sites and then return to the
swarm to inform their peers about the location and quality of these sites by an adapted form
of waggle dancing. Each returning scout bee promotes the site they have returned from by
performing a number of waggle dances that is related to their perceived quality of that site.
A strongly promoted site will attract additional scouts who provide independent assessments
about the site’s quality. In the vast majority of cases a consensus on one site is reached.
Further, Seeley demonstrates that the chosen site is usually optimal with respect to known
nest quality criteria. In the cache consensus algorithm there are also a number of options
that are considered. In this case, those options are potential sites for the final cluster of each
object type. There is no explicit communication between robots and therefore no promotion
of one cluster versus another. However, each robot observes the clusters built by its peers and
can choose to adopt them as its own. In our experiments the typical final result is unanimous
agreement on one homogeneous cluster for each object type.

1.1 Localisation

Cache consensus differs from all known distributed robotic sorting algorithms in its use of
localisation. We can classify localisation systems based on the type of sensors they employ:
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Infrastructure Localisation information is broadcast or downloaded from an external
sensor network that has been installed into the environment.
Allocentric Robots are equipped with allocentric sensors such as cameras or laser range
finders which can be used to determine their pose1 with respect to a stored sensory
snapshot or map.
Egocentric Robots are equipped with egocentric sensors such as wheel encoders or
inertial measurement devices which determine their pose with cumulative error that must
intermittently be zeroed by some means.

An infrastructure-based localisation system might consist of a network of tracking cameras
which views the robots from above and communicates their position wirelessly. Another
possibility is satellite-based localisation such as provided by the Global Positioning System
(GPS). The camera network could be installed anywhere, but at potentially significant cost,
whereas satellite-based localisation is limited to outdoor environments but is generally freely
accessible. For the experiments described in this paper a single overhead camera is used to
track unique markers on top of each robot (see Sect. 3.1). The use of this infrastructure imposes
undesirable constraints on our system which we hope to alleviate in future implementations
by utilising one of the following strategies.

Allocentric localisation covers a broad range of sensing technologies and localisation
solutions. If a map of the environment is available or can be built autonomously then
the robot’s current sensory snapshot can be compared with the expected sensory stimuli
across all possible poses within the map. Incorporating self-motion information via recur-
sive Bayesian filtering allows the pose to be estimated with much more accuracy and effi-
ciency. A multitude of possible approaches can be found in recent robotics texts (Thrun
et al. 2005; Siegwart et al. 2011; Dudek and Jenkin 2010). Even without a map, allocen-
tric sensors can be used for localisation. In visual homing, a snapshot image is captured at
the reference position. After some displacement from the reference position has occurred
and the robot needs to return to it, the current image is compared with the snapshot to
yield a movement vector (see a recent review of visual homing techniques in Möller et
al. 2010). The constraint of visual homing is that there must exist sufficient commonal-
ity between images, meaning that the current position must lie within the catchment area
defined by the home position. Visual homing has been postulated to explain the ability of
insects such as bees to return to food sources (Cartwright and Collett 1983). The represen-
tation of places by stored images appears to be a key tool in insect navigation (Collett and
Collett 2002).

Egocentric localisation relies only upon the integration of measured velocity and/or double
integration of acceleration to determine the robot’s pose. Wheel encoders are a popular
technology for this purpose in mobile robotics, although the advent of MEMS accelerometers
and gyros has provided another low-cost alternative which does not suffer from wheel slippage
errors. Egocentric localisation is subject to cumulative error that typically increases with
distance travelled but can be combined with allocentric localisation to eliminate this error.

In the next section we present our benchmark method and the details of the cache consensus
method. Section 3 describes our experimental methodology and Sect. 4 provides experimental
results. Discussion, future work and conclusions follow in Sects. 5 and 7.

1 The term ‘pose’ implies the specification of both position and orientation with respect to some reference
frame.
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Fig. 1 a Two of our modified SRV-1 robots in operation. Views from robot ‘116’ are presented in Fig. 2a.
b The underside of the robot’s housing, showing the shape of the passive gripper (Colour figure online)

2 Methods

In this section we present two different algorithms for distributed sorting to provide bench-
marks on the performance of our proposed algorithm. We also present the cache consensus
algorithm. Prior to discussing these algorithms we discuss physical requirements and the
perceptual system common to all tested methods.

2.1 Requirements

The requirements for robotic implementation of all of the algorithms described below include
a forward-facing camera, some means of localisation with respect to the home point (for cache
consensus only), and a passive gripper mechanism allowing one puck to be carried. Figure 1a
shows an image of our robots in operation—robot ‘113’ is currently carrying a puck within its
passive gripper, while ‘116’ is unladen. The use of a passive gripper was inspired by Beckers
et al. who employed a C-shaped gripper which could hold up to three pucks (Beckers et al.
1994). Our robots are similar in that they employ a C-shaped gripper, although our grippers
hold only one puck. Depositing a carried puck is achieved simply by backing up and then
moving away, leaving the puck behind. One constraint this imposes is that a puck wedged
into a corner of the environment would be difficult to extract. For this reason we utilise a
rectangular test environment with rounded corners. All of the methods described could easily
be adapted to use active grippers.

The robot platform used in our experiments and modelled by our simulator is the SRV-12

which is a differentially steered tracked vehicle measuring 12.5 × 10.8 cm2. The standard
camera lens has been replaced with a fisheye lens which provides a horizontal field-of-view
of 187◦ along the image equator. A customised body for the robot has been fabricated which
includes a passive gripper mechanism capable of holding a single puck (see Fig. 1b).

