1 Genetic Programming and Its Application
in Machining Technology

Wolfgang Banzhaf', Markus Brameier!, Marc Stautner?, and Klaus
Weinert?

! University of Dortmund, Department of Computer Science, Informatik XI,
44221 Dortmund, Germany
{banzhaf, brameier}@Ls11.cs.uni-dortmund.de

2 University of Dortmund, Faculty of Mechanical Engineering, Institute of
Machining Technology, 44221 Dortmund, Germany
{stautner, weinert}@isf.mb.uni-dortmund.de

Summary. Genetic programming (GP) denotes a variant of evolutionary algo-
rithms that breeds solutions to problems in the form of computer programs. In re-
cent years genetic programming has become increasingly important for real-world
applications, including engineering tasks in particular. This contribution integrates
both further development of the GP paradigm and its applications to challenging
problems in machining technology. Different variants of program representations
are investigated. While problem-independent methods are introduced for a linear
representation, problem-specific adaptations are conducted with the traditional tree
structure.

1.1 Introduction

In the first part of this chapter we focus on advanced concepts of linear GP.
Linear genetic programming (LGP) denotes a variant of GP, where programs
of an imperative programming language or a machine language are evolved.
We analyze data flow within linear genetic programs and exploit structural
aspects of the linear representation for detecting noneffective code. Extract-
ing this code from programs before fitness calculation leads to a significant
acceleration of runtime. The information about whether an instruction is ef-
fective or not is further used for designing efficient variation operators. Here
we present a variant of linear GP that is based exclusively on mutations.
Program solutions developed with this approach have not only been found
to be more successful but less complex in size. Furthermore, a structural dis-
tance metric is defined that reveals causal connections between changes of the
linear genotype and changes of the phenotype (fitness). Using this distance
information allows variation step size and diversity to be controlled explicitly
on the level of effective code.

The second part deals with the application to problems of machining technol-
ogy. Here modeling general correlations out of data given only by observation
is a difficult task. A lot of knowledge about the examined process is needed

2 Banzhaf, Brameier, Stautner, and Weinert

to extract the correct coherences out of the given data. Especially when this
process has to be done by hand. To support the scientist in this problem
computational intelligence (CT) methods, here symbolic regression through
genetic programming, are a well known possibility to help.

1.2 Linear Genetic Programming

Genetic programming [2,16] applies an evolutionary algorithm that subjects
computer programs to evolution. In contrast to traditional GP which uses ex-
pressions of a functional programming language, linear GP evolves programs
of an imperative language. While in the former case the program structure is
a tree, in the latter case the representation is linear, which derives from the
sequence of imperative instructions such a genetic program is composed of.

Originally, linear genetic programming was introduced with a binary ma-
chine language so that the genetic programs can be executed directly with-
out passing a time-consuming interpretation step first [21]. Apart from this
speed advantage, we investigate more general characteristics of linear repre-
sentations in this chapter. One principle difference compared to tree repre-
sentations is that unused code parts occur and remain within linear genetic
programs (see Section 1.2.1).

In our linear GP approach [4], an individual program is represented by
a variable-length sequence of simple C instructions. The instruction set may
include operations such as r; = r; + ¢, function calls r; = f(r;), or branches
if(r; > ri) that may skip the succeeding non-branch instruction. All in-
structions operate on one or two indexed variables (registers) r; or constants
¢ from predefined sets and all instructions, but branches assign the result to
a destination register r;. The individual LGP approach has been extended to
the evolution of program teams in [6].

1.2.1 Effective and Noneffective Instructions

In linear genetic programs two types of code can be distinguished on the
structural level, effective and noneffective instructions. An instruction is de-
fined as effective at its program position if it manipulates an effective register.
A register, in turn, is effective at a certain position if a manipulation of its
content can effect the behavior, i.e., the output(s), of the program. Otherwise,
the register as well as the manipulating instruction are noneffective for that
position. Such noneffective instructions do not contribute to the data flow in
a program and are referred to as structural introns or data flow introns.

In the following excerpt of a linear genetic program, only the instructions
that are marked with an exclamation point can have an influence on the final
output, which is held in register r[0] here.

1 Genetic Programming 3

Example 1: (Linear genetic program)

void gp(r)
double r[4];
{

r[3] = r[1] - 3;
r[1];

r[1] = r[2] *
' r[3] = r[1] / r[0];
r[0] = r[1] - 1;

r[1] = r[2] * r[0];
r[1] = r[0] * r[1];
v r[0] = r[2] + r[2];
r[2] = pow(r[1], r[0]);
r[2] = r[0] + r[3];
r[0] = r[3] - 1;
r[1] = r[2] - r[0];
r[3] = pow(r[0], 2);
r[2] = r[2] + r[1];
r[0] = r[1] + 9;
r[3];

r[0] = r[1] /
' r[0] = r[2] * r[2];
' r[2] = r[1] * r[3];
' r[o] = r[0] + r[2];
}

The structural noneffective code in linear individuals is not directly de-
pendent on the set of instruction operators. However, the more registers that
are provided, the easier the creation of this code will become for evolution.
If only one register is available, this type of code cannot occur at all, and
finding a solution is very difficult.

Semantic (or operational) intron instructions manipulate effective regis-
ters without affecting program semantics. In order to restrict the rate of
semantic introns and thus, to keep the structural effective length of programs
small, an instruction set can be chosen with a minimal tendency to create
these introns. Only if the creation of structural introns is easier than the
creation of semantic introns, semantic noneffective code can be expected to
occur less frequently.

1.2.2 A GP Algorithm

Algorithm 1 shows the specific evolutionary algorithm used in our LGP ap-
proach. In such a steady-state EA, newly created individuals replace existing
individuals in the same population, while typically, tournament selection is
applied.

4 Banzhaf, Brameier, Stautner, and Weinert

Algorithm 1: (LGP algorithm)

1. Initialize a population of individual programs randomly.

2. Select 2 x n individuals from the population without replacement.
3. Perform two fitness tournaments of size n.
4

. Reproduce the winners of the two tournaments by replacing the two losers
with temporary copies of the winners.

5. Modify the two winners by one or more variation operators, including
mutation and recombination, with certain probabilities.

6. Evaluate the fitness of the offspring.

7. If the currently best-fit individual is replaced by one of the offspring then
validate the new best program.

8. Repeat steps 2-8 until the maximum number of generations has been
reached.

9. Test the generalization performance of the program with minimum vali-
dation error.

10. Both the best program during training and the best program during
validation define the output of the algorithm.

The fitness (training error) of an individual program p is often computed
by an error function, e.g., the sum of errors between the predicted and the
desired program outputs for a given set of n training examples (also called
fitness cases):

fitness(p) = Z |p(ir) — o] (1.1)

Better fitness means smaller error and the minimum fitness is zero then. The
data domain from which the input-output examples (ix, o) are drawn defines
the problem that should be solved or approximated by GP.

The generalization ability of LGP solutions is checked during training
by calculating the validation error of the currently best-fit program. This
requires the use of unknown data (validation data), which is sampled from the
same data space as the training data. Finally, among all the best individuals
emerging over a run the one with minimum validation error (point of best
generalization) is tested on a test data set again once after training is over.

1.3 Removal of Noneffective Code

The most time-consuming step in GP is the evaluation of individuals. Usually
this step includes multiple executions of a genetic program. In [21] execution

1 Genetic Programming 5

. Intron Fitness

Effective Program

Individual
Fig.1.1. Intron elimination in LGP. Only effective code (black) is executed.

time has been reduced by evolving binary machine programs that do not
require interpretation. In this section we introduce another possibility to
speed up linear GP.

The imperative program structure in linear GP permits noneffective in-
structions to be identified efficiently. This in turn allows the effective code to
be extracted from a program and to be copied to a temporary program buffer
once before the fitness of the program is calculated (see Figure 1.1). By only
executing the effective program when testing each fitness case, evaluation can
be accelerated significantly [4]. It is important to realize that the represen-
tation of the individuals in the population is not affected by this action. In
this way, no potential genetic material gets lost.

Algorithm 2 detects all structural introns in a linear genetic program.
Note that whether or not a branch instruction is an intron only depends on
the status of the operation that directly follows. Copying all marked instruc-
tions at the end forms the effective program.

Algorithm 2: (Detection of noneffective instructions)

1. Let the set R.;; always contain all registers that are effective at the
current program position.
Re¢r = { r; | r; is output register }
Start at the last program instruction and move backwards.

2. Mark the next operation with destination register r; € R.
If such an instruction is not found, — 5.

3. If the operation directly follows a branch or a sequence of branches, mark
these instructions too, otherwise remove r; from R.;;.

4. Insert the operand register(s) of new marked instructions in R.yy if not
already contained. — 2.

5. Stop. All unmarked instructions are introns.

The algorithm needs linear runtime O(n) at worst, with n being the max-
imum length of the linear genetic program. Actually, detecting and removing

6 Banzhaf, Brameier, Stautner, and Weinert

the noneffective code from a program only requires about the same time as
calculating one fitness case.

By omitting the execution of noneffective instructions during program
interpretation a large amount of computation time can be saved. A good
estimate of the overall acceleration in runtime is the factor

1

Gace 11— Pintron (12)
with pineron denotes the average percentage of intron code in a genetic pro-
gram and 1 — piniron the respective percentage of effective code. In [4] an
average intron rate of about 80 percent is documented for several classifi-
cation problems, which corresponds to an average decrease in runtime by a
factor 5. In general, the proportion of effective and noneffective instructions
in linear programs depends on both the problem and the configuration of the
LGP system, including the provided program components (see Section 1.2)
and the choice of variation operators (see Section 1.5) in particular.

