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Abstract—This paper explores several augmentations to the
previously described Plantagenet model of computer game agents
to give agents the deceptic capability to deceive the player
and/or be deceived by the player. Augmented finite state machine
controllers for agents in a simple role playing game are generated
using an evolutionary algorithm. It is demonstrated that the
proposed model is a practical option for generating populations
of around 30 agents in which constraints on agent behaviour to
ensure that actions are consistent with deception can be satisfied
in substantial portions of the agent population.

I. INTRODUCTION

Considerable research has been carried out into how to
make better control architectures for agents in computer games
[1], [2]. Some of these architectures are very sophisticated
and boast impressive capabilities. Despite these achievements,
very little of this research has made its way into commercial
computer games [3], [4]. Previously, the Plantagenet system
proposed by Watson et al. [5] addressed an important related
issue on which relatively little work has been done — namely,
improving the process by which existing agent controllers are
made rather than improving the agent controllers themselves.

This paper continues that work by testing various aug-
mentations to that model to support deceptic agents — that
is, agents that have a capacity to deceive the player and/or
be deceived by the player. Our ultimate goal is to enable
Machiavellian agents: agents that have the theoretical deceptic
capacity to deceive the player and be deceived by the player
and are also perceived by human players as having these
qualities. These capacities are enabled by equipping agents
with a model of the player’s objective that they can update
and use in action selection.

This paper is organised as follows. Section II briefly
covers background information and related work. Section III
provides a summary of the controller generation model that
underlies this work. Section IV describes three progressively
more complex agent-model augmentations for enabling de-
ceptic agents as well as the set-up of experiments designed
to test the viability and performance characteristics of these
augmentations. Section V contains both the results of these
experiments and a discussion of these results. Finally, Section
VI gives our conclusions as well as some planned directions
for future work.

II. BACKGROUND

A. Computer Role Playing Games

Role Playing Games (RPGs) are a subset of computer
games that emphasize the development of the character con-
trolled by the player, the importance of the player’s character
in the game world and the influence that the player’s character
has on that world. These games often place a lot of importance
on carefully crafted storylines in which the player’s character
has a central role. The game worlds in RPGs can be extremely
large in scope and complexity and the player often has great
freedom to explore these worlds. RPG game worlds can be
inhabited by thousands of non-player characters (NPCs).

B. Agents in Role Playing Games

Typically a significant part of the game experience in
RPGs is based on the player’s interaction with NPCs. This
can vary from very simple interactions based on fighting
and defeating a character to more complicated interactions
such as conversation, trade or negotiation. In many cases,
the social landscape of the game influences the interaction.
For instance, a friendly agent will behave differently towards
the player than an antagonistic agent. Because of the variety
of interactions that are potentially required to be handled
by the agent controllers in RPGs, and the scope for future
experimentation that this offers, RPGs were chosen as the
genre to focus on.

C. Finite State Models of Game Agents

Finite State Machines (FSMs) are models of computation
[6] defined by a finite list of states and a finite list of transition
rules. Each transition rule gives the possible state transitions
for a given input. FSMs can be applied in a large variety of
domains. Their strengths include conceptual simplicity, fast
execution speeds, and ease of implementation.

Finite State Machines are used extensively in computer
games [1]–[3], [7]–[9]. FSMs are easy to test, modify and
customize [10]. FSMs can achieve good results but cannot deal
with situations not explicitly prescribed for by the developer.
Moreover human players are becoming adept at predicting
behaviour by learning the rules encoded in the FSMs [3].

Efforts have been made to augment the classic FSM
model to increase its functionality. Fuzzy State Machines
(FuSMs) have come into fashion to give less deterministic
behaviours [10]. Fuzzy logic allows unpredictable behaviours
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to be generated based on traits of the agents which are
modeled as decision thresholds. FuSMs were used in Unreal,
S.W.A.T.2 and Civilization: Call to Power [10]. Gruenwoldt et
al. attempted to use a dynamic relationship graph to modulate
basic FSM behaviour [11].

