

We describe how to harness the graphics processing abilities
of a consumer video game console (Xbox 360) for general
programming on graphics processing unit (GPGPU) purposes.
In particular, we implement a linear GP (LGP) system to solve
classification and regression problems. We conduct inter- and
intra-platform benchmarking of the Xbox 360 and PC, using
GPU and CPU implementations on both architectures.
Platform benchmarking confirms highly integrated CPU and
GPU programming flexibility of the Xbox 360, having the
potential to alleviate typical GPGPU decisions of allocating
particular functionalities to CPU or GPU.

I. INTRODUCTION
odern video game consoles are, in essence, graphics
supercomputers [1], particularly at product launch.

The XBox 360, at its launch on November 22, 2005, was the
first PC or console to feature CPU chip multi-processing
(CMP) with more than 2 cores (using 3 cores). It was also
the first console to feature a graphics processing unit (GPU)
with unified shader architecture (no distinct vertex and pixel
shader engines). New generations of consoles feature large
jumps in system performance, and occur in approximately
five year intervals. Moreover, current GPUs in general
provide considerable computational power. A survey of
GFLOP performance of nVidia and ATI graphics cards
compared to Intel processors from 2002 to late 2005
demonstrated that GPUs exceed Moore’s Law, which
predicts that general computing power doubles every 18-24
months [2]. In contrast, graphics hardware performance
doubled every six months, whereas Intel PC CPUs did not
meet predictions of Moore’s Law. Similar results were
reported for nVidia products up to late 2006 in [3].

In late 2006, Microsoft launched XNA’s Not Acronymed
(recursive acronym “XNA”) Game Studio Express 1.0,
which integrated with C# Studio Express. Microsoft’s goal
with the XNA framework was to empower academics and
independent developers to create “homebrew” games for its
commercial video game console Xbox 360 [4]. We describe
how to perform genetic programming (GP) using XNA and
the Xbox 360. Furthermore, we attempt to maximize the
hardware resources of the system: the central processing unit
(CPU) is used to run a GP tournament, while the GPU is

This work was supported by a PRECARN Postdoctoral Fellowship.
G. Wilson is with the Department of Computer Science, Memorial

University of Newfoundland, St. John’s, NL, A1B 3X5, Canada (e-mail:
gwilson@cs.mun.ca) and Verafin, Inc. St. John’s, NL, Canada.

W. Banzhaf is head of the Department of Computer Science, Memorial
University of Newfoundland, St. John’s, NL, A1B 3X5, Canada
(e-mail: banzhaf@cs.mun.ca).

used to perform parallel genetic operations. This work thus
presents the first implementation of a research-based GP
system on a commercial video game platform. It is also the
first time that linear genetic programming (LGP) has been
implemented in a general programming on graphics
processing unit (GPGPU) application, and it is the first
instance of the Xbox 360 being used for any GPGPU
purpose. To show that it is possible to program the Xbox
360 for GP research is a step towards harnessing the power
of future video game consoles.

The following Section provides a brief description of
GPGPU programming and describes previous evolutionary
computation work involving GPUs. Section III describes
XNA programming and engineering considerations for the
Xbox 360. Implementation details of the GPGPU GP
algorithm in the XNA framework, separated into CPU and
GPU functionality, are provided in Section IV. The
regression and classification benchmarks are described in
Section V. Comparison of GPU run time performance
versus an identical CPU-only implementation on a Windows
PC and the Xbox 360 are provided in Section VI.

II. GPGPU OVERVIEW AND EVOLUTIONARY
COMPUTATION WITH GPUS

A. How GPGPU Programming Works
GPUs have the ability to perform restricted parallel

processing, hence the increasing interest among researchers
in using them for applications requiring intensive parallel
computations. The type of parallel processing used by
GPUs is referred to as single instruction multiple data
(SIMD), where all the processors on the graphics unit
simultaneously execute the same code on different data. To
be specific, a GPU is responsible for simultaneously
rendering the pixels it is provided on an assembly of these
pixels called a “texture.” (Pixels of a texture are often called
“texels” when considered as a portion of a texture.) The
GPU processes the texture it is provided and outputs a
vector of four floating point numbers for each texel
processed, traditionally corresponding to RGBA (red, green,
blue, and alpha, for transparency) channels of a color. The
two components of GPU architecture that a user can control
are the set of vertex processors and the set of pixel (or
fragment) processors. An effect file, which is a program to
control the GPU, is divided into two parts corresponding to
the architecture: a pixel shader and a vertex shader. The
vertex shader program transforms input vertices based on
camera position, and then each set of three resulting vertices