1.4 Graph Interpretation

The imperative representation of a linear GP program can be transformed
into a semantically equivalent functional program graph. The following Al-
gorithm 3 achieves this for an effective linear program. Thus, this method
requires the deletion of intron instructions by using Algorithm 2, first. The
directed structure of the resulting graph better reflects functional connections
and data flow in linear genetic programs. The graph is contiguous for two rea-
sons: first, by not transforming structural intron instructions and, second, by
assuming that there is only one output register. Finally, the graph is acyclic
if instructions, such as loops or backward jumps do not occur in the program.
Instructions, such as conditional branches result in graph structures that are
not always visited during execution. Both rather special cases of program-
ming concepts, iterations and branches, shall be excluded from the following
discussion for simplicity.

Algorithm 3: (Transformation of an effective linear program into a graph)

1. Start at the last instruction in the program. Its destination register rg¢4:
is the output register of the program and labels the start node of the
graph (sink node at this stage).

2. Go to the sink node in the graph that holds the destination register rges¢
of the current instruction as a label.

3. Assign the instruction operator to this node.

4. For each operand register r,, (and constant) of the current instruction
repeat steps 5-7:

1 Genetic Programming 7

5. If there is no sink node with label r,,, create it.
6. Connect 4.5+ and rop by a directed edge. (74es¢ becomes inner node.)

7. If not all operations are commutative label this edge with 1 (2) if 7, is
the first (second) operand.

8. If the end of program is reached, — 10.
9. Go to the next preceding instruction in program. — 2.
10. Stop. Delete all register labels from inner nodes.

Each program instruction may be interpreted as a small subtree of depth
one. In the effective program graph resulting from Algorithm 3, each inner
node represents an operator and has as many outgoing edges as there are
operands in the corresponding instruction, i.e., one or two.!

Sink nodes, i.e., nodes without any outgoing edges, are labeled with reg-
ister identifiers or constants. Sink nodes that represent a constant are only
created once during the calculation of the graph. Only sink nodes that rep-
resent a variable (register) are replaced regularly by operator nodes in the
course of the algorithm. These are the only points at which the graph may
grow. Since loops are not considered the only successors of sink nodes may
become other sink nodes or new nodes. After each iteration of the algorithm
all nonconstant sink nodes correspond exactly to the effective registers at the
current program position. Because the number of effective registers is limited
by the total number of registers, of course, the number of sink nodes and the
maximum width of the graph respectively are limited as well. As a result,
the program graph is supposed to grow in depth. The depth is restricted by
the length of the imperative program because each imperative instruction
corresponds to exactly one inner node in the graph. For those reasons the
graph structure may be referred to as linear, like its imperative equivalent.

The actual width of a program graph indicates the number of parallel
calculation paths in a linear genetic program. It can be determined by the
maximum number of registers that are effective at a program position. It
is important for the performance of linear GP to provide enough registers
for calculations (calculation registers), in addition to the registers that hold
the input data. This is especially true if input dimension is rather low. If
the number of registers is not sufficient there are too many conflicts through
overwriting of register information during calculation. The more registers are
provided, however, the more independent program paths may develop.

It also follows from the above observations that the runtime of Algorithm
3is O(k-n) with n is the number of effective instructions and & is the number
of registers. For problems with a rather low input dimension, i.e., with a small
number of input registers, runtime is almost linear in n.

The program listed in Example 1 corresponds exactly to the graph in
Figure 1.2 after applying Algorithm 3. Both, the imperative representation

! The maximum number of operands in an instruction is two.

8 Banzhaf, Brameier, Stautner, and Weinert

and the functional representation consist of effective code here that is free
from unused instructions or unvisited graph components, respectively. This
is valid if we assume that the output of the imperative program is stored in
variable r[0] at the end of execution. At the beginning of program execution
the inputs are held in variables r[0] to r[3]. In the corresponding graph
representation the inputs denote variable sink nodes, besides the sink nodes
that hold constants.

Constant Sinks

r[0] (+ r[3]

r2] r[1] r[0]

Variable Sinks

Fig. 1.2. Graph equivalent of the effective linear program code in Example 1. Op-
erator nodes are labeled with the destination registers of the corresponding instruc-
tions (see Algorithm 3). Output register r[0] marks the start node. Outgoing edges
are not labeled here but printed in the right order.

1.5 Linear Genetic Operators

Traditionally, recombination is applied in genetic programming for varying
the lengths of programs. In this section we introduce an efficient variant of
linear GP that works exclusively with mutations. We will demonstrate that

1 Genetic Programming 9

linear programs are manipulated more precisely by using mutations only. This
will also be motivated by means of the functional interpretation discussed in
Section 1.4.

The linear crossover operator exchanges two arbitrarily long subsequences
of instructions between two individuals. If the operation cannot be executed
because one offspring would exceed the maximum length, crossover is per-
formed with equally long subsequences. Macro-mutations denote deletions or
insertions of single full instructions here. Both crossover and macro-mutations
operate on instruction level and control program growth (macro-variations).
Micro-mutations by comparison, randomly replace instruction components
that comprise single operators, registers, or constants.

1.5.1 Variation Step Sizes

In genetic programming changing a small program component may lead to al-
most arbitrary changes in program behavior. Variation operators that induce
smaller step sizes with a high probability allow a more precise approximation
to locally optimal solutions. This relies on the assumption that, on average,
smaller structural variations of genetic programs result in smaller semantic
variations (see also Section 1.6).

In tree programs, crossover and mutation points can be expected to be the
more influential the closer they are to the root. Instead, in a linear program,
each position of an instruction may have a more similar influence on program
semantics. Recall that the linear graph representation is restricted in width
through the number of registers provided (see Section 1.4).

Moreover, in tree-based GP, crossover only affects a single point in data
flow, which is the root of the exchanged subtree. With linear crossover the
contents of many effective registers may change, 1.e., several points in data
flow are modified simultaneously. The reason lies in the rather narrow graph
structure of linear genetic programs. This graph is disrupted easily when ap-
plying linear crossover on the imperative structure. As a result, crossover step
sizes may become quite large, on average. However, it has to be considered
that, to a certain degree, the influence of linear crossover on the effective code
is reduced implicitly by a high rate of structural intron code that emerges
with this operator.

A more explicit way of reducing the effect of linear crossover is to limit
the length of the exchanged instruction segments. We experienced that rather
small maximum segment lengths produce the best results [5].

The above reasons suggest the use of macro-mutationsinstead of crossover
for macro-variations in linear GP. Mutations guarantee a sufficient variation
strength and freedom of variation in linear GP for the following reasons.
First, in linear GP already single micro-mutations that exchange a register
index in an instruction may change the data flow within a linear program.
This is true because several instructions that precede the mutated instruc-
tion may become effective or noneffective respectively (see Section 1.6). On

10 Banzhaf, Brameier, Stautner, and Weinert

the graph level a single edge is redirected from an effective subgraph to a
former noncontiguous component. In tree-based GP micro-mutations usually
manipulate the contents of single nodes but do not change edges of the tree
structure.

Second, the linear program/graph structure can be manipulated with a
high degree of freedom. In tree programs, by comparison, it is rather difficult
to delete or insert a group of nodes at an arbitrary position. Complete sub-
trees might be removed along with the operation to satisfy the constraints
of the tree structure [10]. This is why the tree structure is less suitable to be
varied by smaller macro-mutations since modification of upper program parts
necessarily involve bigger parts of code. In linear GP, depending substructures
do not get lost when deleting or inserting an instruction but remain within
the linear representation as structural noneffective code, i.e., unvisited graph
components.

1.5.2 Effective Mutations

According to the definition of effective code in Section 1.2, let an effective
variation denote a genetic operation that modifies the effective code of a
genetic program. Note that even if the effective code is altered, the predictions
of the program for a considered set of fitness cases might be the same. An
effective variation is merely meant to bring about a structural change of the
effective program code. There is no change of program semantics (fitness)
guaranteed which is due to semantic intron code. In general, decreasing the
number of noneffective variations is expected to reduce the rate of neutral
variations. A genetic operation is neutral if it does not change the fitness
of a program. Note that by definition, the term noneffective is meant to be
related to the code level only.

We consider two different approaches to effective mutations. One variant
(effmut2) uses macro- and micro-mutations to operate on effective instruc-
tions exclusively but leaves the noneffective code untouched. This is moti-
vated by the assumption that mutations of noneffective instructions may be
more likely invariant in terms of a fitness change than mutations of effective
code. The other variant (effmut) allows single noneffective instructions to be
deleted. In order to guarantee that the effective code is altered, an effective
insertion may directly follow such intron deletions. A third approach might be
to delete all emerging noneffective instructions directly after the variation.?

The deletion of an instruction in general is not complicated. If an in-
struction is inserted, its destination register is chosen in such a way that the
instruction is effective at the corresponding program position. By doing so,
insertions of noneffective instructions (introns) are avoided explicitly. Like the
effective code, effective registers can be identified efficiently in linear runtime

O(n) [5].

2 This has been found too restrictive for program growth because of substantial
loss of genetic material.

1 Genetic Programming 11

1.5.3 Prediction Performance

In the next two sections we will compare the performance of linear genetic
operators and their influence on solution complexity using two regression
problems. The first problem is represented by the two-dimensional mexican
hat function that is to be approximated:

2? oy —g -
fmexicanhat(x;y) = (1 - I - yZ) X 6() (13)

The second test problem, named two points, computed the square root of the
scalar product of two three-dimensional vectors p and ¢:

Jrwopoints (D1, P2, P3, 41,92, 93) = V/P1 X g1+ P2 X g2 + p3 X ¢3 (1.4)

Tables 1.1 and 1.2 compare fitness and generalization performance for differ-
ent forms of macro-variation: crossover (cross), free macro-mutations (mut)
and two variants of effective macro-mutations (see above). In the same run
micro-mutations are applied together with one of the four macro operators
with a probability of 25 percent. Only one genetic operator, however, is ap-
plied at a time to vary a certain individual program.