D. Player Modelling

An extensive literature on player modelling in computer
games exists. In their 2011 survey Bakkes et al identify
two broad goals of player modelling — “(1) providing an
interesting or effective game AI on the basis of player models
and (2) creating a basis for game developers to personalise
gameplay as a whole, and creating new user-driven mechanics”
[12]. They further identify four categories of modelling as
being practically applicable to modern computer games —
“(1) modelling actions, (2) modelling tactics, (3) modelling
strategies, and (4) profiling a player” [12].

Researchers have shown that player modelling can be
applied beneficially in computer game genres as diverse as
first person shooter games [13], massively multiplayer online
role playing games [14], real time strategy games [15], [16]
and sports simulation games [17].

E. Deceptic Agents

To the best of our knowledge there is no literature specif-
ically on computer game agents with capabilities to deceive
the player or be deceived by the player. Research has been
undertaken on deception in agents in more general settings.
This includes subjects as diverse as how social agents can
limit exploitation by deceptic agents in open environments
[18], the modelling of trust and deceit in agent supply networks
[19], examination of how deception affects group performance
of agents simulating terraforming of Mars [20] and classical
abstact cases of deception in game theory problems like the
prisoner’s dilemma [21]. These works are not directly relevant
to the FSM-based computer game agents being used in this
paper.

F. Previous Work

To the best of our knowledge there is no previous work
pertaining to the evolution of FSMs to control game agents
other than Watson et al. [5]. Certainly there is no mention
of them in Togelius et al’s 2011 survey of procedural content
generation [22], Hocine and Gouaich’s 2011 survey of agent
programming in serious games [7] or Hendrikx et al’s 2011
survey of procedural content generation [23]. The modeling of
players in computer games is an established area of research,
an excellent up-to-date summary is given in [24].

III. PLANTAGENET SYSTEM

This section provides a brief overview of Plantagenet
(PLayable AgeNT GENEraTor), the controller generation
model introduced by Watson et al. [5]. This will facilitate
understanding of how this model is augmented in Section IV-E
to enable deceptic agents.

A. System Overview

The high level view of Plantagenet and its operation is
given in Figure 1. A developer provides an input and output
specification and an evolutionary algorithm uses these specifi-
cations to produce a set of controllers to be used by the agents
in the game.

Fig. 1. System Overview

The most important constraint on a set of controllers is
for the game that uses them to satisfy minimal playability
— that is, to make it possible for the player to complete
the game. In this context, completion is taken to mean the
achievement of some pre-defined victory objective. Examples
of victory objectives include slaying a particular NPC, obtain-
ing a particular item or learning a particular fact. If it can be
demonstrated that the interaction of the player with a set of
candidate controllers results in a minimally playable game, we
consider that controller set to be a playable controller set.

For every game victory objective, there may be multiple
playable controller sets. For games featuring even a moder-
ate number of agents, actions and items this number may
be extremely large. It is therefore useful to consider how
to compare playable controller sets in terms of desirability.
Desirability is a measure of how many ‘soft’ constraints a
controller set satisfies. Soft constaints are gameplay criteria
that are desirable but not necessary for minimal playability.
The nature of constraints is dependent on the nature of the
game but examples might include specifying that no more than
20 agents should accept bribes from the player or the player
should have to carry out no more than 20 actions to complete
the game. The desirability of a given controller set can be
explored by assessing the desirability of the game produced
by using that controller set to control its agents. To assess this
desirability, attributes of the game that is produced by using
the controller set must be examined. These attributes can be
inferred from the information gathered when checking if a
controller set is playable.

To check if a controller set is playable, it is sufficient to
check if there exists a sequence of actions that the player can
carry out in order to achieve the victory objective. A sequence
of such actions constitutes a path to victory. A controller set
with at least one path is playable. A controller set may have
many paths. The path(s) associated with a controller set can be
used to compute certain attributes of the game-play experience
that a player would get by playing a game formed using this
controller set. The precise nature of the attributes that could
be calculated is game-dependent. The soft constraints on the
generation process are bounds on these attributes. Examples
might include the number of actions the player must carry out
to satisfy the victory objective, the number of agents the player
must interact with to satisfy the victory objective or the types
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of actions that the player must carry out to satisfy the victory
objective.

