
Automated Design for Playability in Computer Game Agents

Scott Watson, Wolfgang Banzhaf and Andrew Vardy

Abstract—This paper explores whether a novel approach to
the creation of agent controllers has potential to overcome
some of the drawbacks that have prevented novel controller
architectures from being widely implemented. This is done by
using an evolutionary algorithm to generate finite state machine
controllers for agents in a simple role playing game. The concept
of minimally playable games is introduced to serve as the basis of
a method of evaluating the fitness of a game’s agent controllers.

I. INTRODUCTION

Considerable research has been carried out into how to make
better control architectures for agents in computer games [1],
[2], [3], [4], [5], [6], [7]. Some of these architectures are very
sophisticated and boast impressive capabilities. Despite these
achievements, very little of this research has made its way
into commercial computer games [1], [5], [8], [9]. This paper
seeks to address some similar goals from a perspective on
which relatively little work has been done - improving the
process of how existing agent controllers are made rather than
improving the agent controllers themselves.

The most fundamental requirement of a set of controllers to
control the NPCs in a game is that the controllers will lead to
a game that is possible for the player to complete. We call a
game which it is possible to complete minimally playable.
A simple game specification language is used to establish
whether an evolutionary algorithm can generate controllers
for agents in such a way that desirable gameplay properties
are obtained. The contributions made by this paper are the
introduction of the concept of minimally playable games and
the description and preliminary validation of the concept of
evolving agent controllers that satisfy minimal playability.

II. BACKGROUND

A. Computer Role Playing Games

Role Playing Games (RPGs) are a subset of computer
games that place emphasis on the development of the character
controlled by the player, their importance in the game world
and the influence they have on the world. These games often
place a lot of importance on carefully crafted storylines that
the player’s character plays a central role in. The game worlds
in RPGs can be extremely large in scope and complexity. The
player often has a great deal of freedom to explore the world
in whatever manner they see fit. RPG game worlds can be
inhabited by thousands of non player characters (NPCs).

Scott Watson and Wolfgang Banzhaf are with the Department of Computer
Science, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada. (e-mails: saw104@mun.ca, banzhaf@mun.ca). An-
drew Vardy is jointly appointed to the Departments of Computer Science
and Electrical and Computer Engineering, Memorial University, St. John’s,
Newfoundland and Labrador, Canada (email: av@mun.ca).

B. Agents in Role Playing Games

Typically a great deal of the game experience in RPGs
is based on the player’s interaction with NPCs. This can
vary from very simple interactions based on fighting and
defeating a character to more complicated interactions such as
conversation, trade or negotiation. In many cases, the social
landscape of the game environment influences the interaction.
For instance a friendly agent will behave differently towards
the player than an antagonistic agent. Because of the variety
of interactions that are potentially required to be handled
by the agent controllers in RPGs, and the scope for future
experimentation that this offers, RPGs were chosen as the
genre to focus on.

C. Finite State Machines

Finite State Machines (FSMs) are models of computation
defined by a finite list of states and a finite list of transition
rules. Each transition rule controls which state the machine
moves to for a given input. FSMs can be applied in a
large variety of domains. Their strengths include conceptual
simplicity, fast execution speeds, and ease of implementation.

Finite State Machines are used extensively in computer
games [3][6][8][10][11][12]. FSMs can achieve good results
but are rigid and cannot deal with situations not explicitly
prescribed for by the developer. Human players are becoming
adept at predicting behaviour by learning the rules of the FSM
[8]. FSMs are easy to test, modify and customize [13]. FSM
were used in Doom and Quake, among many others.

Efforts have been made to augment the classic FSM to
increase its functionality. Fuzzy State Machines (FuSMs) have
come into fashion to give less binary behaviours [12][13].
Fuzzy logic allows unpredictable behaviours to be generated
based on traits of the agents which are modeled as decision
thresholds. FuSMs were used in Unreal, S.W.A.T.2 and
Civilization: Call to Power [13]. Gruenwoldt et al. attempted
to use a dynamic relationship graph to modulate basic FSM
behaviour [14][15][16].

D. Related Work

To the best of our knowledge there is no related work
pertaining to the evolution of FSMs to control game agents.
Certainly there is no mention of it in Fairclough et al’s 2001
discussion of research directions for AI in computer games
[8], Johnson and Wile’s 2001 survey of AI in computer games
[13], Lucas’s 2006 overview of evolutionary computation in
games [9], Togelius et al’s 2011 survey of procedural content
generation [17], Hocine and Gouaich’s 2011 survey of agent

978-1-4799-3547-5/14/1.00 ©2014 IEEE



programming in serious games [10] or Hendrikx et al’s 2011
survey of procedural content generation [18].