The objects sorted here are wooden pucks, painted white with a coloured circle on top.
As discussed below, pucks are visually identified as distinctly coloured blobs. However, our

2 http://www.surveyor.com
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Fig. 2 This figure shows the view from one of our SRV-1 robots (a) and a simulated robot (b). In a the robot’s
raw view, colour segmented image and local map are shown from left-to-right. In b an overhead view of the
simulator is shown, the simulated robot’s raw view (no colour segmentation is required), and the local map
(Colour figure online)

algorithms could be adapted to use other strategies such as visual markers (Olson 2010) or
classification of ‘natural’ objects using computer vision.

2.2 Perception

The only perceptual input to our agents is an image captured from a forward-mounted camera.
The camera systems on our robots are equipped with a fisheye lens to maximise their field-of-
view. Pixels in the image are classified by their colour as obstacles (black), pucks (red, green,
etc.) or other robots (blue). After colour segmentation, a morphological erosion operation
is applied to remove small blobs which are likely to be noise (Gonzalez and Woods 2002).
The calibration data for this camera and its fixed geometry with respect to the ground plane
allow us to relate image pixels with 2-D position on the ground plane in the robot’s reference
frame (details are provided in Sect. 3.3). This allows the formation of an occupancy grid,
where each cell is filled with an integer label that corresponds to the classification of the
source pixel. Figure 2a shows the view from robot ‘116’ as depicted in Fig. 1a, the colour
segmented image, and the mapping of coloured pixels onto the occupancy grid.

Imposed on the occupancy grid is additional information. Pucks are identified by applying
connected components labelling (Gonzalez and Woods 2002) for each possible puck colour.
This process yields a set of blobs (interconnected pixels). The centroid of each such blob is
projected onto the occupancy grid and indicated by circles in Fig. 2. This process yields a
list of puck locations. We then determine connectivity between pucks by representing each
perceived puck as a node in a graph. If the distance between any pair of pucks is less than 1.5
times the puck diameter then an edge is created between them. The connected components of
the resulting graph correspond to clusters and we can easily determine the size and centroid
of each cluster. Note that clusters are extracted independently for each colour and therefore
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consist of only one colour by definition. We refer to the occupancy grid, list of visible pucks
of each colour, and list of clusters of each colour as the local map.

Some additional processing is applied to the information stored in the local map. Each
robot can see within its own gripper and may also be able to see within the grippers of
other nearby robots. To prevent one robot from attempting to collect a puck already held
by another, we remove from the list of pucks any that lie within a threshold distance in the
image plane of another robot. The effect of this rule is visible in Fig. 2a in that the red cells
within the gripper of the other robot are not extracted as a puck (they are not circled). It is
also apparent from this figure that the other robot is not only partially classified as a robot
(blue), but also partially classified as an obstacle (black). This is simply because parts of the
robot are difficult to paint, such as the black rubber treads. Also, we take special note of puck
colours within the robot’s own gripper. If the fraction of puck colours within the gripper is
high enough then we assert that a puck is being carried. A puck at the position of the gripper
is added to the local map in this case. The carried puck, just like other pucks, can belong to
a cluster. If so, we know the robot has made contact with this cluster. This is a significant
event for the sorting methods discussed below.

Clusters extracted from the local map are denoted as G(i)
j where i is the index of the cluster

and j is the object type. These clusters are graphs G(i)
j = (V (i)

j , E (i)
j ) where V (i)

j corresponds

to the node set (i.e., the perceived pucks) and E (i)
j is the set of edges between nodes. The

algorithms described below respond to the number of pucks in a cluster. Therefore, we define
the size of a cluster as the number of nodes: size (G(i)

j ) = |V (i)
j |. The smallest and largest

clusters of type j are denoted as S j and L j ,

S j = arg min
G(i)

j

{
size

(
G(i)

j

)}
(1)

L j = arg max
G(i)

j

{
size

(
G(i)

j

)}
. (2)

It is important to note that single pucks are considered full-fledged clusters. Therefore,
size(G(i)

j ) lies in the range [1, n j ], where n j is the overall number of pucks of type j . Since
clusters are extracted independently for each type, each cluster is homogeneous by definition.

Removing the subscript from S j or L j is meant to indicate the smallest and largest clusters
regardless of type,

S = arg min
S j

{size(S j )} (3)

L = arg max
L j

{size(L j )}. (4)

2.3 Probabilistic pick-up/deposit

For two of the sorting methods presented below (ProbSeek and CacheCons) the decision as
to whether a puck should be picked up or deposited is a probabilistic function of the size of the
candidate cluster, denoted as si ze. We utilise the functions shown in Fig. 3 from Deneubourg
et al. (1990). If an unladen robot encounters a cluster and is in the appropriate state, it will
draw a random number in the range [0, 1] and if this number is less than ppu(si ze) then the
pick-up state will be activated. Similarly, a robot carrying a puck will initiate a deposit with
probability pde(si ze). The pick-up threshold function ppu(si ze) is a decreasing function
of cluster size, implying that smaller clusters will be preferentially targeted. Similarly, the
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Fig. 3 The pick-up (left) and deposit (right) probabilities as functions of cluster size

deposit threshold function pde(si ze) is an increasing function of cluster size, implying that
the formation of larger clusters is always preferred. These functions were introduced by
Deneubourg et al. (1990) and further studied by Kazadi et al. (2002) who derived a required
condition on the ratio of the pick-up and deposit probabilities which these functions satisfy.
However, our algorithms are more complex and we cannot assume that this result holds. It
may be the case that other functional forms (e.g., the same functions but with a different
exponent) would be just as effective.