B. Agents

Each agent has initial (possibly emply) sets of items and
facts when a game starts. Items are unique and can only be
held by one agent, while facts can be duplicated and can be
held by many agents at a time. Each agent also belongs to a
specified social group when a game starts, and this group may
change throughout the game. Social groups are game-specific.

Each agent in the game is always in one of its respective in-
ternal states. Agents only change state in response to actions by
the player. Their transitions between states are produced by the
generation process. The inputs which trigger transition table
lookup are of the form <currentAgentState, playerAction,
socialRelation> where currentAgentState is the current
state of the agent, playerAction is the action the player carried
out that the agent is reacting to and socialRelation is the
relation between the player and the social group the agent
belongs to. The state an agent is in controls the outcome of
any actions the player carries out involving that agent.

C. Input Specification

The input specification describes various properties of the
game. These are wide-ranging but include the number and
characteristics of the entities in the game and the actions that
can manipulate them.

D. Output Constraints

Output here refers to the game created by using a given set
of generated controllers. Constraints on this output are there-
fore constraints on the game-play produced. This allows the
fitness function (see Section III-G below) to direct the search
towards specific game-play objectives. The developer has the
freedom to specify as many or as few constraints as they are
interested in. There is a trade-off between the expressiveness
and conciseness of the specification format. Constraints could
include restrictions on state transitions, specification of which
transitions are needed and desired frequencies of the actions a
player should use.

E. Solution Encoding

If the transition table is considered to be a mapping from
input tuple of the form

< currentAgentState, playerAction, socialRelation >

to output state newState, the solution is encoded as the
newState component of each mapping designated as required
in the input specification. States are mapped to integers and
the solution is represented as a list of integers.

F. Evolutionary Algorithm

A generic evolutionary algorithm was employed to evolve
the controllers. Full details of the algorithm and its parameters
are given in [5].

G. Fitness Function

A minimisation fitness function is employed. Solutions
are evaluated by attempting to find all chains of actions (paths)
leading to the completion of the specified victory objective that
are possible under the agent configuration represented by the
solution. Objectives can either be to acquire a fact, acquire an
item or attain a state. Valid paths are determined by searching
backwards from the victory objective in a depth-first manner.
Once all the valid paths have been identified, the properties of
the chains are evaluated and penalties applied as appropriate.
An optimal solution will invoke no penalties and thus have a
score of 0. We deliberately use an exhaustive fitness function
to both guarantee that minimal playability will be detected if
present and ensure reliable evaluation of soft constraints.. In
works where these are not concerns, other evaluation schemes
have been developed and applied [24].

IV. EXPERIMENT SET-UP

Our aim in this work was to extend the model from [5] to
support agents with four additional capabilities:

1) Give agents a rudimentary model of the player’s
objective;

2) Allow agents to select actions based on their model
of the player’s objective;

3) Allow agents to select honest/dishonest actions based
on their model of the player’s objective; and

4) Allow agents to infer a model of the player’s objective
from their observation of the player’s actions.

These capabilities were chosen with a view to facilitating
generation of agents such that games using those agents can
include situations where:

1) Agents can give the player false information that
hinders the player’s objective. In other words, the
player is deceived by the agents.

2) Players can ‘fool’ agents by acting in a way inconsis-
tent with their true objective to gain the agents’ help.
In other words, the player deceives the agents.

In this section, we describe a game scenario (Sections
IV-A – IV-D) as well as three progressively more complex
augmentations to the finite-state agent model that can enable
agents with progressively more complex deceptic abilities
within this scenario (Section IV-E). This scenario and set of
augmentations is the basis for a pair of experiments described
in Section V that are designed to evaluate the viability and
performance characteristics of our proposed augmentations.