First, we can see that prediction errors reduce together with the variation
step sizes when using macro-mutations instead of crossover. Interestingly, an
additional significant improvement can be observed with effective mutations.
One explanation is that effective mutations, by definition, reduce the num-
ber of neutral variations significantly compared to mutations that are not
restricted to the effective code. In this way, evolution is allowed to progress
faster within the same period of time, i.e., number of generations.

Table 1.1. Mexican hat problem: Average prediction error over 60 runs.

Variation Training Validation Test Neutral

Error Error Error Variations
cross 15.46 17.68 17.73 200
mut 5.77 9.94 10.25 408
effmut 1.35 1.92 1.69 75
effmut2 1.59 2.25 2.05 88

In the effmut2 experiments effective mutations are restricted to effective
instructions. Although noneffective code is not touched by this variant, it
maintains a much lower intron rate than standard macro-mutations (mut) as
can be seen from Figures 1.3-1.6. Instead, the other variant of effective muta-
tions (effmut) allows deletions of noneffective instructions (see Section 1.5.2),
which reduces the rate of noneffective code further. The intron code may

12 Banzhaf, Brameier, Stautner, and Weinert

Table 1.2. Two points problem: Average prediction error over 60 runs.

Variation Training Validation Test Neutral

Error Error Error Variations
cross 192.1 276.5 274.7 218
mut 95.5 165.6 195.2 419
effmut 66.3 92.7 95.5 66
effmut2 76.5 114.0 123.9 56

function as a protection mechanism that compensates (reduces) the influ-
ence of the user-defined deletion rate (33 percent here) on the effective code.
This could explain the slightly better prediction performance compared to
effmut2 solutions. By applying insertions two times more frequently than
deletions, a sufficient code growth is guaranteed, especially with effective
macro-mutations.

In general, when using macro-mutations, worse performance may also
result from negative effects, in particular, larger mutation step sizes, by reac-
tivation of intron code. Note that noneffective code hardly ever emerges with
the effmut variant.

1.5.4 Control of Code Growth

Figures 1.4 and 1.6 document that effective lengths are around 50 percent
smaller if solutions are developed with effective mutations (effmut) than with
normal macro-mutations (mut). Most probably it is more difficult for evolu-
tion to preserve shorter effective code in the presence of many noneffective
instructions. In general, a reduction of effective program size always means
an acceleration of processing time too because only effective code is executed
in our linear GP system (see Section 1.3).

For unlimited standard crossover the absolute length approaches the max-
imum size limit of 200 instructions within the first 300 generations in Figures
1.3 and 1.5. With free mutations this effect is extenuated by reaching the max-
imum later. Obviously, program growth is slower by using mutations only.
Nevertheless, both variation forms induce a fast increase of the absolute code
length. This effect is referred to as bloat and is observed in tree-based GP
too [26]. If we compare the development of absolute lengths with the effec-
tive lengths in Figures 1.6 and 1.4 it becomes obvious that the bloat effect is
mostly related to a growth of the structural noneffective code in linear GP.
Because noneffective code does not influence fitness directly, there is no se-
lection pressure on this part of a program. Moreover, the rate of noneffective
code works as an implicit control of crossover step sizes. If crossover is used
this protection function forms an additional drive for code growth.

Length

200
180
160
140
120
100
80
60
40

Genetic Programming

20 LA

!

Cross

7 effmut2

_—effmut -

200

400

600

Generation

800

1000

13

Fig.1.3. Mexican hat problem: Development of absolute program length for dif-
ferent forms of variation. Average figures over 60 runs.

Effective Length

200

150

400
Generation

600

800

1000

Fig.1.4. Mexican hat problem: Development of effective program length for dif-
ferent forms of variation. Average figures over 60 runs.

Effective mutations reduce the intron code and thus, the bloat effect signif-
icantly, even without allowing deletions of noneffective instructions explicitly
(effmut2). In this way, effective mutations incorporate an implicit control of
code growth in linear genetic programming. In contrast to crossover, macro-
mutations do not require noneffective code for inducing efficient solutions,

neither for controlling variation strength nor for preserving code diversity.

14 Banzhaf, Brameier, Stautner, and Weinert

200

cross

mut -

effmut -
effmut2

180

160
140
120
100

Length

80
60

40

20

0 1 1 1 1
0 200 400 600 800 1000

Generation

Fig.1.5. Two points problem: Development of absolute program length for different
forms of variation. Average figures over 60 runs.

200 T T T T
cross
mut -
effmut -
effmut2
150 - R
<
IS)
=
()
-
.02) 100 q
£ [
() o
= -
o
50 | o I
0 P ! ! ! !
0 200 400 600 800 1000

Generation

Fig. 1.6. Two points problem: Development of effective program length for different
forms of variation. Average figures over 60 runs.

1.6 Control of Variation Step Size

An implicit control of structural variation distance may be realized by impos-
ing respective restrictions on the variation operators. This has been demon-
strated above by using macro-mutations instead of recombination in order to
vary program length. Moreover, by concentrating variations on the effective
code, structural variations become more closely related to semantic varia-
tions. Recall that only the degree of variation on the effective code decides
the difference in fitness. Unfortunately, a variation operator, even if it 1s op-

1 Genetic Programming 15

erating on the effective code exclusively, can only guarantee for the absolute
program structure that a certain maximum variation step size is not exceeded.
Variation steps on the effective code instead may still be much bigger, even
though this will happen with a lower probability.

The following example represents the result of applying a micro-mutation
to the program example from Section 1.2. In the instruction on line 9 the
operand register r[3] has been exchanged by register r[2]. As a conse-
quence, five preceding, formerly noneffective, instructions become effective
now, which corresponds to an effective distance of five (see below).

Example 2: (Mutated linear program)
void gp(r)

double r[5];
{

r[3] = r[1] - 3;
r[1];

r[1] = r[2] *
r[3] = r[2] / rl[1];
r[0] = r[1] - 1;

r[1] = r[2] * r[0];

r[1] = r[0] * r[1];

r[0] = r[2] + r[2];

r[2] = pow(r[1], r[0]);

r[2] = r[0] + r[2]; <- Effective mutation point
r[0] = r[3] - 1;

r[1] = r[2] - r[0];

r[3] = pow(r[0], 2);

r[2] = r[2] + r[1];

r[0] = r[1] + 9;

r[0] = r[1] / r[3];
' r[o] = r[2] * r[2];
' r[2] = r[1] * r[3];
v r[o] = r[0] + r[2];
¥

In order to avoid such bigger variation steps on program structure, we
propose an explicit control that repeats a variation until the structural dis-
tance between parent and offspring falls below a maximum threshold [7,8].3
In particular, we want to find out whether a further reduction of effective mu-
tation step size may still improve results. This requires mutation distances
to be measured explicitly on the effective code. In the following section we
will identify substructures of linear genetic programs that are sufficient to be
distinguished by a structural distance metric.

Using an explicit control of semantic distance (fitness distance) between
parent and offspring instead would require an additional fitness calculation

¥ Reference [7] is an extended version of [8].

16 Banzhaf, Brameier, Stautner, and Weinert

for each repeated variation and can become computationally expensive, es-
pecially if a larger number of fitness cases is involved. A structural distance
has to be recalculated after each iteration while its computational costs do
not directly depend on the number of fitness cases. It is also difficult to find
appropriate maximum thresholds for fitness distance because they are not
problem specific. Finally, it is not sensible to restrict fitness improvements at

all.

1.6.1 Structural Program Distance

The string edit distance [12] measures the distance between two arbitrarily
long character strings by counting the number of basic operations, including
insertion and exchange of single elements, that are necessary to transform one
string into an other. We apply this distance metric to determine the structural
distance between the effective part of parent and offspring (effective variation
distance) because a difference in effective code may be more directly related to
a difference in program behavior. It is important to realize that the effective
distance cannot be part of the absolute distance. Actually, two programs may
have a small absolute distance while their effective distance is comparatively
large, as has just been demonstrated at the example program above. On the
other hand, two equally effective programs might differ significantly in their
noneffective code.

For an efficient distance calculation we concentrate on representative sub-
structures of linear programs and regard the sequence of operators from the
effective instructions. For instance, the order of effective operators of the ge-
netic program from Section 1.2 is

(+1 *, ok, +7p0w1) _a+a +1 /)

when starting with the last instruction. The distance of effective operator
symbols has been found sufficiently precise to differentiate between program
structures, provided that the used operator set is not too small. This is due
to the fact that in most cases the modification of an effective instruction
changes the effectivity status of (at least) one instruction (see Section 1.6.3).
Note that in contrast to the effective distance the absolute operator sequence
would not be altered by the exchange of single registers.

Effective mutations work closely with the effective distance metric. As
defined in Section 1.5, macro-mutations operate on full instruction level,
while micro-mutations vary smaller components within instructions. In order
to guarantee a sufficient growth of programs, however, the higher number
of variations is performed on macro level, i.e., comprises macro-mutations.
Since, in this way, the average step size is not further reducible from oper-
ator side, measuring the distance between full effective programs does not
necessarily promise a higher precision. This i1s another reason why operator
sequences represent a sufficient basis for distance calculation between linear

1 Genetic Programming 17

genetic programs. Besides, a registration of absolutely every structural dif-
ference should not be necessary if we take into account that the correlation
between semantic and structural distance is probabilistic (see Section 1.6.3).

1.6.2 Prediction Performance

As a first benchmark problem we test the above notions with the iris data
set that contains popular real-world data from the UCI Machine Learning
Repository [3]. Fitness is the classification error, i.e., the number of wrongly
classified inputs. The second test problem is a parity function of dimension
eight (even-8-parity). This function outputs 1 if the number of set input bits
is even, otherwise the output is 0.

Table 1.3. Restriction of effective mutation distance. Average error over 200 runs.
Statistical standard error in parenthesis. Percentage difference from baseline results.