Linear Genetic Programming GPGPU on Microsoft’s Xbox 360
Garnett Wilson, Member, IEEE, and Wolfgang Banzhaf

M

compute a triangle from which pixel (fragment) output is
generated and sent to the pixel processors. The shader
program instructs the pixel shaders (processors) to “shade”
each pixel in parallel and produce the final pixel with
associated RGBA values for final output. Even though the
latest GPUs (such as all those used this paper) use unified
architecture, where the shader processors can handle vertex
or pixel commands, the two functionalities are still separated
when composing effect files.

GPGPU applications tend to take advantage of pixel
shader programming rather than using the vertex shaders,
mainly because there are typically more pixel than vertex
shaders on a GPU and the output of the pixel shaders is fed
directly to memory [5]. (In contrast, vertex processors must
send output through both the rasterizer and the pixel shader
sections of the GPU.) In terms of traditional data structures
and execution, GPU textures are analogous to arrays, the
shader program is like a Kernel program, and rendering
effectively executes the program. The CPU runs the main
program, and sends data in texture form to the GPU when
parallel processing is required. The GPU renders to a
texture in its memory (rather than to the screen), and the
output texture data is consumed by the main (CPU-side)
program. A summary of the elements of GPU hardware and
flow of execution in GPU programming as they apply to our
XNA implementation is given in Figure 1.

Fig. 1. GPU architecture and execution flow in GPGPU programming.
Programmable elements of the GPU are shaded darkest. Thin arrows
indicate passing of data in texture form between pixel shaders and CPU.

APIs for accessing the functionality of the GPU differ in
level of abstraction. Lower level alternatives for GPU
programming include DirectX and the Open Graphics
Library (OpenGL). The next level of abstraction features C-
style languages including C for Graphics (Cg), Microsoft’s
High Level Shader Language (HLSL), and nVidia’s
Compute Unified Device Architecture (CUDA). At the
highest level are libraries that are integrated with object-
oriented languages such as Sh (now RapidMind) with C++
and Microsoft Research’s Accelerator [6] with C#.

B. Evolutionary Algorithms on GPUs
The first GPU-centered applications to use evolutionary

algorithms in general naturally applied them to textures for
use in image processing. The idea of applying genetic
programming to evolve shaders was first suggested by
Musgrave [7]. Loviscach and Meyer-Spradow used genetic
programming to evolve pixel shaders in OpenGL, and
applied them to textures with user feedback based on
aesthetic required for determination of a fitness [8]. Ebner
et al. [9] implement a similar strategy with Cg. Lindblad et
al. [10] apply linear GP (LGP) with DirectX to the
interpretation of 3D images.

Moving from GPU for traditional image analysis, general
purpose computation (GPGPU) techniques were later tried
using evolutionary algorithms. In [11], Yu et al. use Cg to
implement a GA on a GPU using the fine-grained parallel
model where each point of a 2D grid is an individual, which
itself becomes a parent with its best neighbor. The
chromosome of each individual is divided sequentially into
several segments that are distributed across a number of
textures with the same position. Each chromosome segment
consists of four genes in each of a pixel’s RGBA
components, with a separate texture storing the fitness
values of the pixel individuals. Unlike others, they
implement fitness evaluation, selection, crossover, and
mutation operators in shader programs on the GPU. For
large populations, the GPU implementation was found to be
faster than one on the CPU for the regression benchmark.
Indeed, performance gains through GPU use for large
populations have been found to be typical in EC-based
GPGPU research.