A. Game Scenario

Each agent belongs to exactly one of three groups —
Rebel, Loyalist or Undecided. Agents in the Rebel group will
support the player, agents in the Loyalist group will support
the Pretender and agents in the Undecided group will not offer
any support. All agents in the Undecided group are randomly
assigned the identification number of a fact or item that, if
received, will cause them to change their social group.

In order to win the game, the player must obtain an item
‘Crown’ which is in the possession of the Pretender. It is
theoretically possible that the player can simply attack the
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TABLE I. ITEMS FEATURED IN OUR EXPERIMENTS

Item ID Item Name

1 Crown

2 — (3N+1) Placeholders for random distribution

TABLE II. FACTS FEATURED IN OUR EXPERIMENTS

Fact ID Fact Name

1 — (3N) Placeholders for random distribution

Pretender to gain the Crown but the Pretender has his N
Guards with him at all times so in practice such an attack
is extremely unlikely to succeed. Rather the player can use
the ‘Summon’ action to call all the agents in the Rebel group
to the Pretender’s palace to join the battle. All the agents in
the Loyalist group will also join the battle on the Pretender’s
side. The combat strength of all agents is identical. In order
for the player to complete the game, they therefore need to
expand the size of the Rebel group of agents and try to keep
the size of the Loyalist group of agents as small as possible.

In this example, a playable controller set is any set that
allows the player to obtain the ‘Crown’ item. Desirable prop-
erties are for no agents in the Loyalist or Rebel groups to have
state transitions that lead them out of those groups and for all
agents in the Undecided group to have transitions that lead
them to change states to the Rebel or Loyalist groups.

B. Input Specification

The input specification describes the nature of the game,
the entities present in it and the actions the player can use to
manipulate the game state. It is broken down into the following
components:

1) List of Items: The items used in the experiment are
listed in Table I.

2) List of Facts: The facts used in the experiment are
listed in Table II.

3) List of Agents: The agents used in the experiment
are listed in Table III.

4) Item Mappings: This mapping of items to the agents
that hold them can be observed in Table III.

5) Fact Mappings: This mapping of facts to the agents
that know them can be observed in Table II.

6) Trade Mappings: The items that agents in the exper-
iment will accept in exchange for items they hold are
randomly generated. Note that these mappings can
also be manually specified if desired.

7) Action Descriptions: The actions the player can
carry out in the experiment are described in Table
IV.

TABLE III. AGENTS FEATURED IN OUR EXPERIMENTS

Agent ID Fact Item Note

1 N/A Crown Pretender

2 — (N+1) N/A N/A Pretender’s Guards

(N+2)—(6N+1) N/A N/A Townsfolk

TABLE IV. ACTION DESCRIPTIONS USED IN OUR EXPERIMENTS

Action Valid Start Valid Post Gains Gains Change Requires
States States Fact Item Group Fact/Item

Attack Idle Dead No Yes No -1/-1
Fight Slain
Flee

Ask Idle Answer Yes No No -1/-1
Fight
Flee

Trade Idle Accept No Yes Yes -1/-1
Trade

Intimidate Abstain Answer Yes No Yes -1/-1

Pick Up N/A N/A No Yes No 2/-1

Summon N/A N/A No No No 2/-1

Pick Pocket N/A N/A No Yes No 2/-1

Declare N/A N/A No No Yes 2/-1

Persuade N/A N/A No No Yes 2/-1

8) States: The states of the agent finite state machines
are drawn from the following set: Idle, Flee, Attack,
Fight, Lie, Answer, Abstain, Accept Trade, Refuse
Trade, Invisible, Dead.

9) Victory Objective: In this experiment the player can
only ever have one objective, to obtain the ‘Crown’
item.

C. Output Constraints

To help target the generation towards controller sets that
produce the desired gameplay experience, constraints are
placed on the search space. These are defined as follows:

1) Required Transitions: In this experiment, transitions
are required for all combinations of states, actions and
social relations.