Variation Maximum iris even-8-parity
Distance mean (std) A (%) mean (std) A (%)
effmut — 0.90 (0.06) 0 16 (1.2) 0
10 0.72 (0.06) 20 13 (1.2) 19
5 0.74 (0.06) 18 12 (1.2) 25
2 0.68 (0.05) 24 11 (1.1) 31
1 0.54 (0.05) 40 9 (0.9) 44

Table 1.4. Average number of iterated mutations until a maximum distance is

met.
Variation Maximum [terations
Distance iris even-8-parity
effmut — 1.00 1.00
10 1.02 1.02
5 1.05 1.05
2 1.12 1.12
1 1.18 1.20

Table 1.3 compares average prediction errors for different maximum muta-
tion distances. The maximum possible distance equals the maximum program
length (200 instructions) and imposes no restrictions. For both problems, the
best results are obtained with the smallest effective distance (one). This is all

18 Banzhaf, Brameier, Stautner, and Weinert

the more interesting if we consider that a restriction of variation distance al-
ways implies a restriction in variation freedom too. More specifically, certain
modifications might not be executed at certain program positions because
too many other instructions would be affected.

As we can learn from Table 1.4, the average number of iterations until
a maximum effective distance is met increases only slightly if the maximum
threshold is lowered. On average, only & 1.2 iterations are necessary with
the smallest threshold, and the maximum number of iterations (10 here) has
hardly ever been exceeded. Both aspects emphasize that freedom of variation
is restricted only slightly here.

1.6.3 Distance Distribution and Correlation

The results in Table 1.4 correspond to the distribution of effective mutation
distances in Figure 1.7, where only about 20 percent of all measured step
sizes are larger than one. Obviously, larger disruptions of effective code, as
demonstrated with the example program in Section 1.6, occur less likely.
Effective programs emerge to be quite robust against larger mutation steps
because their survival probability is higher in this way. In particular, this
is achieved by the effectivity of an instruction that may depend on more
than one succeeding instruction in program. Because the rate of noneffective
instructions that emerge with effective mutations is comparatively low, most
effective mutation distances result from deactivation of effective instructions.

Ef‘fective Mutatibns

Frequency (x 100000)

oL —l_’m L .

0 5 10 15 20 25
Variation Distance

Fig.1.7. Distribution of effective mutation distances for iris problem (similar to
even-8-parity). Average figure over 100 runs.

Controlling variation step size on effective code level necessarily requires
a distance metric that measures causal connections between program changes

1 Genetic Programming 19

and fitness changes sufficiently precisely. Even if already small modifications
of the program structure may result in almost arbitrary changes in program
behavior, smaller variations of the genotype should lead to smaller variations
of the phenotype for a higher probability. In [13] this has been demonstrated
by applying the edit distance metric to program trees. Figure 1.8 clearly
shows a positive correlation between the mutation distance on code level and
the mutation distances on fitness level for our code-selective metric on linear
genomes. The corresponding distribution of mutation distances in Figure 1.7
confirms this to be true for the vast majority of occurring distances.

80 T —
Effective Mutations +
70 P 4
60 L + -

50 F +]

Fitness Distance
B
o
T
.
.

30 F * b

20 + 1

10 + b

O 1 1 1 1
0 5 10 15 20 25

Program Distance

Fig.1.8. Correlation between program distance and fitness distance for iris problem
(similar to even-8-parity). Average figure over 100 runs.

The first observation, that small mutation steps occur more frequently
than large mutation steps, fulfills guideline M 2 of a metric-based evolutionary
algorithm (MBEA, see Section ??). The second observation (causality) forms
a necessary precondition for the success of evolutionary algorithms in general.

1.7 Control of Structural Diversity

The effective distance metric between programs from Section 1.6.1 is ap-
plied here for an explicit control of genotype diversity, which is the average
structural distance between individuals in the population [7]. Therefore, we
introduce the two-level tournament selection shown in Figure 1.9. On the
first level, individuals are selected by fitness (fitness selection). On the sec-
ond level, the two individuals with maximum distance are chosen among
three fitter individuals (diversity selection). More precisely, we select for the

20 Banzhaf, Brameier, Stautner, and Weinert

effective edit distance minus the distance of effective lengths.* By doing so,
the growth of effective length is not rewarded directly during selection.

While an absolute measure, such as fitness may be compared between
two individuals, selection by a relative measure, such as distance or diversity
necessarily requires a minimum of three individuals. In general, two from n
individuals are selected with the greatest sum of distances to the n — 1 other
individuals. Selection pressure on the first level depends on the size of fitness
tournaments. Pressure of diversity selection on the second level is controlled
by the number of these tournaments. Additionally, we use a selection rate
parameter in order to tune the selection pressure on the second level more
precisely.

Variation
o

Diversity Selection

(2. Level)
Fitness Selection . Winner . .
(1. Leve)
o) o
Tournament

Fig. 1.9. Two-level tournament selection.

The two-level tournament selection constitutes a multiobjective selection
method that finds individuals that are fitter and more diverse in relation to
others while selection for fitness keeps the higher priority. Selecting individ-
uals only by diversity for a certain probability instead does not necessarily
result in more different search directions among better solutions in the popu-
lation. Dittrich et al. [11] report on a spontaneous formation of groups when
selecting the most distant of three individuals from a population of real num-
bers.

The number of fitness calculations and the processing time, respectively,
do not increase with the number of tournaments if the fitness of individuals
is saved and is updated only after variation. Only diversity selection itself
becomes more computationally expensive the more individuals participate in

* This is possible because both measures, edit distance and length distance, operate
on instruction level here.

1 Genetic Programming 21

it. n individuals require (g) distance calculations. Hence, program distance
should be efficiently computable.

A fitness landscape on the search space of programs is defined by a struc-
tural distance metric between programs and a fitness function that reflects
the quality of program semantics. The application of a genetic operator corre-
sponds to performing one step on this landscape. The active control of struc-
tural diversity increases the average distance of individuals. Graphically, the
individuals spread more widely over the fitness landscape. Thus, there is a
lower probability that the evolutionary process gets stuck in a local minimum
and more different search directions may be explored in parallel.

Note that the two-level selection process can also be used for an explicit
control of code growth (complexity selection). Therefore, in linear GP a se-
lection pressure may be imposed specifically on the smallest effective or non-
effective program length.

1.7.1 Prediction Performance

For the two test problems introduced in Section 1.6, Table 1.5 summarizes av-
erage error rates obtained with and without selecting for structural diversity.
Different selection pressures have been tested. For the minimum number of
fitness tournaments (three) we used selection probabilities 50 percent and 100
percent. Higher selection pressures are induced by increasing the number of
tournaments (up to four here). For each problem and variation operator, the
performance increases continuously with the influence of diversity selection.
The highest selection pressure that has been tested results in about a 2 to
3 times better prediction error on average, than without increasing diversity
actively.

Again, as already demonstrated in Section 1.5 for regression tasks, linear
GP performs significantly better by using effective macro-mutations instead
of crossover. Obviously, the linear program representation is more suitable for
being developed by mutations only, especially if those concentrate on effective
instructions. Nonetheless, the experiments with linear crossover show that di-
versity selection does not depend on a special type of variation. Moreover, the
application of this technique is demonstrated with a population-dependent
operator.

1.7.2 Development of Diversity

Figures 1.10-1.13 illustrate the development of structural diversity during
runs for different selection pressures and different variation operators. Obvi-
ously, the higher the selection pressure is adjusted, the higher is the diversity.
Even without applying diversity selection, the average effective program dis-
tance does not drop towards the end of runs. While the diversity of effective
code increases with crossover until a certain level and stays rather constant
then, diversity with effective mutations increases more linearly.

22 Banzhaf, Brameier, Stautner, and Weinert

Table 1.5. Second-level selection for structural diversity with different probabilities
and different numbers of fitness tournaments (#7T). Average error over 200 runs.
Statistical standard error in parenthesis. Percentage difference from baseline results.

Variation Selection iris even-8-parity
% #T mean (std) A (%) mean (std) A (%)
cross 0 2 2.11 (0.10) 0 58 (3.4) 0
50 3 1.42 (0.08) 33 35 (2.4) 40
100 3 1.17 (0.07) 44 27 (2.2) 53
100 4 1.09 (0.07) 48 19 (1.8) 67
effmut 0 2 0.84 (0.06) 0 15 (1.2) 0
50 3 0.63(0.05) 25 12 (1.0) 20
100 3 0.60 (0.05) 29 10 (1.1) 33
100 4 0.33(0.04) 61 7 (0.8) 53

Two major reasons can be found to explain this behavior: First, genetic
programming is working with a variable length representation that grows
continuously during a run. In linear GP this is especially true for the effective
program length, which may still grow even if the absolute length has reached
the maximum. The longer effective programs become the bigger effective
distances are possible. Actually, the growth of effective code is restricted
earlier with crossover because of a much higher proportion of noneffective

50 ! T T T T T T T T
0% (2T) ——

45| 50% (3T) -~ A
100% (3T) -

40 | 100% (4T)

Structural Diversity
N
o
T
.

0 v L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Generations

Fig.1.10. Iris problem: Diversity with crossover and different selection pressures.
Selection pressure controlled by selection probability and number of fitness tourna-
ments (T). Average figures over 100 runs.

50

45
40

35

Structural Diversity
N
o

1 Genetic Programming 23

0% (2T) ——

50% (3T)

100% (3T) -
100% (4T)

! ! !

! ! ! ! ! !

50 100

150

200 250 300 350 400 450
Generations

500

Fig.1.11. Iris problem: Diversity with effective mutations and different selection
pressures. Selection pressure controlled by selection probability and number of fit-
ness tournaments (T). Average figures over 100 runs.

35

30

25

20

15

Structural Diversity

10

0% (2T) ———

50% (3T)

100% (3T) -
100% (4T)

! ! !