2.4 Beckers, Holland and Deneubourg (BHD) clustering

Our first benchmark method is intended to be faithful in principle to the clustering robots
proposed by Beckers et al. (1994) and is therefore referred to as BHD. The robots developed
by Beckers et al. were equipped with a passive gripper, a microswitch to detect the force
of pushing three or more pucks, and infrared sensors to detect other robots or obstacles.
The behaviour is to move forwards until either the microswitch or the infrared sensors are
triggered. If the microswitch is triggered then the robot backs up, turns by a random angle,
then continues straight. Backing up causes any carried pucks to be deposited. If the infrared
sensor is triggered then the robot turns by a random angle, then continues straight (retaining
any carried pucks).

In our implementation the event of triggering the microswitch is replaced by the event of
contacting a cluster. A cluster is contacted when the gripper contains a puck and that puck is
within the threshold distance (1.5 puck diameters) to any other puck. This can occur even if
the robot is not already carrying a puck, but pushes into an existing cluster such that one of
the cluster’s pucks passes into the gripper. In place of the infrared sensors we apply the VFH+
obstacle avoidance algorithm (to be discussed in more detail below) to determine whether
an obstacle lies immediately ahead. If so a random turn is triggered. Note that pucks are
rendered invisible to VFH+ for BHD. In other words, there is no attempt to avoid or steer
around clusters.

All of the methods described in this paper are implemented as finite state machines (FSM)
as we believe they provide a simple and easily reproducible description of behaviour. The
FSM for BHD is shown in Fig. 4. The robot’s action in the FORWARD state is simply to move
straight ahead. The PUSH state is activated upon contact with a cluster. While in PUSH,
the robot moves forward for a fixed number of iterations (1 in our experiments) to embed
the carried puck into the cluster. BACKUP is then entered which causes the robot to move
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Fig. 4 Finite state machine for BHD

backwards for a fixed number of iterations (5). TURN is always entered after BACKUP and
is also triggered by detection of an obstacle while in FORWARD. In the TURN state the robot
rotates on the spot by a random angle in the range [ f π

2 , f π], where f is set to either −1 or
1 depending upon which side of the occupancy grid contains fewer obstacles.

2.5 ProbSeek

This method is referred to as ProbSeek because it utilises both Deneubourg et al.’s original
probabilistic rules and the seeking behaviour described in Vardy (2012). It shares a common
core of functionality with the cache consensus method presented below and therefore serves
as a useful benchmark. It is essentially the same algorithm without the notion of caches.

In Deneubourg et al.’s experiments the agents operate within a two-dimensional grid with
idealised interactions between robots and pucks. However, the robots in our experiments
move on a planar surface shared with the objects to be clustered—coloured pucks. An obstacle
avoidance strategy is required to mitigate interactions with other robots, the boundary, and
clusters of pucks that are not being explicitly targeted for pick-up or deposit. The VFH+
algorithm is used for this purpose (Ulrich and Borenstein 1998). VFH+ computes polar
histograms over the robot’s possible movement directions and attempts to determine the best
turn angle so as to approach the goal, while avoiding imminent collisions. Siegwart et al.
(2011) surveyed a wide variety of obstacle avoidance algorithms and found that, although it
is subject to local minima traps, VFH+ was among the simplest and most computationally
efficient.

ProbSeek is implemented as the finite state machine shown in Fig. 5a. The behaviours for
each state are given below. States prefixed with ‘PU’ are concerned with picking up pucks,
while ‘DE’ states are concerned with depositing carried pucks.

PU_SCAN The smallest visible cluster, S, is considered as a target for pick-up. The prob-
ability ppu of targeting this cluster for pick-up is given by the equation in Fig. 3 (left)
with k1 = 1. At each iteration in which PU_SCAN is active, a random number is drawn
and if it is less than ppu one of the pucks lying in this cluster is targeted (the left or
right-most, depending upon which has the lower degree and is therefore less strongly
connected to the rest of the cluster) and the state transitions to PU_TARGET. The robot
executes a wandering behaviour while in PU_SCAN. A random forward angle is selected
as the goal for VFH+, which alters this heading as needed to avoid collisions.

PU_TARGET The puck closest to the previously selected target position is identified. If
the distance between this puck and the previously selected target exceeds a threshold
then the target is considered lost and the robot reverts to PU_SCAN. A successful pick-
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(a)

(b)
Fig. 5 Finite state machines for ProbSeek and CacheCons

up occurs when a puck appears in the robot’s gripper, which leads to a transition to
DE_SCAN. While in PU_TARGET the robot simply steers towards the targeted puck
without engaging VFH+.

DE_SCAN This state serves an analogous function to PU_SCAN except that it is concerned
with finding clusters for deposit, rather than pick-up. If the carried puck is of type j
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then the largest visible cluster of that type, L j , is considered as a potential target. This
cluster is targeted with probability pde as shown in Fig. 3 (right, with k2 = 8). Similar
to PU_SCAN we draw a random number at each iteration and if it falls below pde then
the cluster is targeted and the state transitions to DE_TARGET. The same wandering
behaviour as in PU_SCAN is applied in this state.

DE_TARGET Behaviour in DE_TARGET is identical to that described for PU_TARGETwith
the exception of the success condition. In this case success is indicated when the carried
puck becomes part of a cluster. Due to the way in which clusters are extracted, two
pucks can only belong to the same cluster if they are of the same type. If this occurs the
state transitions to DE_PUSH.