2) Valid Transition Mappings:
• <?, Attack, ?>→<Flee,Dead,Attack>
• <?, Ask, ?>→<Abstain,Answer, Lie>
• <?, T rade, ?>
→<AcceptTrade,RefuseTrade>

• <?, Intimidate, ?>
→<Abstain,Answer, Lie>

Note that <?, attack, ?>→<flee, dead, attack>
denotes that for an agent in any state and in any social
group, the valid states that they should transition to
upon being attacked by the player are flee, dead or
attack.

3) Desired Actions: None specified.

D. Fitness Function

The penalties that can be applied to a solution’s fitness are
listed in Table V.
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TABLE V. OUTPUT CONSTRAINTS USED IN OUR EXPERIMENTS

ID Reason Penalty Variant
0 No valid chains found 1000 All
1 An agent has a transition that would lead out of the Loyalist group 200 All
2 An agent has a transition that would lead out of the Rebel group 200 All
3 An agent has no transition that leads out of the Undecided group 200 All
4 An agent in the Rebel group should not respond to the player with actions that are unhelpful 200 1
5 An agent in the Loyalist group should not respond to the player with actions that are helpful 200 1
6 An agent in the Loyalist group should respond to player actions that can result in a change of group with an attack action 200 1,2
7 An agent in the Undecided group should change to the Loyalist group if it observes the player attacking another agent within its observation range 200 1,2
8 An agent in the Loyalist group should respond to the player carrying out an ‘ask’ action with a ‘lie‘ action 200 1,2
9 An agent should update its player objective to gain possession of the item ‘Crown’ if it observes the player try to change an agent’s group to Rebel 200 1,2,3
10 An agent should update its player objective to Pretender gaining possession of the item ‘Crown’ if it observes the player try to 200 1,2,3

change an agent’s group to Loyalist
11 An agent should update its player objective to Pretender gaining possession of the item ‘Crown’ if it observes the player carry 200 1,2,3

out friendly actions toward agents in the Loyalist group

E. Machiavellian-enabling Augmentations

We introduce the following three augmentations to extend
the base model given in [5] (see Section III) to generate agents
with progressively more complex deceptic capabilities:

• Variant 1: The agent state tuple is expanded to include
the player’s victory objective (to acquire the ‘Crown’
item). Every agent is assigned this on initialisation.
This represents a very trivial implementation of a
player model. It is perfectly accurate and does not
change. Penalties are added to model the agents acting
according to their player model as listed in Table
V. These penalties are the soft constraints discussed
in Section III-A that allow playable solutions to be
ranked in terms of desirability.

• Variant 2: All augmentations from Variant 1 are
included. Additionally the model is changed to en-
courage agents in the Loyalist group to act in an ag-
gressive way if the player tries to change their group.
Additional changes are made to encourage agents in
the Undecided group to switch to the Loyalist group
if they observe the player in an aggressive encounter
and to encourage agents in the Loyalist group to
respond with the lie action in response to the player
asking which groups agents belong to. The goal of
these alterations is to give the impression that agents
are trying to manipulate the player into alienating
other agents. These changes are modelled with fitness
penalties listed in Table V.

• Variant 3: All augmentations from Variant 1 and Vari-
ant 2 are included. Additionally the model is changed
to allow agents to infer the objective of the player.
Note that the player’s true objective in this scenario
is always to obtain the ‘Crown’ item. The agents can
infer that the player’s objective is either for the player
to obtain the ‘Crown’ item or for the pretender to
retain the ‘Crown’ item. The goal of this change is to
facilitate a new aspect of gameplay by putting in place
the mechanisms that would let the player fool agents
in the Loyalist group into thinking that the player is
on their side in order to obtain truthful information
from the loyalist group. This change is modelled with
fitness penalties listed in Table V.

To illustrate how deceptic agents based on the augmenta-
tions proposed above would function in practice, we give an

example run relative to each augmentation-variant. For these
examples we will use a population of 7 agents. This population
is made up of the pretender, 1 guard, 1 townsfolk in the loyalist
group, 1 townsfolk in the rebel group and 3 townsfolk in the
undecided group. These agents are summarised in Table VI.
Since there are three agents in the loyalist group and one agent
(plus the player) in the rebel group, the player should seek to
convert at least two of the townsfolk to the rebel group. This
will mean their group outnumbers the loyalists and will give
them the balance of power and a good chance of victory.