Fok et al. implement EP (evolutionary programming) on
the GPU in [12]. The individuals in a population are
represented as textures on the GPU, as are fitness, random
number, and indexing requirements. They determine
empirically that it is most effective to implement mutation,
reproduction, and fitness evaluation with the GPU while the
CPU performs competition and selection (where GPU
versions of those functionalities were also tried). Cartesian
GP is implemented by Harding and Banzhaf in [13] using
C# and Microsoft Accelerator, with Accelerator handling the
compilation of CGP expressions into shader programs,
execution of the programs, and the return of results as array
data. Chitty [14] implements a tree-based GP
implementation, using OpenGL to create data textures and
converting tree GP individuals to Cg shader programs for
evaluation on the GPU. Langdon and Banzhaf [15] created
a GPU-based interpreter using RapidMind and C++ that
operates on tree-based individuals. A modified
implementation of the GPU-based interpreter approach is
applied by Langdon and Harrison to represent extremely
large populations for a bioinformatics application in [16].

III. DESIGN CONSIDERATIONS FOR XBOX 360 GPGPU
The C# XNA framework naturally provides the user with

access to the Xbox 360 CPU. In addition, HLSL programs
can also be loaded in an XNA program, allowing the user to
perform vertex and shader programming with the Xbox 360
GPU. In early 2007, the updated XNA Game Studio
Express 1.0 (Refresh) was released, which is used in this
work. Given the accessibility that Microsoft has provided to
the Xbox 360’s CPU and GPU, and its continuing
development of the XNA product, it is an obvious choice for
implementing GPGPU applications. At the time of this
writing, the authors are not aware of any other console
manufacturers that have provided consumer access to
programming of the GPU hardware. Microsoft Accelerator
is not compatible with the XNA framework, so
programming of shaders in HLSL is required to provide
GPU access in XNA. The Xbox 360 hardware is ideal for
graphics processing: each console features a custom built
IBM PowerPC-based CPU with three 3.2GHz core
processors sharing a 1Mb L2 cache. Each CPU core also
has an associated complement of three SIMD vector
processing units. The CPU cache, cores, and vector units
are customized for graphics-intensive computation, and the
GPU is able to read directly from the CPU L2 cache. The
Xbox GPU by ATI houses 48 parallel shaders with unified
architecture and 10 MB of embedded DRAM (EDRAM) [1],
with 512 MB of DRAM as main memory.

Implementations created with the XNA framework can be
deployed on the Xbox 360, Windows XP with SP2, and
Vista variants. An XNA project requires that separate
initialization (Initialize), update of program logic (Update),
and rendering of graphics (Draw) methods be implemented.
The program runs simply by repeatedly updating the Update
and Draw methods—it is implemented as a video game that
is constantly checking its logic and updating the graphics on
the screen. The Draw method is the main component of a
GPGPU implementation, as this is where the shader
programs on the GPU will be called from. Rather than use a
typical loop construct for GP tournament execution, the
repeated execution of the Draw method is harnessed to
conduct generational tournaments over trials.

The XNA framework provides a means of processing and
compiling supported game assets such as textures and
shaders called the “content pipeline.” The content pipeline
does not permit dynamic loading or switching of shader
programs to the GPU. This precludes GP implementations
(such as [13, 14]) that provide individuals to the GPU for
processing, use the CPU to subject them to genetic
operators, and reload them to the GPU. This allows XNA to
provide faster loading of the GPU for rendering because all
data is already pre-compiled to the correct format [17]. This
decision certainly makes sense from the viewpoint of Xbox
360 console end users and speeds up genetic programming
with GPGPU that repeatedly uses the shader (as we do).
The XNA framework currently does not feature I/O to the

Xbox hard drive or memory units, so all data must be output
to the screen. An open source XNA keyboard component
available from [18] allowed user input from the Xbox 360
control pad or USB keyboard connected directly to the
console.