States DE_PUSH, DE_BACKUP and DE_TURN are functionally identical to the states
PUSH, BACKUP and TURN defined for BHD.

ProbSeek shares several features with the method presented in our previous work
(Vardy 2012), in particular targeting the smallest cluster in view for possible pick-up
and the largest cluster for possible deposit. This feature was found to accelerate cluster-
ing performance over the method of Beckers et al. (1994). The main difference with the
previous method is the incorporation of Deneubourg et al.’s probabilistic heuristics. For
an unladen robot the previous method would always target the smallest cluster in view
regardless of the size of that cluster. Incorporating Deneubourg et al.’s heuristic means
that small clusters will be targeted for pick-up more readily than larger clusters. This is
consistent with the goal of convergence to one cluster. Similarly in the case of deposit,
ProbSeek is more likely to target a larger cluster than a smaller one. The other signifi-
cant difference is the usage of the finite state machine formalism to implement ProbSeek,
whereas the previous method was implemented within a simplified subsumption architecture
(Brooks 1986).

2.6 CacheCons

The cache consensus algorithm will be referred to as CacheCons. CacheCons inherits the
probabilistic pick-up behaviour of ProbSeek, but differs in how carried pucks are handled.
In brief, whenever a puck is collected, it is immediately delivered to the robot’s cache point
for the carried object’s type. ‘Cache point’ refers to the position in space chosen to represent
a cache.

The state machine for CacheCons is given in Fig. 5b and is identical to ProbSeek in
many respects. The primary difference is the absence of the DE_SCAN and DE_TARGET
states. Instead, when a puck is collected the HOMING state is entered. There is no need to
identify potential targets for deposit since the cache point for the carried object type serves
as the only goal. While in HOMING the robot will steer towards this cache point, with the
actual turn angle mitigated by VFH+ to avoid collisions. The assistance of VFH+ is important
here as it means the robot is ‘respectful’ of other clusters of pucks and will not disturb them
unless boxed in. HOMING will terminate if the cache cluster is contacted (i.e., the carried
puck becomes part of this cluster).

The pick-up behaviour in CacheCons differs from ProbSeek’s in one small way. If a
puck is being considered for pick-up we check if it is visibly connected to the cache cluster
for its type. If so, the pick-up attempt is abandoned. This reduces the frequency at which a
robot will collect pucks that already lie within its cache. However, if the robot’s field-of-view
does not encompass the cache point then we cannot determine whether a cluster belongs to
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the cache. In this situation it is possible for pucks to be picked up from the cache cluster and
then re-deposited.

Another difference between CacheCons and ProbSeek is in the behaviour after a puck
is deposited. For ProbSeek a deposited puck is first pushed in (DE_PUSH), then the robot
backs up (DE_BACKUP), and finally turns by a random angle (DE_TURN). In CacheCons
the DE_TURN state is replaced in this sequence with the EXILE state. After completing a
deposit the robot should seek a puck to collect. As mentioned above, we wish to avoid the
situation of a robot depositing a puck at a cache cluster then turning around to collect another
puck that is already part of that cluster. Therefore, instead of employing a random turn, the
EXILE state drives the robot away from its home point for a fixed number of time steps to
encourage the collection of ‘foreign’ pucks.

2.6.1 Cache point assignment

On every step when the robot processes its input according to the CacheCons finite state
machine described above, it also considers L , the largest cluster in view of any type, and
determines whether the centroid of this cluster should be selected as a new cache point. If
size(L) exceeds the remembered size of the cache point for the corresponding object type
then its centroid is selected as the new cache point for that object type. The memory of cache
sizes, m, is initialised as an array of zeros. Whenever the current cache cluster of type j is in
view, we update the memory as follows

m′
j = max

(
m j , size

(
C j

))
, (5)

where m j is the remembered size of the cache cluster for type j and C j indicates the visible
cluster lying closest to the cache point for type j within a threshold distance. That is, C j

represents the robot’s current view of the cache cluster. The max function is used because
the robot’s field-of-view may not completely encompass the cluster which implies that the
current perceived size may be an underestimate.

2.6.2 Cache separation

The perceptual system described above extracts lists of pucks and clusters independently for
each object type. Thus, there is no need to detect the homogeneity of a cluster since all clusters
are homogeneous by definition. However, it remains possible for clusters of different types
to grow in close proximity to each other. This may be undesirable or not depending on the
application, but it was found to reduce overall performance in our initial experiments because
it increases the amount of time the robots spend avoiding obstacles (to a robot carrying a red
puck, green pucks are obstacles).

This situation can be managed by specifying a minimum threshold distance between cache
points. This distance is set to 50 cm in our experiments which are run within a 187×187 cm2

environment. However, a choice needs to be made when a new potential cache lies within
the threshold distance of an existing cache of a different type. The new cache candidate
is the largest visible cluster, L . This candidate is checked against all existing cache points
to determine those that are in conflict. We then compare the size of the candidate with the
existing conflicting caches and only adopt it if it is the largest. If the candidate is adopted,
the conflicting caches are removed from memory.
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3 Experimental setup

3.1 Physical setup

Experiments on our SRV-1 robots were conducted within a square arena measuring 187 ×
187 cm2 with rounded corners (radius 15 cm). The arena’s floor is painted white and its
walls are made of black vinyl baseboard material. The pucks to be sorted have a diameter
of 6.3 cm and a height of 1 cm. Each puck is painted white with an approximately 4 cm
diameter coloured circle painted on top. At the start of each trial the pucks and robots are
manually positioned with the aid of a projector which displays start positions for all pucks and
robots, as drawn from a uniform distribution. A camera is mounted in the ceiling overhead to
capture the progress of experiments and to track visual markers on the top of each robot. The
AprilTag visual marker system is employed to allow the position, orientation, and identity
of each robot to be determined (Olson 2010). Figure 1a shows part of the arena, the pucks,
and two SRV-1 robots with AprilTag markers.