For each variant we list a set of actions the player carries
out and the response of the agents. As far as is possible we use
the same sequence of player actions in each case given below.
This helps to illuminate the difference in agent behaviour
between the variants.

TABLE VI. AGENTS USED IN AUGMENTATION-VARIANT EXAMPLES

Name Social Group Notes
Pretender Loyalists
Louise Loyalists Guard
Bill Loyalists
James Rebels
Tina Undecided
Roger Undecided
Boudica Undecided

1) Variant 1:

1) Attack James. James responds by running away.
2) Ask Louise which social group Bill belongs to.

Louise responds by answering that Bill is part of
the Loyalist group.

3) Declare your right to rule to Tina. Tina responds by
changing group to Rebels.

4) Declare your right to rule to Roger. Roger responds
by asking for the ‘Hammer’ item.

5) Trade item ‘Gold‘ with Boudica for item ‘Hammer.’
Boudica responds by accepting the trade and by
changing group to Rebels.

6) Trade item ‘Hammer’ with Roger to change group.
Roger responds by changing group to Rebels.

7) Summon rebels to fight for the crown.

In this instance the player is able to recruit all three of the
Undecied group to the Rebels group, which then outnumbers
the Loyalists 5 to 3. The player therefore has an excellent
chance of defeating the Loyalists.
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2) Variant 2:

1) Attack James. James responds by running away.
2) Ask Louise which social group bill belongs to. Louise

responds by lying that Bill is part of the Undecided
group.

3) Declare your right to rule to Bill. Bill responds by
attacking the player. Tina observes the fight and
changes group to Loyalists.

4) Declare your right to rule to Tina. Tina responds by
attacking the player. Note that Tina’s response to
the player is different from her response to the
same action in Variant 1 because in this variant
her social group changed before the player acted.

5) Declare your right to rule to Roger. Roger responds
by asking for the ‘Good Hunting Locations’ fact.
Note that Roger’s response to the player is dif-
ferent to his response to the same action in
Variant 1 due to the generation process being
non-deterministic and this being an equally valid
response.

6) Trade item ‘Gold‘ with Boudica for fact ‘Good Hunt-
ing Locations.’ Boudica responds by accepting the
trade and by changing group to Rebels. Note that
Boudica has a changed transition in this situation,
this is an emergent result of the constraints on
item/fact mappings and the random change in
Roger’s transitions.

7) Trade fact ‘Good Hunting Locations’ with Roger to
change group. Roger responds by changing group to
Rebels.

8) Summon rebels to fight for the crown.

In this instance the player recruits 2 of the Undecided
group to the Rebels but 1 of the Undecided group joined
the Loyalists. The numbers are therefore split 4-4 and the
player has an even chance of defeating the Loyalists. The key
difference between the Variants 1 and 2 is that Louise lies,
causing the player to try to recruit Bill. Bill starts a fight and
Tina’s observation of the fight causes her to change social
group. In short the player has been deceived by Louise.

3) Variant 3:

1) Attack James. James responds by running away.
Louise’s model of the player’s objective changes to
believe that the player supports the Pretender.

2) Ask Louise which social group bill belongs to. Louise
responds by answering that Bill is part of the Loyalist
group.

3) Because the player knows that Bill is part of the
Loyalist group, they don’t try to recruit him.

4) Declare your right to rule to Tina. Tina responds
by changing group to Rebels. Note that Tina’s re-
sponse to the player is different to her response to
the same action in Variant 2 due to the generation
process being non-deterministic and this being an
equally valid response.

5) Declare your right to rule to Roger. Roger responds
by changing group to Rebels. Note that Roger’s
response to the player is different to his response
to the same action in Variant 2 due to the
generation process being non-deterministic and

this being an equally valid response.
6) Declare your right to rule to Boudica. Boudica re-

sponds by abstaining from answering. Note that
Boudica’s response to the player is different to
her response to the same action in Variant 2 due
to the generation process being non-deterministic
and this being an equally valid response.