Pixel Shader version 3.0 (the most advanced shader
profile supported by the Xbox 360 GPU) was used.
Textures were rendered with XNA’s surface format
HalfVector4 type, so that four 16 bit floats were placed per
texel with one float per channel. A list of rendering options
using the Xbox 360 GPU with XNA is available at [19],
with HalfVector4 being the highest precision supported by
the Xbox GPU while still allowing texture compactness of
four channels per pixel. Some pertinent restrictions for the
shader program are practically universal to all GPUs at the
time of this writing. For instance, it is important to keep in
mind when designing the GPGPU shaders that GPUs can
only implement gather, but not scatter. (At least this has
been the case until very recently, since nVidia has
introduced that functionality in CUDA [3].) The only way
to retrieve data from a shader program in XNA is to render
results to a texture on a target buffer, and then read the
texture’s content back into the main calling program. One
cannot load array or variable parameters into a shader
program, alter their values in the shader code, and have their
new values returned following execution. The GPU is
optimized to only render textures, and that is its only means
of returning values: any values required must thus be
rendered by the GPU to internal targets. Furthermore, array
data stored on textures passed to shaders as parameters must
be referenced in the shader programs using texture
coordinates appropriate to the mapping scheme of the GPU-
dependent coordinate system.

In addition to XNA framework and general GPU
restrictions, the Xbox GPU hardware (and Pixel Shader 3.0)
have additional specifications that can be determined by
querying the Xbox 360 with the XNA GraphicsDevice class
or checking XNA documentation [20]. On the Xbox 360, a
shader program can consist of 2048 instructions, with flow
control depth of 4. (That is, a maximum of four instructions
can be called from inside each other.) The Xbox 360 GPU
can also support 16 simultaneous textures, with a maximum
texture height and width of 8192. All engineering
requirements of this section are met in the implementation
now presented in Section IV.

IV. IMPLEMENTING THE GP ALGORITHM USING XNA

A. GPU-side XNA GP Textures and Shaders
Populations of individuals are, naturally, represented as

textures to be processed by the GPU. Fitness cases are also
represented as a texture that is passed to the GPU and
referenced by the shader programs. Each individual’s
instructions are divided into eight chromosomes, separated
into two sets of four, and each set is placed on a texel on two

separate textures. Collectively, the two textures perform an
operation on the contents of either of two sources (fitness
case or register content), and place the result in a target
register according to the equation

 target = src1 op src2.

The variable integer op, op = [0, 3], indicates one of four
operators ADD, SUB, MUL, or DIV. The integer target,
target = [0, 3], indicates one of four target registers. The
sources src1 and src2 can specify either fitness cases or
registers based on flags in each instruction, and thus take
values in [0, MAX(classification features or regression
inputs, registers)]. An integer id, id = [0, population size] is
also used in these textures to label the individual, and an
integer PC, PC = [0, instructions] serves as a program
counter to the current instruction. Boolean flags f1, f2,
indicate whether to load from fitness cases or registers for
src1 and src2, respectively. The texels of the first texture
each possess the variables {op, target, id, PC} in their four
color channels, and the texels of the second texture
correspond to {f1, src1, f2, src2}. As the XNA HalfVector4
surface format was used, each chromosome (channel) was a
16 bit float (interpreted as an integer as appropriate). The
two textures represent a whole population, with each
individual being a column of texels, and each texel in the
column being an instruction. The width of the textures (in
texels) is thus the number of individuals in the population,
and its height is the number of instructions in an individual.
As the shader interprets each dual-texel instruction across
both textures at the same coordinate, the current state of an
individual’s four registers (following that instruction) are
kept in a third texture’s texel (at the same coordinates) as a
set of four floats. With this representation, the fitness shader
program can interpret an instruction across all individuals in
the population at once, using the program counter to track
which instruction is currently being executed. Textures
representing individuals are depicted to the left in Figure 2.

Fig. 2. Individual (left) and mutation (right) texture representations.

Textures are also associated with the mutation operator to

allow its implementation on the GPU. To accomplish this, a
texture with the same dimensions of the two chromosome
textures is filled with randomly generated float values in the
interval [0, 1] in the C# code (CPU-side). The value of each
chromosome (texel color channel) is evaluated against the
mutation threshold, and if it is less than or equal to the

threshold, the corresponding original chromosome in the
population is replaced with a chromosome at the same
texture coordinate in a third replacement texture. The
replacement texture is filled with randomly generated
chromosome values meeting the specifications of the two
original population textures. The textures to implement
mutation are shown to the right in Figure 2.