The SRV-1 robots are capable of on-board image processing, but we found it more con-
venient for experimental and debugging purposes to execute the image processing and finite
state machine updating on a desktop computer (a dual-core Pentium with a clock cycle of
2.93 GHz and 8 GB of RAM). This computer maintains network connections to each robot
using a Wi-Fi router. The control software iterates through the list of connected robots,
downloads their current images at 320×240 resolution, processes, then uploads a movement
command to be executed for 75 ms. The overhead camera is also connected to this com-
puter and the AprilTag marker tracking is integrated with the robot control software so that
CacheCons can localise.

3.2 Simulation

The physical setup described above was replicated as closely as possible in a custom simu-
lation environment. The simulator utilises the JBox2D3 physics library to provide realistic
interactions between the robots and pucks. Some aspects of the physical setup were not
modelled such as localisation, since position information can be provided to the robots
directly.

3.3 Calibration

Calibration is necessary in order to relate image coordinates with the position of relevant
objects (e.g., pucks, other robots) in the plane. This relationship is required for the formation
of the occupancy grid (see Sect. 2.2) as well as for generating synthetic images in our sim-
ulation. Camera parameters can be separated into intrinsic parameters such as focal length,
and extrinsic parameters which describe the camera’s position and orientation in world coor-
dinates. Standard calibration techniques exist to estimate some or all of these parameters
(Trucco and Verri 1998). In initial experiments we utilised the OCamCalib calibration tool-
box (Scaramuzza et al. 2006) which is suitable for the fisheye lenses on our robots. However,
we lacked a reliable procedure for estimating the camera’s position with respect to the ground
plane. Also missing was a technique to identify those parts of the image which corresponded
to rays that would actually intersect the ground plane.

3 http://jbox2d.org.
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Fig. 6 Views of the calibration grid from overhead (a) and from the robot (b) (Colour figure online)

The calibration procedure adopted makes no attempt to estimate the camera’s intrinsic
and extrinsic parameters but instead finds the relationship between image pixels and points
on the ground plane directly. In the first phase of calibration pucks are arranged in a 4 × 7
grid with the robot’s gripper centred over the central puck on the bottom row. Views of the
calibration grid are shown in Fig. 6. The positions of all pucks along with two points on the
robot are manually selected. Thus, the relationship between image pixels and points in the
ground plane is obtained for these selected points. We interpolate between selected points
using the python library, matplotlib4. See Fig. 2a for an example where the calibration data is
used to develop the local map from a robot-captured image. Figure 2b provides an example of
both a synthetic image generated for the simulation and the local map that is further generated
from it.

3.4 Performance metrics

A number of different metrics have been proposed to assess distributed clustering and sorting
algorithms. These include number of clusters (Beckers et al. 1994; Maris and Boeckhorst
1996), size of the largest cluster (Beckers et al. 1994), mean cluster size (Maris and Boeckhorst
1996; Martinoli et al. 1999) and spatial entropy (Bonabeau et al. 1999). Melhuish et al. (1998)
introduced a metric for sorting algorithms whereby completion is declared when some fixed
percentage of all pucks lie within the largest cluster of their particular colour. We utilise
percentage completion as our base metric.

The number of objects (pucks) of type j is n j . Thus, the total number of pucks is n =∑
j n j . Equation 1 defined L j as the largest cluster of type j in the robot’s local map. For

analytical purposes we assume access to the global map which describes all clusters with
respect to world coordinates. Clusters are defined in the global map in the exact same manner
as for a robot’s local map. The largest cluster of type j in the global map is denoted as � j

and percentage completion (PC) is defined as follows.

PC = 100 % ·
∑

j size
(
� j

)

n
(6)

One important metric derived from percentage completion is the number of steps required
to reach a particular level of completion. We track the first time the level of percentage
completion reaches a target threshold. Since 100 % completion is not reached by all tested
methods, we use a less ambitious threshold of 50 % completion. We refer to this measure of

4 See http://matplotlib.org/. The griddata function is used for interpolation.
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steps-to-completion as STC. It is possible for a sorting method to reach the target completion
threshold, but then to degrade in performance. To capture this phenomenon we use a time-
weighted sum over percentage completion—also known as time-weighted completion or
TWC

TWC = 1

100

∑t=nt
t=0 t · PC∑t=nt

t=0 t
, (7)

where nt is the number of time steps for the experiment.

4 Results

The purpose of our experiments is to contrast the performance of CacheCons with bench-
mark methods (BHD and ProbSeek). The first set of experiments described below are
carried out in simulation, but we validate the performance of CacheCons and ProbSeek in
the standard configuration on physical robots. In addition to the results below, an online sup-
plementary material paper has been prepared to study the performance of CacheCons and
ProbSeek when key task parameters are varied and also to consider the impact of external
disturbances which may shift or randomise the positions of pucks.

Experiments conducted in our simulation consist of a block of trials, with each trial lasting
100,000 time steps and starting from a different uniform distribution of pucks and robots.
Trials were executed on a variety of modern PC’s that comprise our computing cluster with
an average duration of 36 min. For setting parameters we used blocks of 5 trials (as in the
next section), but for comparisons between methods we used blocks of 20 trials.