50

100 150
Generations

200 250

Fig. 1.12. Even-8-parity problem: Diversity with crossover and different selection
pressures. Selection pressure controlled by selection probability and number of fit-
ness tournaments (T). Average figures over 100 runs.

code that emerges with this operator (approximately 50 to 60 percent here).
It is important to note that the average effective program length is hardly
influenced by the distance selection in comparison to the average program

distance.

Second, both forms of variation, linear crossover and effective mutation,
maintain program diversity over a run implicitly in terms of the structural
distance metric. This is true even without the explicit selection for diversity.

24 Banzhaf, Brameier, Stautner, and Weinert

35

0% (2T) ——
509 (3T) ———
30 | 100% (3T) -~ p
100% (4T) ..
25+ 1
2
S 20t]
a
315t 1
©
g L
7]
10 e 1
5 | .|
O 1 1 1 1
0 50 100 150 200 250

Generations

Fig.1.13. Even-8-parity problem: Diversity with effective mutations and differ-
ent selection pressures. Selection pressure controlled by selection probability and
number of fitness tournaments (T). Average figures over 100 runs.

For linear crossover the reason might be in its high variation strength. Addi-
tionally, the high amount of noneffective code contributes to a preservation of
effective code diversity with this operator. When using mutations exclusively
instead, a high degree of innovation is introduced continuously into the pop-
ulation. This leads to a higher diversity of effective code than it occurs with
crossover (see Figures 1.10-1.13) in consideration of the fact that the average
effective length is about the same here for crossover and effective mutations
in the final generation.

The stronger one selects for diversity, however, the more diversity gains
ground in crossover runs. Obviously, a stronger influence on population di-
versity can be observed with crossover than with effective mutations. In com-
parison to mutation the success of recombination depends more strongly on
the composition of the genetic material in the population. The more different
two recombined solutions are, the higher is the expected innovativity of their
offspring.

In the previous sections we have concentrated on improving the linear
GP approach. In particular, the development of methods has been based on
the distinction between used and unused parts of the linear representation.
In tree programs, by comparison, redundant substructures may emerge only
from program semantics, not from program structure.

In the following sections we will apply genetic programming for solving
different problems from machining technology. Even if, in principle, linear
GP may be used as well as tree-based GP in this problem domain, we have
decided on the latter approach here. An introduction to this standard GP

1 Genetic Programming 25

variant is given along with a description of the problem specific configurations
that have been chosen here.

1.8 Genetic Programming in Machining Technology

Modeling the chip-building process in cutting has been in the center of in-
terest for a long time. The chip geometry, the material movement and the
thermal processes that take place at the center of the cutting zone are de-
cisive for high quality machining, reduction of machining times, and tool
wear. Most existing approaches incorporate finite element or molecule dy-
namic methods as well as analytical techniques based on cutting force models
[1,14,23,25,29,37] (see Figure 1.14). CT methods are used for this problem as

Fig.1.14. Finite element (left), molecular dynamics (center) and analytical (right)
methods.

well [20]. These approaches focus on neural networks. Neuronal networks can
model the general behavior of correlations, but the models cannot be used
aside from neuronal networks for further usage or investigations.

Another CI method is symbolic regression via genetic programming. Sym-
bolic regression is a widely used method for reconstructing mathematical
correlations. Here a new graphical representation of the individuals is also
presented. This new three-dimensional representation allows the user to rec-
ognize certain possibilities to improve the setup of the process parameters.
Furthermore, this new representation allows the visualization of the gener-
ated three-dimensional objects with nearly every CAD program for further
use.

The approach of symbolic regression using genetic programming is quite sim-
ilar to that of a human observer [29] watching a certain process and trying to
describe it in physical terms. Furthermore, the system may produce some un-
expected but valid results, which do not correspond to any known properties
of the process. If such phenomena occur, new knowledge about the process
has been generated. This knowledge may be helpful in supporting the devel-
opment of new simulation tools, which are able to increase the productivity

26 Banzhaf, Brameier, Stautner, and Weinert

of the process as well as its reliability. In chip modeling, these models can be
described in a two dimensional way by relations of this type:

fz(t)
flit) = < 1.5
O=5)
To succeed in this objective, some problems have to be solved. The first task
is to obtain the trajectories of the particles in the crystalline structure of the
metal workpiece, shown in Sections 1.9 and 1.10. The second is to find a suit-
able model describing the physical correlations that lead to these trajectories.

For this task the method of symbolic regression via genetic programming is
used [2,16]. This is shown in Section 1.11.

1.9 Experimental Setup

The primary goal of the experiments was to gather some exemplary data from
the processes. In order to show the power of the developed algorithms, several
different processes and methods of image processing have been tried. They
all have a similar principle setup in common. The first step consists of taking
pictures of the process without disturbing the cutting process or influencing
the chip formation. This step is done on two different experimental setups to
gather a wide range of data. The second step is to transform these pictures
into a digital form.

1.9.1 Extracting Particle Trajectories from a Turning Process

The first experimental setup was used on the turning of aluminum alloys.
This setup was similar to that described by Warnecke [29]. In contrast to his
setup, no microscope is used. In this experiment a high speed camera, Wein-
berger Speedcam+ , which takes up to 4500 pictures per second, was used.
A schematic view of this setup is shown in Figure 1.15. A Grob BZS-600
turning machine was used for this process to cut the aluminum rings. The
whole chip-building process was filmed with the high-speed camera. About
2 seconds of every run were recorded. The experiment was carried out with
various process parameters. Two different alloys were used as workpiece ma-
terial. The workpiece was a ring-shaped profile, which was rotating while
the tool was fixed. The cutting speed v.[-2-], the feed f[mm], and the back
engagement of the cutting edge in a,[mm] were varied.

1.9.2 Extracting Particle Trajectories from a Drilling Process

The second setup to receive data from a cutting process was a modified
drilling process. A short, rigid, and torsion-resistant drill was used. Therefore
the workpieces could be formed as cylinders with a slightly reduced diameter
compared to the diameter of the drill. Thus, the high-speed camera could be

1 Genetic Programming 27

direction
of rotation

cutting edge

turning chisel

Fig.1.15. Experimental Setup for turning of aluminum alloys.

Table 1.6. Parameters used for the turning process.

Indexable Insert (Seco) workpiece ve[Z=] flmm] ap[mm)]
DNMG 150608-MF2 TP200 9SMn28k 265 0,20 4
DNMG 150608-MF2 TP200 9SMn28k 265 0,50 4
DNMG 150608-MF2 TP200 9SMn28k 380 0,20 4
DNMG 150608-MF2 TP200 9SMn28k 380 0,40 4
DNMG 150608L-95 HX AlCuMgPb 500 0,05 2
DNMG 150608L-95 HX AlCuMgPb 500 0,45 2
DNMG 150608L-95 HX AlCuMgPb 50 0,05 4
DNMG 1506081.-95 HX AlCuMgPb 50 0,40 4
DNMG 150608-MF2 TP200 C60 50 0,08 2

positioned at the side of this cylinder to enable the filming of the chip flow
at the cutting edge of the workpiece. Figure 1.16 shows a schematic view
of this setup as well as a photo of the machine (NBH70 from Hiiller-Hille).
Due to its rigid design, this machine allows very low turning speeds without
loosing precision. In this setup only the feed was varied. One difficulty was
to determine optimal parameters for the camera setup to obtain the best
possible images of the process. For this purpose the parameters of the camera
were also varied (Table 7.6). The parameters are the frequency of the image
recording and the intensity of the illumination by the stroboscopic lights. The
pictures that were taken in this drilling experiment were edited afterwards,
using image processing software to increase contrast and thereby the visibility
of the chip flow. Two different types of chips occur in this setup because of the
two cutting edges of the used drill. Figure 1.17 shows 6 frames extracted from
the processed movie. All pictures show the work of the inner cutting edge.
Low cutting speed at the inner cutting edge leads to a shear chip formation.
It can be seen how the chip is sheared and pushed together. The effect of the
chipbreaker on the chip can be seen.

28 Banzhaf, Brameier, Stautner, and Weinert

high-speed-camera

il

<«—cylinder

|——_

machine

Image

I g
software

Fig.1.16. The used machine (left) and a schematic view of the setup (right).

Table 1.7. Parameters used for the drilling process.

vl i) flmm] 113
50 0,40 1000
50 0,40 2000
50 0,15 4000
100 0,15 1000
150 0,15 1000
150 0,15 2000
150 0,15 4500

1.10 Gathering Data

After gathering the image data from the different cutting processes significant
trajectories of particles in the material need to be extracted. This was done
in two steps. First, a segmentation of the particles in the filmed material was
carried out. Afterwards, the trajectories of the particle flow were tracked.
This can be done either manually or automatically, depending on the type of
the material. In filmed sequences, an automatic tracking method is useful to
reduce the manual effort.

1.10.1 Segmentation

The task of determining which pixels of an image belong to a single element
of the filmed object 1s called segmentation. Here, single particles of a metallic
workpiece have to be located to simplify the tracing of the flow in the cutting
process. The problem is to find sets of points in the image that belong to
a single crystalline or another solid part in the flow. This can be any part

1 Genetic Programming 29

Fig.1.17. Shear chip formation at the inner edge of the drill filmed at 4500f/sec.

of the chip. All particles in the flow which follow significant paths are suit-
able. Therefore, the main difficulty is to find the same arbitrarily chosen but
significant particle in every frame of the filmed data.

1.10.2 Automatic Extraction

Automatic extraction of trajectories from filmed material requires a certain
quality of the film sequences to enable a software to trace the particles. There-
fore, the software used for this tracking needs to be able to recognize the same
particle in different frames of the filmed material. Traced particles need to

30 Banzhaf, Brameier, Stautner, and Weinert

be on the filmed surface during the whole process of tracking. Otherwise the
particles need to be segmented on every frame of the filmed material.

In oder to extract the particle trajectories, the program WINAnalyze
from Mikromak was used. Provided that the images had a certain quality,
the software was able to follow a segmented particle automatically. A screen-

shot of the software performing a full automatic segmentation is shown in
Figure 1.18.