7) Intimidate Boudica. Boudica responds by changing
group to Rebels.

8) Summon rebels to fight for the crown.

In this instance the player is able to recruit all three of the
Undecied group to the Rebels group, which then outnumbers
the Loyalists 5 to 3. The player therefore has an excellent
chance of defeating the Loyalists. The key difference between
Variant 3 and Variant 2 is that Louise changes her model of the
player’s objective after witnessing them act in a hostile way to
someone in the Rebels. In short, Louise was deceived by the
player. This deception causes Louise to tell the truth and in
turn the player isn’t tricked into attacking Bill and alienating
Tina.

V. RESULTS

Testing was done to verify (1) if our objectives could be
satisfied at all and (2) what the performance characteristics
of the generation process were. For each test, the base model
from Watson et al [5] and the three variants defined in IV-E
were executed for 30 test runs. All test runs were executed on
a desktop 3GHz i5-2500K processor.

A. Viability Results

Viability tests were carried out on a population of 31
agents. The results demonstrating that the variants can pro-
duce vaiable output are summarised in Table VII. Each cell
represents the percentage of agents that satisfied one of the
constraints in Table V for each variant across all the test runs
that satisfied minimal playability. Most of these constraints
were not completely satisfied for every agent in the population
but in all cases significant portions of the population satisfied
the constraints. In particular, the results for Variants 2 and
3 showed that satisfying constraints 9-11 in a subset of the
population came at the cost of reducing the proportion of the
population that could satisfy constraints 6-8.

Variant 1 successfully generated populations of agents
that allowed the player to manipulate their social groups to
make the victory objective attainable. Variant 2 successfully
generated agents with transitions that result in the lie action
being used to respond to the player based on the agent’s social
group and player model. User evaluation will be required to
evaluate if this agent behaviour is interpreted as manipulation
by humans. Variant 3 successfully generated agents that update
their player model. User evaluation will be required to evaluate
if this agent behaviour is interpreted as being deceived by
humans.
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TABLE VII. DEGREE OF OUTPUT CONSTRAINT SATISFACTION

Base V1 V2 V3
Minimally Playable 100% 100% 100 %100
Constraint 1 - 95.53% 88.48% 83.5%
Constraint 2 - 95.12% 88.72% 82.12%
Constraint 3 - 100% 100% 97.07%
Constraint 4 - 98.27% 98.6 98.07%
Constraint 5 - 100% 100% 100%
Constraint 6 - - 100% 98.07%
Constraint 7 - - 100% 60%
Constraint 8 - - 100% 60%
Constraint 9 - - - 42.5%
Constraint 10 - - - 37.81%
Constraint 11 - - - 45.13%

B. Performance Characteristic Results

Table VIII summarizes, for the base model and each
augmentation-variant, the mean time taken to generate
minimally-playable agent-groups of size 7, 19, and 31.

TABLE VIII. MEAN TIME TO ACHIEVE MINIMAL PLAYABILITY
(SECONDS)

Base V1 V2 V3
7 agents 0.002 0.035 0.037 0.041
19 agents 0.03 0.086 0.101 0.113
31 agents 0.005 0.171 0.177 0.198

Table IX summarizes, for the base model and each
augmentation-variant, the mean time taken to generate
optimally-desirable agent-groups of size 7, 19, and 31.

TABLE IX. MEAN TIME TO ACHIEVE OPTIMAL DESIRABILITY
(SECONDS)

Base V1 V2 V3
7 agents 0.127 1.996 1.958 1.984
19 agents 0.240 66.644 14.261 58.807
31 agents 0.621 241.767 159.605 225.892

Table X summarises test results for how successful the
generation process was for fixed-time searches. For each
specified time, the base model and the three variants were
executed and the percentage of runs that satisfied minimal
playability during that time limit are given.