4.1 Standard configuration

The standard configuration for our experiments has the following characteristics:

– 40 pucks of 2 types (20 red, 20 green)
– Environment at original scale (scale factor 1)
– 4 robots

The design choices for all three sorting algorithms were optimised for the standard con-
figuration using independent parameter searches. All parameters which are common to the
three methods are set to the same values (e.g., all three spend five iterations in their respective
BACKUP states). An important parameter for ProbSeek is k2 which governs the probability
of targeting a cluster for deposit. We tested values in the set {1, 2, 4, 8, 16}. The highest
average time-weighted completion (TWC) occurred for k2 = 8 which was therefore selected
for subsequent experiments.

4.2 Number of object types

The number of object types is clearly an important dimension in the patch sorting problem.
In the standard configuration the 40 pucks are divided into 2 types. We tested 1, 2, 4 and 8
different object types, with the total number of pucks maintained at 40 and the number of
each type evenly divided. Figure 7 shows the percentage completion averaged over 20 trials.
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Fig. 7 Plots of percentage completion versus time step while varying the number of puck types. The mean
value for each data set is indicated by a heavy trace, surrounded by a shaded region. The extent of the shaded
region is ±1.96 standard errors. Thus, these shaded regions correspond to 95 % confidence intervals for the
mean (Colour figure online)

4.2.1 One object type

When there is only one object type, the sorting problem becomes identical to the clustering
problem. In this case the methods tested included BHD, ProbSeek, and CacheCons. The
upper left plot in Fig. 7 suggests a substantial difference in performance between these three
methods. Snapshots from the simulation shown in Fig. 8 further support the observation that
CacheCons very quickly reaches and maintains convergence, while ProbSeek and BHD
reach convergence much more slowly or not at all. This observation is further confirmed with
statistical tests. First, we considered the two metrics, TWC and STC. Figure 9 shows the
distribution of TWC and STC values. The D’Agostino & Pearson normality test indicates that
the TWC data for ProbSeek and CacheCons do not follow a normal distribution, however
the STC data for all three methods does appear to follow a normal distribution. Focusing our
analysis on STC allows us to use the standard parametric tests which have greater statistical
power than non-parametric tests. We performed a repeated measures ANOVA which indicated
that the mean STC values are all drawn from different distributions (p < 0.0001). Applying
Tukey’s multiple comparisons test revealed that all differences were significant. That is,
the mean STC for BHD is significantly greater than for ProbSeek and CacheCons and
the mean STC for ProbSeek is significantly greater than for CacheCons (in all cases
p < 0.0001).

4.2.2 Multiple object types

Figure 7 also shows the percentage completion averaged over 20 trials for 2, 4 and 8 object
types. Figure 10 shows snapshots for 4 object types. Note that BHD is not included in these
results since it is only applicable for a single object type. Paired t tests on the STC results from
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Fig. 8 Snapshots of the performance of BHD, ProbSeek, and CacheCons operating on 40 pucks of one
type. Snapshots from the first two of 20 trials are shown in each row. Cache points for each robot are shown
as filled squares. The position of the robots at the time of each snapshot is also indicated. Note that in some
cases the robots are carrying pucks (Colour figure online)

each trial indicate that the number of steps before 50 % completion is significantly greater
for ProbSeek than for CacheCons for 2, 4 and 8 object types (p < 0.0001, p = 0.0003
and p < 0.0001).
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Fig. 9 Box and whisker plots showing the distribution of a TWC and b STC for 20 trials of BHD,
ProbSeek, and CacheCons on a single object type. The boxes extend from the 25th to the 75th percentiles
with whiskers extending to the smallest and largest values

To illustrate the effect of incorporating a mechanism for cache separation we include results
for CacheCons when cache separation is ignored, indicated as CacheCons_Ignore in
the figure. CacheCons exhibits excellent performance for 2 and 4 object types, but some
degradation is apparent with 8 object types. However, if not for the cache separation strategy
the performance would be worse. As the number of object types increases, so does the amount
of spatial interference. This interference often takes the form of ‘unintentional’ destruction
of clusters—for example, when a robot is backing up after completing a deposit, or when
two robots are attempting to avoid each other. Incorporating a cache separation strategy
reduces this interference, but cannot eliminate it entirely. Figure 8 presents an example of
spatial interference with only one object type. Notice the second trial for CacheCons which
is shown in the bottom-most row of the figure. What had been a single stable cluster has
been divided in two by time step 100,000. At 50,000 time steps this cluster was whole, but
concave on its left side. The VFH+ obstacle avoidance algorithm may drive a robot into
such a concavity. Since we do not permit the robots to reverse course (because this would
cause a robot to drop its puck) there is no option but to move forward and break the cluster.
Such clusters will eventually be reformed into one, although in this case the trial reaches its
conclusion before this can occur.

4.2.3 Convergence of caches

The experiments presented so far have focused on the pucks, but for CacheCons we can also
look at the cache points and how they converge over time. In Fig 8 we see that all cache points
have already converged by 1,000 time steps. In Fig. 10 for CacheCons_Ignore (middle
of the figure) we have the same result, the cache points for each object type have converged
by 1,000 time steps. However, for CacheCons (bottom) convergence occurs somewhere
between 1,000 and 5,000 time steps.