There are however a number of works that have analagous
approaches. One interesting example among many is the
work of Spronck et al. that seeks to recombine low level
behaviour units into progressively more effective controllers
in an iterative fashion [19].

E. Motivation

Creating, testing and maintaining finite state machines are
time intensive processes. Being able to automate the creation
of these machines will be advantageous for game developers
in terms of the labour saved and accelerated development time
[6], [10], [17], [20]. If the creation of a FSM for an agent is
not associated with a significant cost in terms of labour, it may
become feasible to handle larger populations of agents and use
fewer duplicate controllers among the agent populations of a
game. It is also quite feasible that larger, more complicated
finite state machines could be viably produced, potentially
leading to superior results in agent behaviour [10], [17].

III. CONTROLLER GENERATION MODEL

A. System Overview

The high level view of the system and its operation is
given in figure 1. A developer provides an input and output
specification and an evolutionary algorithm uses these to
produce a set of controllers to be used by the agents in the
game.

Fig. 1. System Overview

As described in Section I, the most important constraint
of a set of controllers is to satisfy minimal playability. In this
context, completion is taken to mean the achievement of some
pre-defined victory objective. Examples of victory objectives
might include slaying a particular NPC, obtaining a particular
item or learning a particular fact. If it can be demonstrated that
a set of candidate controllers can form a game, we consider
that controller set to be viable.

For every game victory objective, there may be multiple
viable controller sets. For games featuring even a moderate
number of agents, actions and items this number may be
extremely large. It is therefore useful to consider how to
compare viable controller sets in terms of desirability. The
desirability of a given controller set can be explored by
assessing the desirability of the game produced by using that
controller set to control its agents. Attributes of a game that
allow this assessment can be inferred from the information
gathered when checking if a controller set is viable.

To check if a controller set is viable, it is sufficient to
check the actions the player can carry out in order to achieve
the victory objective. A sequence of such actions constitues
a path to victory. A controller set with at least one path is
viable. A controller set may have many paths. The path(s)
associated with a controller set can be used to compute certain
attributes of the game-play experience a player would get by
playing a game formed using this controller set. The precise
nature of the attributes that could be calculated depends on
the description of the game itself. Examples might include
the number of actions the player must carry out to satisfy the
victory objective, the number of agents the player must interact
with to satisfy the victory objective or the types of actions that
the player must carry out to satisfy the victory objective.

B. Agents

Each agent belongs to a social group. The groups are re-
spectively friendly, neutral and hostile towards the player.
Each agent has a set of items and a set of facts when the game
starts. These sets may be empty. Items are unique and can only
be held by one agent at a time. Facts can be duplicated and
can be held by many agents at a time.

The agents in the game are always in one of the
declared states. The agents only change states in response to
actions by the player. Their transitions between states
are produced by the generation process. The inputs
which trigger transition table lookup are of the form
<currentAgentState, playerAction, socialRelation>
where currentAgentState is the state the agent is currently
in, playerAction is the action the player carried out that
the agent is reacting to and socialRelation is the relation
between the player and the social group the agent belongs to.
The state an agent is in controls the outcome of any actions
the player carries out involving that agent. Figure 2 shows a
representative controller for a limited set of states and actions.

Fig. 2. Example of agent controller for a limited set of states and actions

C. Input Specification

• List of Items - A list of items present in the game world
is specified by the ID number of each item.

• List of Facts - A list of ‘facts’ present in the game world
is specified by the ID number of each fact. Facts in
this scenario are highly abstract, effectively serving as
boolean flags to enable certain things to happen such as



being able to see an invisible agent or being able to use
a certain action. Facts differ from items in that facts can
be duplicated. Unlike items, facts can also be ‘lost’ if all
agents possessing the fact are killed. Finally, the actions
that can lead to the player gaining a fact are different
from those that lead to the player gaining an item.

• List of Agents - A list of agents present in the game
specified by the ID number, social group, facts and items
of each agent. These agents can be in one of three
social groups which are respectively friendly, neutral, and
hostile to the player. This relation forms a passive input
to state transitions.

• Item Mappings - A mapping of items to the agents that
have possession of them, specified by their respective ID
numbers.