TABLE X. DEGREE OF MINIMAL PLAYABILITY SATISFACTION

Base V1 V2 V3
5 seconds, 7 agents 100% 100% 100% 100%
5 seconds, 19 agents 100% 100% 100% 100%
5 seconds, 31 agents 100% 100% 100% 100%

Table XI summarises test results for how successful the
generation process was for fixed-time searches. For each
specified time, the base model and the three variants were
executed and the percentage of runs that satisfied optimal
desirability during that time limit are given.

TABLE XI. DEGREE OF OPTIMAL DESIRABILITY SATISFACTION

V1 V2 V3
5 seconds, 7 agents 100% 100% 100%
15 seconds, 7 agents 100% 100% 100%
30 seconds, 7 agents 100% 100% 100%
60 seconds, 7 agents 100% 100% 100%
5 seconds, 19 agents 0% 0% 0%
15 seconds, 19 agents 70% 73.33% 20%
30 seconds, 19 agents 100% 86.67% 86.67%
60 seconds, 19 agents 100% 100% 90%
5 seconds, 31 agents 0% 0% 0%
15 seconds, 31 agents 0% 0% 0%
30 seconds, 31 agents 0% 0% 0%
60 seconds, 31 agents 0% 0% 0%

C. Discussion

In light of the importance of minimal playability as em-
phasized in Togelius et al [22] — “given the way most
commercial games are designed, any risk of the player being
presented with unplayable content is unacceptable” — minimal
playability can be achieved very quickly 100% of the time for
all augmentation-variants (Tables VII and X).

As expected, time to achieve desirability increases both
with the complexity of the augmentation-variant and the
wanted number of deceptic agents (Tables IX and XI).

These results reveal an unusual trend. In the viability results
in Table VII we might expect to see constantly decreasing
constraint satisfaction as we progress left-to-right from simple
to complex variants. For constraints 4 and 5 this is not the
case. This suggests that the input specification itself for this
scenario makes satisfaction of those constraints very likely to
the point that our evolutionary search has only marginal impact
on their satisfaction.

Our experimental results have demonstrated the following:

• The controller generation model can be extended
to model agents that hold a model of the player’s
objective.

• The controller generation model can be extended to
model actions that can change an agent’s social group.

• The controller generation model can be extended
to model actions that are classified as helpful and
unhelpful.

• The controller generation model can be extended to
model actions that cause agents to change their player
model.

• The controller generation model can be successfully
employed to generate agent populations up to 31 in
size.

• All of this can be done in a timescale of minutes.

These results show that we have succeeded in giving agents
the deceptic capabilities we set as desired goals in Section IV.

These results should be considered with the caveat that the
augmentations we have implemented are simple in design. We
have successfully given agents deceptic capabilities but these
capabilities are rudimentary. That being said, starting with
simple augmentations has allowed us to more easily interpret
the results and to demonstrate that even very limited deceptic
capabilties can produce interesting results in game-play terms.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper we have expanded on the Plantagenet system
previously introduced by Watson et al [5] to facilitate the
generation of controllers for agents that model the player’s
objective. We have shown that controllers can be generated
which give agents the capabilities to select actions based on
their model of the player’s objective, in order to both attempt
to deceive the player and be deceived by the player. The model
of a player action has been expanded to incorporate classes of
actions and actions that change agents’s social group. Further,
we have demonstrated that the model is a practical option for
generating populations of around 30 deceptic agents.

User evaluation is planned to assess how the deceptic
mechanics introduced here are perceived by human players.
This will address the questions of whether these deceptic
agents satisfy our definition of Machiavellian agents and, if so,
whether Machiavellian agents lead to a perception of a better
gameplay experience by players. Additional experiments and
computational complexity analysis along the lines in Wareham
and Watson [25] is planned to evaluate how feasible it would
be in terms of required runtime and memory to extend the
agent model to include higher-order (recursive) modelling of
player objectives and modelling of other agents’ objectives. To
mitigate the rapid increases in complexity that this will likely
lead to, a framework where groups of agents share a single
model of the player will be explored.
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