To measure the convergence of cache points for each object type we compute the cache
point centroid, then determine the distance of each cache point from that centroid. The
variance of these distances is our measure of convergence for a single object type. Figure 11
shows the progression of this variance, averaged over all object types and across all 20 trials
in the standard configuration. After a very brief period of growth, the variance decreases
almost monotonically, then stabilises.
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Fig. 10 Snapshots of the performance of ProbSeek and CacheCons operating on 4 types of pucks. Note
in the bottom row that two robots have become entangled. We have worked to eliminate this possibility in our
simulation but it still occurs in certain rare conditions (Colour figure online)

Another perspective on the convergence of cache points is obtained by comparing the
performance of CacheCons with an informed variant of the algorithm with preset cache
points. For the informed variant, referred to as CacheCons_Informed, the cache points
for all robots are initialised to the same positions and are never reassigned. Figure 12a,
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Fig. 11 Variance of cache point distance from the centroid of all cache points of the same object type, plotted
for CacheCons in the standard configuration and averaged over both object types

c, and e plots the percentage completion achieved by CacheCons against the informed
variant for 2, 4 and 8 puck types. In each case the preset cache points are taken along a
circle with a diameter 6/8 of the arena width. Figure 12b, d, and f shows snapshots of the
performance of both CacheCons and CacheCons_Informed at 2,000 time steps. Paired
t tests on the STC results from each trial indicate that the number of steps before 50 %
completion is significantly greater for CacheCons than for CacheCons_Informed for 2
and 4 object types (p = 0.001724, p = 0.00252) but not for 8 object types (p = 0.1649).
For 8 object types there is substantial spatial interference between clusters, in that delivering
a puck of one type requires avoiding the 7 (or more) other clusters as well as other robots.
Thus, it may be the case that a non-circular arrangement might lead to better performance
for CacheCons_Informed. While the reduced time for completion is observable (if not
statistically significant) in all three cases, it is notable that the performance gap is relatively
narrow.

4.3 Validation on physical robots

We have tested the performance of ProbSeek and CacheCons on our SRV-1 robots to
provide some confidence that the main ideas underlying these algorithms are applicable in
a real-world context. While we have worked to eliminate significant discrepancies between
the simulation and physical setup, there are some important differences:

Localisation Localisation is achieved by tracking AprilTag visual fiducials (Olson 2010)
from an overhead camera.
Image resolution A resolution of 160 × 120 is used for the simulation, but more clarity
was required for real-world imaging so a resolution of 320 × 240 was adopted.
Length of trials Each trial for our physical experiments lasted 5000 time steps, as opposed
to 100,000 in simulation. This corresponded to an average trial length of 2 h, 5 min.
Number of trials Three trials were executed for our physical experiments, as opposed
to 20 in simulation.
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(a) (b)

(c) (d)

(e) (f)
Fig. 12 a, c and e: Percentage completion plots for CacheCons versus CacheCons_Informed for 2, 4 and
8 object types. b, d and f : Snapshots captured at 2,000 time steps (Colour figure online)
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Fig. 13 Percentage completion of ProbSeek and CacheCons averaged over three trials. The error bars
show minimum and maximum percentage completion

One reason for the reduced length and number of trials were the technical difficulties
encountered in communication with the robots. The SRV-1 robots were executing their stan-
dard firmware which provides a set of commands that can be sent using Wi-Fi (e.g., com-
mands to set motor speeds and to download the current image). Unfortunately, we experienced
occasional glitches which caused the robots to become unresponsive. For both methods two
problem-free trials were completed along with one trial in which two out of four robots
became unresponsive. Nevertheless, the operation of the other robots continued and the
impact on performance of these failures appears to be mild.

Figure 13 shows the percentage completion of ProbSeek and CacheCons averaged
over three trials. Although we lack the data for a full statistical analysis there is a clear
distinction in performance between these two algorithms. Figures 14 and 15 provide snapshots
for all three trials of ProbSeek and CacheCons, respectively. The results on ProbSeek
demonstrate gradual sorting, but the algorithm is unable to reach the desired state of one
homogeneous cluster per object type within 5,000 time steps. For CacheCons this ideal
of 100 % completion is reached in one trial (shown on the bottom row of Fig. 15). 92.5 %
completion is reached in the other two trials. Note that Fig. 15 is annotated with the cache
points established by each robot. For two out of three trials the cache points have converged
by 1000 time steps.

Overhead videos showing all live trials are available as supplementary online material.

4.4 Supplementary results

The online supplementary material paper provides additional results on the performance of
CacheCons and ProbSeek when key task parameters are varied. In the first experiment the
number of pucks is varied. The gap in performance between CacheCons and ProbSeek
appears to widen as the number of pucks is increased. Increasing the size of the environment
also appears to impact ProbSeek more profoundly. In another experiment we modified the
number of robots and identified the number at which peak performance was achieved.

We also studied the impact of external disturbances of two types: shifts of established
clusters, or re-insertion of all pucks at random positions. These disturbances are intended to
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Fig. 14 Snapshots from all three live trials of ProbSeek (Colour figure online)

model situations where a swarm of sorting robots is interfaced with other agents that operate
on the same materials (for example, in the context of recycling). ProbSeek was found to be
unaffected by cluster shifts since it maintains no memory of cluster locations. In its standard
form CacheCons exhibits a drop in performance in response to these shifts. However, we
introduced a variant which simply erases its own memory periodically and this variant proved
to be more robust to shift disturbances. For random re-insertion disturbances, all methods
showed a similar impact on performance, although both CacheCons variants could recover
much more quickly than ProbSeek.