• Fact Mappings - A mapping of facts to the agents that
have possession of them, specified by their respective ID
numbers.

• Trade Mappings - A mapping of items to items that
should be accepted in exchange as part of the trade action,
specified by their respective ID numbers. This mapping
is consulted when evaluating valid chains of actions to
achieve victory. If a trade action is evaluated as part of a
search for how to acquire an item a, a recursive search
for how to acquire the item b specified in the mapping
such that a → b must be performed, and those actions
prepended to the action chain.

• Action Descriptions - A list of actions available to the
player. Each action is represented by a name, a set of
states an agent can be in to initiate the action, a set of
states an agent can be in if the action is succesful, a flag
to indicate whether the action can result in the acquisition
of an item, a flag to indicate whether the action can result
in the acquisition of a fact, the (possibly null) ID of an
item required to perform the action and the (possibly null)
ID of an fact required to perform the action.

• States - A list of states that agents can be in.
• Victory Objective - The ‘end goal’ of the game is

specified by the type of objective (obtain item or fact) and
the ID number of the item or fact that is to be obtained.

D. Output Constraints

Output refers to the game created by using a given set of
generated controllers. Constraints on this output are therefore
constraints on the game-play produced. This allows the fitness
function to direct the search towards specific game-play ob-
jectives. The developer has the freedom to specify as many
or as few constraints as they are interested in. There is a
trade-off between the expressiveness and conciseness of the
specification format.

1) Required Transitions:
A list of state transitions required to be generated for the
agent controllers. These are specified by the input tuple of
< currentAgentState, playerAction, socialRelation >.

For example, <idle, attack, hostile> indicates that a tran-
sition must be generated to handle the event when a player

attacks an agent that is hostile to them and is currently in the
idle state.

If no transitions are given, transitions will be generated for
all transitions possible from the lists of states and actions.
Having the ability to restrict the transitions generated is useful
if some transitions are going to be manually created or if
certain transitions will be shared accross multiple agents. For
example if all agents in a certain social group should respond
to the player attacking them by running away, that transition
need not be generated. This reduces the size of the search
space.

2) Valid Transition Mappings:
These mappings define valid and invalid transitions by specify-
ing a set of valid states that can be transitioned to from a given
input tuple of the form <currentAgentState, playerAction,
socialRelation>. This mapping can be as exhaustive or sparse
as desired. If no mapping exists for a required transition, an
implicit mapping to the set of all states is used. This allows the
developer to maintain plausibility by forbidding undesirable
transitions. An example of an undesirable transition might be
an agent moving from a ‘dead’ state to any other state.

For example, <idle, attack, hostile>→<flee, dead, attack>
indicates that if the player attacks an agent that is hostile
to them and is currently in the idle state, that agent must
change its state to one of the dead, flee, or attack states. If a
transition is not mapped, it indicates the agent can change to
any state.

3) Desired Actions:
A set of actions that the developer wishes the player to
use. There is at least one sequence of actions that leads to
satisfaction of the victory objective for every action in the
desired action set.

E. Solution Encoding

If the transition table is considered to be
a mapping from input tuple of the form
<currentAgentState, playerAction, socialRelation>
to output state newState, the solution is encoded as the
newState component of each mapping designated as required
in the input specification.

States are mapped to integers and the solution is represented
as a list of integers.

For example, given:
• A set of required transitions

– <idle, attack, hostile>

– <idle, question, hostile>

– <idle,move, hostile>

• A mapping of valid transitions
– <idle, attack, hostile>→<flee, dead, attack>

– <idle, question, hostile>→
<flee, answer, lie, abstain, attack>

Note that there is no entry in the mapping of valid transitions
that corresponds to the entry <idle,move, hostile> in the
set of required transitions. This indicates that a transition



to any state is acceptable for this input. A solution would
conceptually be modeled as shown in figure 3.

Fig. 3. Example of agent controller for a limited set of states and actions

This would be encoded as: 10, 5, 1

F. Evolutionary Algorithm

The evolutionary algorithm used to generate the agent con-
trollers is as follows:

1) Initialize a population P of N candidate solutions. For
each agent, a state is randomly selected from the set of
valid states mapped to the input tuple of each required
transition.

2) Evaluate the fitness of each individual S in P . If any
solution S has a fitness of 0, return S and terminate.

3) Select a population PP of NP ‘parent’ solutions using
binary tournament selection with tournament size Kp.