%% WiNanalyze M=
Fle Playsr Image Sequences DObjects Tracking Anshee lwindew Help

t frames|
9.00

y [mm|
oan
200.000
150.000

100.000

49427 3 t [frames|
1.00 69.00

Frame: 9 | Pos: 246.549/231.724 Pinel

Fig. 1.18. The software WINAnalyze v.13 (Mikromak).

The program generates ASCII trace files, which can analyze the trajecto-
ries of the particles by the GP system. The positions of the particles can now
be interpreted as the values of a two-dimensional relation.

In addition to the fully automatic method, manual segmentation was used.
This method was used when, due to optical or material deformation effects,
it was not possible to locate one single particle in every frame automatically.
After this step, the software can carry out the automatic extraction of the
trajectories. This semi automatic method was used on the data extracted
from the turning process as described in Section 1.9.1.

1 Genetic Programming 31

1.10.3 Manual Extraction

As a second method, a manual tracing method was used to extract the par-
ticle trajectories. This was used in cases where the extraction of the particle
dynamics could not be obtained automatically due to optical or material de-
formation effects. These data from the drilling process, (see Section 1.9.2)
had to be prepared with this fully manual method, due to the strong defor-
mation of the chip volumes and the low image resolution resulting from the
high frame rate of the movies (up to 4500 images per second), see Figure 1.19.

material

cutting edge

Fig.1.19. The manually analyzed chip volumes generated in the drilling process.

1.11 Tree Based GP for Symbolic Regression

Symbolic regression via genetic programming was used to model the physical
correlations that underlie the processes shown in Section 1.9. The imple-
mentation of the genetic programming kernel contains several aspects from
evolution strategies [24] and genetic programming [16] as well.

1.11.1 GP System

The evolution starts with a randomly generated set of functions (initial popu-
lation). Due to the fact that the algorithm has to evolve parametric functions,
two symbolic representations have to be generated in parallel. The genetic
operations are applied to this first generation of functions and a succeed-
ing generation is produced, (see Figure 1.20). The fitness of an individual
is measured directly by evaluating the evolved formulae and comparing the
geometric shape of these parametric functions with the given point set i.e.,
the trajectory of the chip. Technically the formulae are represented as in-
stances of a tree-based data structure, which is implemented in C++ using
the Standard Template Library [28]. Hence, the fitness function can be eval-
uated in a fast and efficient way. It is also possible to use an interpreter,
which may be more flexible in some cases (e.g., for debugging tasks), but

32 Banzhaf, Brameier, Stautner, and Weinert

evolved trajectories

y

Individual

©®% o

1
31
1

/‘\
= ‘“t‘ oﬁ o o?\o

x
1
camparison 3
4

Ew

comp arison

original trajectory
= =

PN
11

¥
i6
18
it
il
'

GP-System

Fig. 1.20. General GP scheme.

slows down the evaluation. The structure of the program follows a basic GP
scheme [16,15,19]. The probability of choosing a constant during mutation,
the maximum size of an individual or the probability of changing a function
or a terminal and the number of changes is defined in a parameter file. The
data structure and the genetic operators will be described next.

1.11.2 Data Structure

In analogy to the infix notation of mathematical functions a tree based repre-
sentation forms the genotype. A sample individual, consisting of two functions
fz(t) and fy(¢), is shown in Figure 1.21. The primary goal of obtaining the
mathematical representations of two-dimensional curves leads to the pheno-
typic representation of an individual as graphs of a parametric function. This
difference between genotypic and phenotypic representation and the need for
genetic operators in which small changes in the genotype results in small
changes in the phenotype yields two problems. First a set of genetic opera-
tors which allows to perform these small changes on the genotype must be
used. Second a fitness function which correctly evaluates the fitness of one
individual has to be defined.

1 Genetic Programming 33

Fx(t) Fy(t)

o e‘\‘:\?

o 0@ ©
\\ / ;\\\
g © ﬁé o

Frmain(t) = f=(t) _ sin(t*cos(3 — t))t (1.6)

T fy(8) t/7 + t *sin(cos(t) — 2 % t)

Fig. 1.21. Sample structure of a single individual and the corresponding functions.

1.11.3 Genetic Operators

The genetic operators are known as mutation and recombination. Mutation
takes place on a single individual and changes one or more positions of the
individual, here, a single node of the tree. In contrast to classical GP [2] in-
ner nodes - as well as terminal nodes can be mutated in real, value steps. In
Figure 1.22 mutation is illustrated by a single mutational tree insertion of a
terminal node with value 8. To allow insertion of new nodes without erasing
older nodes the randomly (out of all possible operators) chosen operator x+z
was 1nserted together with the new node. The second genetic operator is the
recombination between two arbitrary individuals (see Figure 1.23). The ge-
netic recombination operator selects an arbitrary node in the first individual
and replaces it by an arbitrarily selected node from the second individual.
These two genetic operators allow a change in the genotype, yielding small
changes in the phenotype of the individual. The amount of change in the
phenotype can be reduced and increased by setting the amount of mutation
(e.g., number of nodes to be chosen).

A closer look at these operators is given in [31,32,34,36].

1.11.4 Deterministic Correction of the Individuals

In order to improve the efficiency of the naive approach, some variations have
been implemented [31]. This leads to a faster adaption of the curves without
adding any extra knowledge to the algorithm.

34 Banzhaf, Brameier, Stautner, and Weinert

original individual individual after insertion

‘ T

60 060 66 o

F(t)=t/7+t*sin(cos(t)-2 *t) F(t)=(t+8)/7+t*sin(cos(t)-2 *t)

Fig. 1.22. Mutational insertion on a individual.

individual 1

; individual after insertion

F(t)=t' T+t *sin(cos(t)-2*t) @ b

m‘di\igiz‘b é
s%s s W 00 o
6 ﬁ b é F(t)= | *sin(cos(t)-2*t)

¢ o

F(t)=cos(t+8)-4+t/t*sin(2)

Fig. 1.23. Recombination of individual 1 with individual 2.

Due to the fact that many solutions of the GP algorithm show shapes that
are similar to the correct solution but differ only in orientation and size, a de-
terministic adaptation step is inserted between the mutation and the fitness
calculation of the individual.

First, a translation vector is determined by placing the starting point
of the individual at the position of the first point of the trajectory. The

1 Genetic Programming 35

translation is performed by adding to each point of the genetically generated
function. In a second step, the individual will be scaled to the size of the
trajectory curve. The scaling values are determined by setting the maxima of
the individual to the same value as the maxima of the trajectory points. This
leads to a faster adaption of the curves without adding any extra knowledge
to the algorithm.

1.11.5 Multi Objective Fitness Function

Here (Figure 7.24) a multi-objective fitness function that compares the func-
tion values of the individual with corresponding points of the trajectory is
used. If all points of the trajectory lie on the function plot this individual
will represent a perfect solution to the problem. The fitness values will be
represented by a weighted point-to-value distance scheme (1.7), and they will
be summed up by a root mean square sum.

tmawx

Fae= Y (at]) (1.7)

t=0

Fig. 1.24. The used point to value distance scheme.

1.11.6 Weighting the Size of the Individuals

Individuals in genetic programming can grow very rapidly [16,18]. This is
referred as code bloat and can be observed in linear genetic programming or
in tree-based genetic programming. Quadratic [17] and exponential growth
are documented [22]. To stop individuals from growing and thus, from slowing
down the evaluation, an extra weighting function is inserted into the fitness
function. Both fitness values, the weighted point to value distance scheme
(1.7) and the weighted number of nodes, are combined- 1.8

Findiv = Faist * Jw — Frode * Uy (18)

36 Banzhaf, Brameier, Stautner, and Weinert

»

generations

Fig. 1.25. Individual extruded in a space-time plot.

tmax

Findgiv =) ([@]) ¥ 8w — (@) = (@e))*) * v (1.9)

t=0

Table 1.8. The parameters are here.

parameter description

S distance weight [0 — 1]

Vi number of nodes weight [0 — 1]

o number of nodes of an individual [> 0]
Qe estimated optimal number of nodes [> 0]

The estimated number of nodes is added to the function to force the
solution into the global optimum. To verify this procedure a set of tests
have been carried out. These tests have been performed to determine the
sufficient weighting of a punishment of a node count. The results of these
tests are shown in Section 1.13.3.

1.12 Graphical Representation

Due to the fact that choosing the right parameters for setting up a fast and
safe reconstruction of the estimated functions is difficult, a new graphical
representation of a complete GP run was developed. In order to allow an
overview of the whole chronology of the reconstruction process [33], a third
dimension was added to the two dimensions (function values of f;(#) and

1 Genetic Programming 37

fy(t)) of the current best individual of the run (see Figure 1.25). This third
dimension is the index in the order of the arrival of the best individuals in
the reconstruction. This is achieved by dumping all best individuals in this
current run, ordered by the time of their appearance. Therefore, a standard
CAD -CAM file format was used. This stereo lithography (STL) format is
well defined and can be used in various CAD -CAM systems or computer-
graphic systems. This opens various possibilities for rendering and later usage
of the generated objects. The data is generated by building triangles that
have two of their vertices in two consecutive points of one individual and
one vertex in another neighboring individual. That is, one triangle consists
of the points p[in][pn] and p[in][pn + 1] in the individual indicated by in
and a third point p[in — 1][pn] in a second individual indicated by in — 1. It
is obvious that, in order to get a closed surface, the following triangle has
two points in the individual indicated by in — 1, all three points for this
individual are p[in — 1][pn], p[in — 1][pn + 1] and p[in][pn + 1]. This scheme
is shown in Figure 1.26.In Figure 1.25 a sample rendering of such a plot is

Plinj(pn+1]

P| in][pn]

Pin-1(pn]

Fig.1.26. The scheme for the triangulation at two triangles.

shown. The rendering was carried out using a third party software called 3D
Exploration from Righthemisphere, Inc. The timeline goes from left (back)
side of the figure to final stage at the right hand-side (front). In this final
stage the individual has reached a fitness of 0.98. One thing that can be seen
from this picture is that only a small number of steps is needed to reconstruct
the general shape of the individual and that after this phase the algorithm
behaves more like an evolution strategy [24] for reaching the final shape.