5 Discussion

It has not yet been demonstrated that swarm robotics techniques can be applied in industrial
applications. One possible obstacle (or at least, perceived obstacle) is their rate of conver-
gence. For example, Beckers et al. (1994) reported convergence times that often extended to
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Fig. 15 Snapshots from all three live trials of CacheCons. Coloured squares indicate the cache points of
each robot (Colour figure online)

several hours for robot swarms of size 1–5 clustering 81 pucks in a 250 × 250 cm2 arena.
Others have reported roughly similar convergence times using robots controlled in a similar
manner (Maris and Boeckhorst 1996; Melhuish et al. 1998; Martinoli et al. 1999). Require-
ments on completion times will differ from one application to the next, but we suspect that
faster convergence will generally be required. Indeed, even strong proponents of swarm
intelligence have expressed scepticism about the applicability of these ideas to robotics:

Although designing robots that implement the process of distributed clustering may
not be particularly useful in itself in the context of engineering, several groups have
done it [...] because it is conceptually useful. (Bonabeau et al. 1999, Chap. 4)

The question remains whether swarm robotics can go beyond conceptual utility. Our
physical experiments lasted 125 min on average. However, we believe dramatic improvements
in speed are well within reach. In our case, an overhead image was captured and processed;
images were downloaded from each robot in turn in a crowded Wi-Fi environment; the image

123



Swarm Intell (2014) 8:61–87 85

processing was conducted on one computer (taking approximately 20–30 ms per robot); and
motor commands were executed with built-in delays during which no other processing was
possible. The estimated forward speed of our robots during this stop-and-go process is only
2.5 cm/s which is well below the published speeds achievable for similar robots.

We are therefore encouraged that future implementations of the cache consensus algo-
rithm will exhibit sufficiently rapid convergence for practical applications. We have clearly
demonstrated superior performance to the BHD and ProbSeek algorithms which exemplify
the approaches described so far in the literature. The disadvantage of our method is that it
requires some means of localisation. Thus this method will be unsuitable for robots below
a certain cost and complexity threshold. However, we believe this threshold is rather low.
As mentioned in Sect. 1.1, there are a wide array of technologies and associated algorithms
to support localisation. In the next section we discuss our intention to test cache consensus
using laser-based and egocentric localisation strategies.

6 Future Work

We see a number of directions for future work. We are currently developing new robots
which move beyond the main limitations of the SRV-1’s used here. There are also a number
of interesting experiments that remain to be conducted to probe the parameter space of our
algorithm, as well as possible enhancements to pursue. Finally, we are investigating the
recycling industry as a possible area of application.

The robots currently under development will utilise laser range finders for perception of
other robots and the walls of the environment. With circular robots and planar walls we expect
a relatively straightforward segmentation which will allow other robots to be avoided and
the walls to be used for map-based localisation. Algorithms for laser-based localisation have
become quite mature and have been incorporated into popular robotics software packages
such as ROS (Quigley et al. 2009). The objects to be sorted would lie below the level of the
laser range finder and would be imaged using a standard camera. For future implementations
we are considering the use of depth cameras to perceive and classify real-world objects.

Once a more suitable swarm of robots has been developed, we plan to assess the impacts
of localisation error and field-of-view limitations. With regards to localisation error, we are
particularly interested in whether the cache consensus idea can be applied on relatively inex-
pensive robots that use only egocentric sensors such as wheel encoders and inertial measure-
ment units. Since the robots frequently return to their caches it should be feasible to correct
for odometric drift by periodically resetting the caches’ position estimates. Communication
between robots may also prove useful in allowing position estimates to be collaboratively
refined as in the social odometry framework (Gutiérrez et al. 2010).

The limited field-of-view of most optical sensors places a limit on the maximum cluster
size that can be perceived. It would be very interesting to modulate field-of-view as an
experimental parameter and determine whether the system can still converge to a single
cluster. We suspect that as cluster size perception saturates, the overall operation of the system
would begin to resemble the original Deneubourg et al. (1990) model, with the exception
that all remaining clusters would be at least as large as the maximum perceivable cluster size.
Alternatively, we could investigate techniques to estimate the size of even very large clusters
by circumnavigating those clusters and calculating their areas.

In Sect. 1 as well as in the online supplementary material paper we discussed possible
applications to the recycling industry. As mentioned, mechanisms for interfacing a distributed
robot sorting algorithm with a recycling plant’s input and output streams would be required.
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Another necessary component would be the ability to classify objects. We consider visual
classification the most promising technique due to the low-cost and weight of optical sensors
and the wealth of existing research on this topic. Separation of polycoat and polyethylene
terephthalate (PET) plastics has been demonstrated using machine vision techniques (House
et al. 2011). In general, visual classification is possible if sufficient reference images are avail-
able. Classification becomes difficult when objects appear together and when one considers
the transparency of some recyclable materials. Distinct objects which are mechanically cou-
pled can be segregated by partitioning the scene into rigid members with estimated kinematic
joints between them (Katz et al. 2010).

7 Conclusions

We have presented and explored a new algorithm for distributed robotic sorting which builds
upon earlier biologically inspired clustering and sorting methods but achieves a new level of
performance by incorporating localisation.

The promise of swarm robotics is that adaptive and potentially useful behaviour may be
achieved by a collective of simple individuals. It is helpful to question how minimalistic the
capabilities of these agents should be (Sharkey 2007). We have shown here that the addition
of localisation capability can significantly enhance distributed sorting performance. Since
spatial navigation appears to be of profound importance to the social insects, it seems logical
to investigate its use in distributed robotic systems that are already designed according to
biological inspiration.
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