4) Create a population PO of NO ‘offspring’ solutions by
randomly selecting two ‘parent’ solutions P1 and P2

with replacement from PP and combining them to create
a solution O.

5) Mutate each solution SO in PO.
6) Evaluate the fitness of each individual SO in PO. If any

solution SO has a fitness of 0, return SO and terminate.
7) Select a population PN of N ‘survivor’ solutions using

binary tournament selection on P
⋃
POwith tournament

size KN .
8) Set P = PN

9) Go to 2.

In this experiment the following parameters were used:

• N = 20
• NP = 20
• Kp = 10
• NO = 20
• KN = 10

1) Recombination:
Given two parent solutions P1 and P2, a child solution C is
generated by recombination as follows:

1) Create C a solution with the same number of agents NA

and states NS as P1 and P2.
2) For each agent A

a) For each state s

i) C.A.s = P1.A.s with 50% probability and
C.A.s = P2.A.s with 50% probability.

2) Mutation:
Each state of each agent of each candidate solution is mutated
with mutation rate MR. Mutation randomly selects a state
from the set of valid states mapped to the input tuple.

In this experiment MR = 2%.

G. Fitness Function

A minimisation fitness function is employed. Solutions are
evaluated by attempting to find all chains of actions that will
lead to the completion of the specified victory objective that
are possible under the agent configuration represented by the
solution. Each distinct chain represents a different way of
winning the game. It is desirable to obtain all such chains
so that properties of the game can be inferred. For example,
if all valid chains are known and in each chain a certain
action is used, that action will clearly be used in the game.
Alternatively if no chain ever features an action involving a
particular agent, it can be seen that the agent is not utilised
in the game. Knowing these facts helps evaluate the quality
of the game produced by using a candidate solution as the
controllers in the game and hence the quality of the candidate
solution itself.

Valid chains of actions are determined by searching back-
wards from the the victory objective in a depth-first manner.
Objectives can either be to acquire a fact, acquire an item or
attain a state. A conceptual illustration of how this process
works for objectives to acquire an item is shown in Figure
4. Objectives for changing an agent’s state or learning a fact
are handled in a very similar fashion, the only difference is to
check whether an action can lead to the desired result in each
case. Starting from a condition required for victory, actions are
checked to see if they can achieve the objective. Then any-
prerequisites necessary to carry out the action are checked
by recursively making these pre-requisites into objectives and
checking them. A detailed listing of the algorithms is included
in Section IX.

Once all the valid chains of actions have been identified, the
properties of the chains are evaluated and penalties applied as
appropriate. Thus, an optimal solution will score 0.

H. Example

To illustrate how this process works, consider the following
scenario. For the sake of brevity, only a subset of the full
specification has been shown.

• Victory objective is to obtain the item with IID = 1
• Agent A is neutral towards the player
• Agent A has possession of item IID = 1
• Agent A has transitions

<idle, offerTrade, neutral>→acceptTrade,
<idle, attack, neutral>→ dead (among others)

• Agent B is neutral towards the player
• Agent B has possession of item IID = 2
• Agent B has transitions << idle, attack, neutral >→

dead >(among others)



Fig. 4. Illustration of solution checking process

• The player can attack, intimidate, or trade with agents
The list of valid chains of actions to achieve victory would

be found as follows:
• Agent A (ID=2) has item O(ID=1)

– Action attack can result in possession of items
∗ A has a transition that can be satisfied by attack

· LStates = {}
· LFacts = {}
· LItems = {}
· LJoins = {{attack}}
· LChains = {{attack}}

– Action intimidate cannot result in possession of items
– Action trade can result in possession of items
∗ A has a state transition that can be satisfied by

trade
· LStates = {}
· LFacts = {}
· LItems = getItemChains(2) = {attack} Perform

a search to acquire an item with IID = 2
· LJoins = {{attack, trade}}
· LChains = {{attack},{attack,trade}}

Hence the valid chains of actions to victory are:
1) Attack agent A.
2) Attack agent B. Trade item 2 with agent A for item 1.