38 Banzhaf, Brameier, Stautner, and Weinert

1.13 Results of the GP Kernel

1.13.1 Test Function

In this case a known function (1.10) was used in order to illustrate the oper-
ation of the symbolic regression algorithm

fx(t)) <sin(L * 1) *)

t) = = 180 1.10
r0=70) = (2 (10
. The shape of the graph of f(t) resembles a chip. The values of the parameter
t range from 0 to 360. For simulation purposes this function was sampled
yielding discrete points, which represent points that could have been sampled

from a film sequence. The final stage of the reconstruction, the plot and the
graph of the best individual, is shown in Figure 1.27. In spite of weighting

—
-~
|°*O|

I
— 1
&
o J—
> -
—#-test function
R
FY best individual
s f
- b a
=N o000,
o ‘0 20 10 3_: 2
@ o
e
y > . _’V
generations Fx(t)

Fig. 1.27. The final stage of the reconstruction of the test function.

the length of the individual in the fitness calculation, the relation function
(1.11) of the best individual after this reconstruction contains more nodes
than the original function (1.10).

$in (574555)* 774657
f $) =) sin(25.4997) 1.11
W=1. (Lren(149-902)) 4 12.2718 # 5in(40.5023) * g5s ()

After the resulting function has been simplified by hand (1.12) it can be
seen that the real structure of the searched relation function is found by the
algorithm. This basic structure can be used for further extrapolations. The
reduced form is:

f=(t) <sin(0.0175 * 1) x % 0.0920>

£,(8) = \cos(0.0178 £) # £ % 0.1000 (1.12)

1 Genetic Programming 39

Another way to analyze the behavior of the population is to store a snap-
shot of the whole population into one figure. All individuals are sorted in
order of their fitness values to enable a closer look at the progression of the
solution within the whole population. Figure 1.28 shows such a plot of the
reconstruction of the test function at particular times of the reconstruction
process. Table 1.9 shows the parameters for this test run. It can be seen that
due to the application of a (4 + A)-selection strategy taken from evolution
strategies [24] in the regression process, the best individual propagates very
fast through the whole population. The use of a type of a parallel multi pop-
ulation strategy may lead to a higher genetic diversity (see Section 1.14).

Table 1.9. Parameter table for diversity test.

value parameter

200 Number of parents per generation.

300 Number of children per generation.

0.001 Weight of the node count fitness to overall fitness.
1 Weight of the distance fitness to overall fitness.
10 Estimated best node count in this reconstruction.

40

Fig. 1.28. The population at different generations of the reconstruction. Each pic-
ture shows one complete population at discrete values of their overall fitness. The
individuals are sorted according to their fitness from lower fitness at the left to
greater fitness at the right side of the 3D shapes. During the starting phase where
low fitness values appear a strong diversity of the individuals in the population can
be observed. With increasing fitness values the population looses its diversity. At
this stage the main reconstruction work is performed by variation of the similar

Banzhaf, Brameier, Stautner, and Weinert

e T

Fitness 0.101527 Fitness 0.150081 Fitness 0.203431

Fitness 0.282540 Fitness 0.306753 Fitness 0.359802

Fitness (461218 Fitness .627615 Fitness 0.669400

Fitness (0.898750 Fitness 0920857 Fitness 0.957200

individuals.

1 Genetic Programming 41

1.13.2 Real World Data

After the verification of the GP scheme using a known test function, the
algorithm is applied to data extracted from a filmed sequence of the turning
process, as described in Section 1.15. To get information about the physical
correlations that lead to the shape of the chip in the turning process, the
positions of the chip are manually segmented (see Figure 1.29). One difference

material

cutting edge

Fig. 1.29. Manually traced particle flow (picture size 30 mm by 30 mm).

in the preceding test function is the lack of knowledge of the exact number
of nodes needed to obtain a good model of the physical process. Therefore,
the number of necessary nodes has to be estimated, and as a consequence,
the weighting factor of the number of nodes in the fitness calculation had to
be reduced. The parameters for the estimated best node count are increased
to 20 nodes, and the average initial size of the individuals is increased to
20 nodes. Therefore, the resulting relation functions (1.13) are not as short
and handy as the results from the test function. Figure 1.30 shows that the
algorithm has a tendency to smooth the trajectories. The approximations can
be improved locally by increasing the number of sampling points. This way
the reconstructions are forced to follow also small bendings of the particle
flow.

7
Tobes) +0.3679 x 1

0.44
cos | ——0.8995 *t+3*t*sin(L
f(t) = . cos(102.448) ’

sin 7140.5886
=33.1577

t+sin(t)+ 2920 —1655.335x%¢
0.709 + sin(t)+148.944—¢

—1%0.624 + 0.432

(1.13)

42 Banzhaf, Brameier, Stautner, and Weinert

0 10 20 30 40 50 60 70 80

-~ filmed data
1 + current best

Fig. 1.30. Three dimensional plot of best individual and the original data.

1.13.3 The Dependency of the Number of Nodes

To evaluate and to verify the strategy of weighting the lengths of the in-
dividuals (see Section 1.11.6), several tests were performed. For the tests,
two different target functions to the parameters were used. About 400 single
reconstruction runs were carried out per series.

Table 1.10. Parameter table for both test series.

value parameter

30 Number of parents per generation.

60 Number of children per generation.

1 Weight of the distance fitness to overall fitness.
20 Estimated best nodecount in this reconstruction.
5000 Maximum number of generations.

20 Average size of new individuals.

0.9 Probability of inserting a node.

0.9 Probability of deleting a node.

0.9 Probability of mutation a inner node.

0.6 Probability of inserting a value.

0.5 Probability of inserting a function.

10 Amount of mutation to a value.

-100 Maximum value of a new value node.

100 Minimum value of a new value node.

Two parameters were varied to examine their influence on the fitness
evaluation. The value for the estimated best number of nodes per individual
was varied from 0 to 20. To examine the influence of the weighting of the
number of nodes, the weighting factor in every run was estimated by the
result of 1/d where d was increased from 0 to 20 over the whole test run.
In Figure 1.31 the first two plots at the top are taken from one test series

1 Genetic Programming 43

that was done using the known test function. The two plots at the bottom
are taken from a second run with the real-world relation extracted in the
experiment described in Section 1.9.1.

Ui

v

node count depency - node count depency .0

Fig.1.31. Fitness of the test function (top) and the real-word data (bottom),
distance fitness Fg;s; (left), overall fitness Fingiv (right).

1.14 Parallelization

To overcome the problem of low diversity in a population, a distributed par-
allel approach was implemented into the symbolic regression approach. The
task here was to prove the possibility of speed improvement that could be
achieved by multiple computer systems or processors [27].

The general idea of the parallelization is based on the experiences of [30]
and [35]. For this reason a strong similarity between the algorithms used

44 Banzhaf, Brameier, Stautner, and Weinert

in both applications see [31,34] was very useful for the implementation. As
was done in [35], a blackboard communication model has been applied. Each
instance of the population posts a certain number n of individuals to the
blackboard every g generations. The parameters n and g are specific to each
population. So the migration rate can be chosen according to the speed of the
computer that carries the population. The implementation is based on file
sharing mechanisms. This allows a decentralized and flexible parallelization.

1.14.1 Tests

Due to the splitting of the population, the problem of low diversity was re-
duced. First tests show noticeably higher convergence rates. As it can be

0.9
0.8
0.7 = ~ S —
0,6 —

L 0.5

= 04 -

—single run one processor
—parallel run two processors 1
— parallel run two processors 2
parallel run four processors 1
parallel run four processors 2
parallel run four processors 3
parallel run four processors 4
U T T T T T T

0 5000 10000 15000 20000 25000 30000 35000

generation

i

5

Fig. 1.32. Convergence tests on the distributed implementation.

seen in Figure 1.32, convergence increases, and the overall computing time
decreases. A similar behavior can be seen in [35]. The parameters for all runs
are equal, as shown in Table 1.11. Migration frequency, i.e., the number of
generations after which a certain number of individuals migrate, should not
be higher than 1/1000 to stop good individuals from spreading around all
populations. This is similar to conclusions Cantu-Paz has published in [9]. Tt

1 Genetic Programming 45

Table 1.11. Parameter table for all parallel test series.

value usage of this parameter

200 Number of parents per generation.

200 Number of childrens per generation.

0.000001 Weight of the nodecount fitness to overall fitness.
1 Weight of the distance fitness to overall fitness.
10 Estimated best nodecount in this reconstruction.
100000 Maximum number of generations.

10 Average size of new individuals.

0.9 Probability of inserting a node.

0.9 Probability of deleting a node.

0.9 Probability of mutation a inner node.

0.6 Probability of inserting a value.

0.5 Probability of inserting a function.

5 Amount of mutation to a value.

is presumed that this behavior again may result from the usage of the (u+X)
strategy (see Figure 1.28).

Further investigations will be carried out to examine the behavior of dif-
ferent parameterizations in every different population. So the influence of
different node weighting parameters may be interesting. Additionally, some
examinations will be made regarding the behavior of a comma strategy to
stop the decreasing diversity.