Using the population textures just described, fitness
evaluation in the shader uses the HLSL pseudocode:

float4 FitnessShader(float2 currentLocation : TEXCOORD0) : COLOR

 if (row in instruction textures == program counter)
if (flag1 == 1) source1 = fitnessCases[src1]

 else source1 = registers[src1] // flag1 == 0
if (flag2 == 1) source2 = fitnessCases[src2]

 else source2 = registers[src2] // flag2 == 0
 if (op == 0) register[target] = source1 + source2

if (op == 1) register[target] = source1 - source2
if (op == 2) register[target] = source1 * source2
if (op == 3) register[target] = source1 / source2

return registers;

The fitness shader above forces the GPU to process the

population one instruction at a time (via the program counter
check in the first IF statement). The shader thus runs for k
passes, k = instructions per individual. As each instruction
is interpreted, the register states for the previous instruction
are retrieved via texture lookup. Depending on the source
flags, data is retrieved via texture lookup from the fitness
cases or from the registers. The operation is determined,
and the result is placed in the appropriate target register.
The shader program does k = 16 passes (number of
instructions per individual) in its single technique definition.
(Techniques define which functions of the shader Effect
files are to be executed and what parameters they will be
given.) As each pass is completed, the updated register
texture is fed back to the shader on the CPU (C#) side where
the loop over the passes is conducted. The shader thus
interprets the correct instruction in each individual with
updated register contents.

The mutation shader, Mutate.fx, is run with two
techniques with identical logic, one with the mutation
texture and original and replacement {op, target, id, PC}
textures, and one with the mutation texture and the original
and replacement {f1, src1, f2, src2} textures. The mutation
shader operation is relatively simple: the color channel of
each texel in the original texture is replaced by the
replacement channel value in the replacement texture if the
mutation’s texture channel value at the same coordinate
exceeds the threshold. The mutation shader thus executes
mutation on every instruction in every individual in the
entire population simultaneously. The mutation HLSL
shader code is:

float4 MutateShader1(float2 currentLocation : TEXCOORD0) : COLOR

 // default is to keep all chromosomes the same
 float4 outData = tex2D(originalPopSampler, currentLocation.xy);
 // look up mutation thresholds, potential replacement chromosomes
float4 mutate = tex2D(mutatePopSampler, currentLocation.xy);

float4 replacement = tex2D(replacePopSampler, currentLocation.xy);
// if mutate pixel value exceeds threshold, replace chromosome
if (mutate.x <= mutationThreshold) outData.x = replacement.x;
if (mutate.y <= mutationThreshold) outData.y = replacement.y;
if (mutate.z <= mutationThreshold) outData.z = replacement.z;
if (mutate.w <= mutationThreshold) outData.w = replacement.w;

 return outData;

B. CPU-side XNA GP Algorithm Implementation
Using the flow control of an XNA program (all relevant

required methods to implement the XNA Game class are
shown) and implementing arrays conforming to XNA
texture objects where possible (rather than traditional C#
data structures such as Collections or Lists), the CPU
controls the overall operation of an LGP generational
tournament:

GPGame {

 GPGame() //constructor
 provide set of random seeds for trials
 Initialize()
 prompt for user input using on-screen keyboard
 declare and populate HalfVector4[] data arrays for all textures
Update(GameTime)
 check for exit key pressed on control pad
 parse user keyboard input until completed
Draw(GameTime) // evaluates fitness case over population
 // each pass evaluates an instruction over all individuals

for passes in fitnessEffect
 run Fitness.fx HLSL program (see above)
 resolve render target to texture, get array data from texture
 // do for each fitness case
 adjust all individual’s fitnesses; fitCase++
 if at the end of a generation

 fitness-proportionate generational selection
 run Mutate.fx HLSL program (on two texture sets)

 if at the end of a trial
 trial++; round = 0;
 add best fitness to growing List for output

if all trials are not yet done
 display fitness, timer, and population texture output