IV. EXPERIMENT

A. Game Scenario

A simple experiment was devised as a first step in demon-
strating the viability of the concept. In the experimental
scenario, an ‘evil wizard’ agent Z has possession of a magic

sword. The player’s victory objective is to acquire possession
of the magic sword. The FSM controlling agent Z is fixed
in advance so that the only way to acquire the magic sword
item is to attack and defeat Z. Initially the player cannot see
Z. The player must obtain the knowledge of how to see Z
and also obtain an item that will allow the player to defeat Z.
Agents are created that possess the knowledge of how to see
Z, a ‘Crossbow’, the item required to defeat Z and an item
that can traded for the ‘Crossbow’. In this example, a viable
controller set is any set that allows the player to obtain the
knowlede of how to see Z and the item required to defeat
Z. Desirable properties are for every action the player can
perform to appear on at least one path and for every agent to
be interacted with in at least one path.

B. Input Specification

• List of Items -
The items used in the experiment are listed in Table I.

TABLE I
ITEMS FEATURED IN THE EXPERIMENT

Item ID Item Name

1 Magic Sword

2 Crossbow

3 Gold

4 Invisibility Cloak

• List of Facts -
The items used in the experiment are listed in Table II.

TABLE II
FACTS FEATURED IN THE EXPERIMENT

Fact ID Fact Name

1 Z’s location

2 How to spot Gold

• List of Agents -
The items used in the experiment are listed in Table III.

TABLE III
AGENTS FEATURED IN THE EXPERIMENT

Agent ID Fact Item Note

1 N/A Magic Sword Z, The Evil Wizard

2 Z’s location N/A N/A

3 N/A Crossbow N/A

4 N/A Gold N/A

5 How to spot gold N/A N/A

• Item Mappings - This mapping can be observed in Table
III.

• Fact Mappings - This mapping can be observed in Table
III.

• Trade Mappings -
The items that agents in the experiment will accept in
exchange for items they hold are listed in Table IV.



TABLE IV
TRADE ITEM MAPPING

Accept Item Give Item

3 2

• Action Descriptions -
The actions the player can carry out in the experiment
are described in Table V.

TABLE V
ACTION DESCRIPTIONS

Action Valid Start Valid Post Gains Gains Requires
States States Fact Item Fact/Item

Attack Idle Dead No Yes -1/-1
Fight Slain
Flee

Ask Idle Answer Yes No -1/-1
Fight
Flee

Trade Idle Accept No Yes -1/-1
Trade

Intimidate Abstain Answer Yes No -1/-1

Pick Up N/A N/A No Yes 2/-1

• States -
– Idle
– Flee
– Attack
– Fight
– Lie
– Answer
– Abstain
– Accept Trade
– Refuse Trade
– Invisible
– Dead

• Victory Objective - Obtain item ’Magic Sword’.

C. Output Constraints

1) Required Transitions:
In this experiment, transitions are required for all combinations
of states, actions and social relations.

2) Valid Transition Mappings:

• <?, Attack, ?>→<Flee,Dead,Attack>
• <?, Ask, ?>→<Abstain,Answer>
• <?, T rade, ?>→<AcceptTrade,RefuseTrade>
• <?, Intimidate, ?>→<Abstain,Answer>

Note that <?, attack, ?>→<flee, dead, attack> denotes
that for an agent in any state and in any social group, the
valid states that they should transition to upon being attacked
by the player are flee, dead or attack.

3) Desired Actions:

• Attack
• Ask

• Trade
• Intimidate

D. Fitness Function

The penalties applied to a solution’s fitness are listed in VI.

TABLE VI
OUTPUT CONSTRAINTS

Reason Penalty
No valid chains found 1000
A specified fact is not used in any chain 50
An agent has exclusive possession of more than one fact 10
An action in the required actions set is not present in any chain 10
An agent is incapable of being involved in any chain 200

V. RESULTS

A. Controllers

In all (1000) experimental runs, valid solutions were dis-
covered. Figure 5 shows selected state transitions from the
controllers generated in one run of the experiment. Using these
controllers there were two valid paths to win the game.

1) a) Attack agent 4 to gain item Gold
b) Trade item Gold for agent 3’s item Crossbow
c) Ask agent 2 to learn fact Z’s location
d) Attack agent 1 to obtain item Magic Sword

2) a) Ask agent 5, who abstains
b) Intimidate agent 5 to learn fact How to spot Gold
c) Pick up item Gold
d) Trade item Gold for agent 3’s item Crossbow
e) Ask agent 2 to learn fact Z’s location
f) Attack agent 1 to obtain item Magic Sword

From these paths it can be seen that agents 1-5 are involved
in at least one path. Actions ‘attack’, ‘ask’, ‘intimidate’, ‘trade’
and ‘pick up’ are all used in at least one path. This shows that
as well as being viable, the controller set is optimally desirable
for the given constraints.