1.15 Conclusion

This chapter reported on genetic programming including advanced methodic
aspects and applications to machining-technology problems. Development of
methods concentrated on the linear program representation. In particular,
the 1dentification of effective and unused parts of code was addressed. On
the basis of this information we could accelerate program evolution, not only
in computing time but also on the level of generations. Efficient mutation
operators were developed for linear programs that increased speed of fitness
convergence significantly. Even though the mutation-based LGP variant pro-
vides a sufficient preservation of code diversity already implicitly, increasing
the level of diversity explicitly by a multiobjective selection mechanism fur-
ther improved prediction performance. In general, mutation-based variation
was found to be much more successful than crossover-based variation in linear
GP. The main reason is that mutations induce smaller step sizes on the linear
program structure that allow a more continuous approximation to solutions
of higher quality. Additionally, a code-selective distance metric was applied
in order to reduce mutation step sizes more precisely on the effective code.

46 Banzhaf, Brameier, Stautner, and Weinert

It has been shown that the use of symbolic regression is suitable for con-
structing and developing descriptive models for physical relations. The pro-
cess of reconstruction can be automatized. Experiments have proved that
the reconstruction of correlations that take place in the chip building process
in metal cutting is possible. There are also results showing that the quality
of the found relations allows the reconstruction of other, not only physical
correlations. The correlations may be taken from other scientific fields where
process models still do not exist or should be renewed. This may be in applied
social studies or applied economics. Another possible field is the reconstruc-
tion of signals, such as audio signals, or the task of filtering disturbances from
given signals of low quality. The quality of the models found is good enough
to use them for extrapolation or for further analysis.

A new method for analyzing the behavior of reconstruction processes of
mathematical functions by symbolic regression via genetic programming has
been developed. This graphical representation of the reconstruction process
can be used in multiple ways to optimize or visualize the whole reconstruction
process. Furthermore, it can be used to investigate specific points in time in
the reconstruction. Additional considerations can be made to integrate this
system into standard symbolic regression libraries.

The symbolic regression application was used for a distributed parallel ap-
proach to speed up the regression and to increase the convergence proba-
bility. First investigations show the efficiency of a blackboard parallelization
method. This allows a high grade of parallelization without getting too much
overhead from communication. The application is portable and flexible, and
can be used on various types of systems. Further examinations need to be
done on the optimal parameterization of the migration rate and the param-
eters of the population.

In order to develop a physical model of the turning process, additional con-
siderations have to be made. For example, adding parameters, such as the
cutting speed or the tool angle to the reconstruction process. Furthermore,
restrictions have to be developed to constrain the length of the reconstructed
individuals.

References

1. D. Bahre, M. Miiller, and G. Warnecke. Basic characteristics on cutting effects
in correlation to dynamic effects. In Technical Papers of the 25th North Amer-
ican Manufacturing Res. Conference, pages 21-26, Lincoln, VT, 20-23 May
1997.

2. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
— An Introduction. On the Automatic Fvolution of Computer Programs and ils
Application. dpunkt/Morgan Kaufmann, Heidelberg/San Francisco, CA, 1998.

10.

11.

12.

13.

14.

15.

16.
17.

1 Genetic Programming 47

C. L. Blake and C. J. Merz. UCI Repository of Machine Learning Databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

M. Brameier and W. Banzhaf. A comparison of linear genetic programming and
neural networks in medical data mining. IEEFE Transactions on Evolutionary
Computation, 5(1):17-26, 2001.

. M. Brameier and W. Banzhaf. Effective linear program induction. Technical

Report CI-108/01, Collaborative Research Center 531, University of Dortmund,
2001.

M. Brameier and W. Banzhaf. Evolving teams of predictors with linear genetic
programming. Genetic Programming and Evolvable Machines, 2(4):381-407,
2001.

M. Brameier and W. Banzhaf. Explicit control of diversity and effective vari-
ation distance in linear genetic programming. Technical Report CI-123/01,
Collaborative Research Center 531, University of Dortmund, 2001.

. M. Brameier and W. Banzhaf. Explicit control of diversity and effective vari-

ation distance in linear genetic programming. In Proceedings of the Fifth Fu-
ropean Conference on Genetic Programming (EuroGP-2002), Kinsale, Ireland,
3-5 April 2002. (Accepted).

. E. Cantu-Paz. Migration policies and takeover times in genetic algorithms. In

W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, editors, Proceedings of the Genetic and Fvolutionary Compu-
tation Conference (GECCO0’99), volume 1, page 775. Morgan Kaufmann, San
Francisco, CA, 13-17 July 1999.

K. Chellapilla. Evolving computer programs without subtree crossover. IEEFE
Transactions on Evolutionary Computation, 1(3):209-216, 1997.

P. Dittrich, F. Liljeros, A. Soulier, and W. Banzhaf. Spontaneous group for-
mation in the seceder model. Physical Review Letters, 84:3205-3208, 2000.

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York, 1997.

C. Igel and K. Chellapilla. Investigating the influence of depth and degree of
genotypic change on fitness in genetic programming. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, ed-
itors, Proceedings of the Genetic and FEvolutionary Computation Conference
(GECCO0’99), volume 1, pages 1061-1068. Morgan Kaufmann, San Francisco,
CA, 13-17 July 1999.

T. Inamura. Brittle/ductile phenomena observed in computer simulations of
machining defect-free monocrystalline silicon. Annals of the CIRP, 46:31-34,
1997.

R. E. Keller, J. Mehnen, W. Banzhaf, and K. Weinert. Surface Reconstruction
from 3D Point Data with a Genetic Programming/Evolution Strategy Hybrid,
chapter 2, pages 41-65. Advances in Genetic Programming 3. MIT Press,
Cambridge, MA, 1999.

J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

W. B. Langdon. Quadratic bloat in genetic programming. In D. Whitley,
D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, edi-
tors, Proceedings of the Genetic and FEvolutionary Computation Conference
(GECCO0-2000), pages 451-458. Morgan Kaufmann, San Francisco, CA, 10—
12 July 2000.

48

18

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Banzhaf, Brameier, Stautner, and Weinert

W. B. Langdon, T. Soule, R. Poli, and James A. Foster. The evolution of size
and shape. In L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline,
editors, Advances in Genetic Programming 3, chapter 8, pages 163—190. MIT
Press, Cambridge, MA, 1999.

J. Mehnen. Evolutionare Flachenrekonstruktion. PhD thesis, University of
Dortmund, 2000.

M. Miiller. Prozefiidentifikation beim Drehen mit Hilfe kiinstlicher neuronaler
Netze. FBK - Produktionstechnische Berichte, 22, 1996.

P. Nordin. A compiling genetic programming system that directly manipulates
the machine-code. In K.E. Kinnear, editor, Advances in Genetic Programming,
pages 311-331, MIT Press, Cambridge, MA, 1994.

P. Nordin and W. Banzhaf. Complexity compression and evolution. In L. Eshel-
man, editor, Genetic Algorithms: Proceedings of the Sixth International Confer-
ence (ICGA95), pages 310-317, Morgan Kaufmann, San Francisco, CA, 1995.
H. Schulz and K. Bimschas. Optimisation of precision machining by simulation
of the cutting process. Annals of the CIRP, 1993.

H.-P. Schwefel. Fvolution and Optimum Seeking. Wiley, New York, 1995.

S. Shimada, N. Ikawa, H. Tanaka, and J. Uchikoshi. Structure of micromachined
surface simulated by molecular dynamics analysis. Annals of the CIRP, 1994.
T. Soule, J. A. Foster, and J. Dickinson. Code growth in genetic programming.
In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Proceedings
of the Genetic Programming Conference (GP’96), pages 215-223, MIT Press,
Cambridge, MA, 1996.

J. Sprave. Ein einheitliches Modell fir Populationsstrukturen in evolutionaren
Algorithmen. PhD thesis, University of Dortmund, 1999.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
MA, 1998.

G. Warnecke. Spanbildung bei metallischen Werkstoffen. Technischer Verlag
Resch, Grafelfing, 1974.

K. Weinert, J. Mehnen, and G. Rudolph. Dynamic neighborhood structures
in parallel evolution strategies. Technical Report CI-114/01, Collaborative Re-
search Center 531, University of Dortmund, 2001.

K. Weinert and M. Stautner. Reconstruction of particle flow mechanisms with
symbolic regression via genetic programming. In L. Spector, E. D. Goodman,
A. Wu, W. B. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and FEvo-
lutionary Computation Conference (GECC0-2001), pages 1439-1443. Morgan
Kaufmann, San Francisco, CA, 7-11 July 2001.

K. Weinert and M. Stautner. Reconstruction of physical correlations using sym-
bolic regressions. Technical Report CI-116/01, Collaborative Research Center
531, University of Dortmund, 2001.

K. Weinert and M. Stautner. A new view on symbolic regression. In Proceedings
of the Fifth European Conference on Genetic Programming (EuroGP-2002),
Kinsale, Ireland, April 3-5 2002. (Accepted).

K. Weinert, T. Surmann, and J. Mehnen. Evolutionary surface reconstruction
using CSG-NURBS-hybrids. In L. Spector, E. D. Goodman, A. Wu, W. B.
Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon,
and E. Burke, editors, Proceedings of the Genetic and Fvolutionary Computa-
tion Conference (GECCO0-2001), page 1456. Morgan Kaufmann, San Francisco,
CA, 7-11 July 2001.

35.

36.

37.

1 Genetic Programming 49

K. Weinert, T. Surmann, and J. Mehnen. Parallel surface reconstruction.
In Proceedings of the Fifth Furopean Conference on Genetic Programming
(FuroGP-2002), Kinsale, Ireland, 3-5 April 2002. (Accepted).

K. Weinert and A. Zabel. Modelling chip-building in orthogonal cutting by us-
ing a cellular automata/genetic programming approach. In C. Fye, editor, Pro-
ceedings of the Second ICSC Symposium on Engineering of Intelligent Systems
FEIS 2000, University of Paisley, Scotland, June 27-30 2000. ICSC International
Computer Science Conference.

J. Q. Xie, A. E. Bayoumi, and H. M. Zbib. Fea modeling and simulation
of shear localized chip formation in metal cutting. International Journal of
Machine Tools and Manufacture, 38:1057-1087, 1998.