B. Observed Output

The following capabilities have been demonstrated:
• Controllers can be generated that form a simple but

coherent game where victory is possible.
• A developer can specify actions they wish the player to

use and the controllers generated will feature at least one
valid path to completion that features those actions.

• Multiple valid paths to victory can be generated and
detected in a single solution.

C. Performance

No systematic testing has been carried out to measure
complexity so far and the emphasis on testing has been on
small scale situations so that results can be manually inspected
and verified. In these examples, optimal solutions (fitness 0)
have been generated at an average time of 271ms on an i5-
2500K processor.



Fig. 5. Snapshot of generated agent state transitions

VI. FUTURE WORK

In this paper the motivation for the work has been to assess
whether this concept has the potential to automate the design
of agent controllers for RPG style games. The experiment
described in this paper is on a very small scale. To test the
validity of the concept in general, experimentation on a scale
representative of real games will be required. We are in the
process of examining scenarios from the World of Warcraft
game to judge the number and type of interactions which will
be required.

If our planned larger scale experiments prove successful,
work will be carried out to determine whether additional
benefits can be gained from this approach such as creating very
large and complex FSMs that offer advantages over those that
can be feasibly crafted by hand or used to guarantee minimum
levels of variety over large populations of agents.

Further work is also required to ascertain exactly how
and where the system would most effectively be deployed
in the development process. For instance, the system could
be deployed as described in this experiment to generate an
entire set of agent controllers or it could be used to fine-
tune the lower-level controllers in a hierarchical FSM template
architecture or to provide bounded variations from a core
template.

VII. CONCLUSIONS

The experiment described in this paper has shown that it is
possible to evolve a set of controllers for agents in a computer
game such that the gameplay resultant from using those con-
trollers adheres to desired constraints. It has also been shown
that it is possible to quantify certain gameplay properties and
evaluate them from a candidate set of controllers. Both these
findings have been made in a primitively small and simple
scenario and further research is required to ascertain under
which circumstances they will hold.

VIII. ACKNOWLEDGEMENTS

This work was supported by NSERC’s Discovery Grant
Program under RGPIN 283304-2012 and by a doctoral award
from the Dean of the School of Graduate Studies at Memorial
University.

IX. APPENDIX

1) Acquire Item:
For a given item I:

Algorithm 1 Psuedocode for the algorithm to construct a
sequence of actions to acquire a given item

INPUT: A← agent that has possession of the target item I
INPUT: actions← set of all actions the player can perform
for each action a in actions do

if action a can result in acquisition of items then
if A has a transition T that can be satisfied by a then
LSTATES ← a list of of all valid chains of actions

that can result in A attaining the pre-requisite state TPRE

of T .
LFACTS ← a list of all valid chains of actions

that can result in the player obtaining the pre-requisite fact
TFACT necessary to execute T .

LITEMS ← a list of all valid chains of actions
that can result in the player obtaining the pre-requisite fact
TITEM necessary to execute T .

end if
LJOINS ← a list of all valid chains of actions found

by joining a to all the combinations made by combining
one chain each from LSTATES , LFACTS and LITEMS .

LCHAINS ← LCHAINS + LJOINS

end if
end for
Output LCHAINS

2) Acquire Facts:
For a given fact F :

Algorithm 2 Psuedocode for the algorithm to construct a
sequence of actions to acquire a given fact

INPUT: A← agent that has possession of the target fact F
INPUT: actions← set of all actions the player can perform
for each action a do

if action a can result in acquisition of facts then
if A has a transition T that can be satisfied by a then
LSTATES ← a list of of all valid chains of actions

that can result in A attaining the pre-requisite state TPRE

of T .
LFACTS ← a list of all valid chains of actions

that can result in the player obtaining the pre-requisite fact
TFACT necessary to execute T .

LITEMS ← a list of all valid chains of actions
that can result in the player obtaining the pre-requisite fact
TITEM necessary to execute T .



end if
LJOINS ← a list of all valid chains of actions found

by joining a to all the combinations made by combining
one chain each from LSTATES , LFACTS and LITEMS .

LCHAINS ← LCHAINS + LJOINS

end if
end for
Output LCHAINS

3) Attain State:
For a given agent A and state S:

Algorithm 3 Psuedocode for the algorithm to construct a
sequence of actions that results in a given agent being in a
given state

LCHAINS ← null
for each transition T that has a post-state S do

if If the social relation of T is the same as the relation
between the player and A then

Create a List LFACTS of all valid chains of actions
that can result in the player obtaining the pre-requisite fact
TFACT necessary to execute T .

Create a List LITEMS of all valid chains of actions
that can result in the player obtaining the pre-requisite fact
TITEM necessary to execute T .

Create a list LJOINS of all valid chains of actions
found by joining a to all the combinations made by combin-
ing one chain each from LSTATES , LFACTS and LITEMS .

Add LJOINS to LCHAINS .
end if

end for

REFERENCES

[1] N. Afonso and R. Prada, “Agents that relate: Improving the social believ-
ability of non-player characters in role-playing games,” in Proceedings
of the 7th International Conference on Entertainment Computing, 2008,
pp. 34–45.

[2] S. C. J. Bakkes, P. H. M. Spronck, and H. J. van den Herik, “Opponent
modelling for case-based adaptive game ai,” Entertainment Computing,
vol. 1, no. 1, pp. 27–37, January 2009.

[3] D. Cheng and R. Thawonmas, “Case-based plan recognition for real-time
strategy games,” in Proceedings of the 5th International Conference on
Intelligent Games and Simulation, 2004, pp. 36–40.

[4] P. Lankoski and S. Bjork, “Gameplay design patterns for social networks
and conflicts,” in Proceedings of the Computer Game Design and
Technology Workshop, 2007, pp. 76–85.

[5] J. Miles and R. Tashakkori, “Improving believability of simulated
characters,” Journal of Computing Sciences in Colleges, vol. 25, pp.
32–39, 2010.

[6] P. G. Patel, N. Carver, and S. Rahimi, “Tuning computer gaming
agents using q-learning,” in Proceedings of the Federated Conference
on Computer Science and Information Systems, 2011, p. 583590.

[7] P. Sweetster, D. Johnson, J. Sweetster, and J. Wiles, “Creating engaging
artificial characters for games,” in Proceedings of the International
Conference on Entertainment Computing, 2003, pp. 1–8.

[8] C. Fairclough, M. Fagan, B. M. Namee, and P. Cunningham, “Research
directions for ai in computer games,” in Proceedings of the Twelfth Irish
Conference on Artificial Intelligence and Cognitive Science, 2001, pp.
333–344.

[9] S. M. Lucas and G. Kendall, “Evolutionary computation and games,”
Computational Intelligence Magazine, vol. 1, pp. 10–18, 2006.

[10] N. Hocine and G. A. Gouaich, “Agent programming and adaptive serious
games: A survey of the state of the art,” 2011.

[11] C. Thurau, G. Sagerer, and C. Bauckhage, “Imitation learning at all
levels of game-ai,” in Proceedings of the 5th International Conference
on Computer Games: Artificial Intelligence,Design and Education, 2004,
pp. 402–408.

[12] I. Szita, M. Ponsen, and P. Spronck, “Effective and diverse adaptive
game ai,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 1, pp. 16–27, 2009.

[13] D. Johnson and J. Wiles, “Computer games with intelligence,” in Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems.
IEEE, 2001, pp. 1355–1358.

[14] M. Katchabaw, D. Elliott, and S. Danton, “Neomancer: An exercise in
interdisciplinary academic game development,” in Proceedings of the
DiGRA 2005 Conference, 2005.

[15] S. D. L. Gruenwoldt and M. Katchabaw, “Creating reactive non player
character artificial intelligence in modern video games,” in Proceedings
of the 2005 GameOn North America Conference, 2005.

[16] M. K. L. Gruenwoldt and S. Danton, “A realistic reaction system for
modern video games,” in Proceedings of the DiGRA 2005 Conference,
2005.

[17] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 1,
no. 3, 2011.

[18] M. Hendrikx, S. Meijer, J. van der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Transactions on Multi-
media Computing, Communications and Applications, vol. 9, no. 1, pp.
1–22, 2013.

[19] P. Spronck, M. Ponsen, and E. Postma, “Adaptive game ai with dynamic
scripting,” in Machine Learning. Kluwer, 2006, pp. 217–248.

[20] N. Cole, S. J. Louis, and C. Miles, “Using a genetic algorithm to tune
first-person shooter bot,” in Proceedings of the International Congress
on Evolutionary Computation, 2004, pp. 139–145.