The above pseudocode for the main program (C#) uses
the continual frame refresh of an XNA program as the
driving force behind the GP tournament. By using the
Boolean checks throughout the Draw method, a GP
tournament is implemented. The program begins with the
on-screen keyboard, where the user specifies whether or not
to include GPU functionality, population size, mutation rate,
and number of rounds. In the Draw() method of the GP
tournament, for each fitness case, the Fitness.fx shader
interprets all instructions across all individuals, updating
register information over effect passes as described in
Section IV.A. Fitnesses are then updated and fitness-
proportionate roulette wheel generational selection, followed
by mutation, is performed on the population textures.
Finally, textures and fitness information are displayed on the
screen. As the population converges toward a solution, the
population textures will move from random pixel colors
throughout to colored bands across the texture
(corresponding to greater uniformity of instructions across
individuals). Upon publication, all XNA projects (including

source code) will be available at
www.cs.mun.ca/~gwilson/XNA_LGP.html. A screen shot of
the implementation is provided in Figure 3.

Fig. 3. XNA-based Linear GP GPGPU implementation screenshot. Each
Result indicates the best hits, best raw error, and trial time (seconds).

From top to bottom of the screenshot in Figure 3, the first

two textures display the relevant instruction components in
each instruction (texture row) over the whole population
(each individual is a texture column). It is these two
textures that will form uniform horizontal bands as the
population converges toward a solution. The state of each
of the four registers at each instruction for the population
is found in the third texture from the top. Mutation values
for instruction segments in the first and second texture are
in the fourth and fifth textures, respectively, with their
potential replacement values located in the sixth and
seventh textures, respectively. Results at the bottom of the
screen display best hits, best raw error, and trial time in
seconds.

V. EXPERIMENTS
Both a classification and regression benchmark were

implemented. A CPU-only version of the implementation
was also created, which simply implemented all shader
functionality with appropriate C# code. The Ecoli problem
from the UCI machine learning repository was chosen for
classification [21], using 75% of the entire data set for
training while retaining class distribution. Training was
performed over 50 generations to benchmark processing
times. Problem implementations were checked for
correctness: CPU and GPU variants produced identical or
similar results (given CPU and GPU float rounding
differences). The CPU and GPU implementations are
identical on both PC and Xbox 360, so the same code on
both platforms is always compared, with respect to
implementation. The sextic polynomial x6 – 2x4 + x2
introduced by Koza [22] was implemented for regression,
using float inputs in the range [0, 1] for 50 fitness cases. For

the experiments, the implementation was run on a Windows
Vista Business PC, using an AMD Athlon 64 Processor
3500+ (2.21 GHz), 1023 MB of RAM, and a (at time of
writing) state of the art ASUS EN8800GTX video card with
an nVidia GeForce 8800 GTX GPU on board. The nVidia
GPU features 128 parallel stream processors with unified
shader architecture [23]. See Table 1 for parameterizations.

TABLE I
XNA LINEAR GP GPGPU PARAMETERS

Function Set ADD, SUB, MUL, DIV (on floats)
Fitness fitness-proportionate roulette wheel
Population 10, 1000, or 4000 individuals
Mutation threshold = 0.1
Tournament generational, 50 rounds
Fitness Cases Classification: 251 training cases, 7

 float features, 8 integer categories
Regression: 50 cases, x = [0, 1]

Fitness Metric Classification: correct classification,
 based on Reg[0] mapping to category

Regression: 50 hits, where a hit is
 Absolute(Reg[0] – y) <= 0.01

VI. RESULTS

A. Intra-Platform CPU and GPU Performance
The fitness evaluation shader, while it does allow

parallelization in that it processes every instruction in every
individual at once, is relatively expensive for a shader. In
order to process register subresults for LGP, it cannot
process every instruction in every individual (all texels) at
once (as is typically possible in EC and GA). Even
interpreter approaches such as [15] process some instruction
per pixel, rather than necessitating multiple passes that only
operate on portions of the texture at a time. LGP requires
such a process to store subresults in registers following each
instruction. In contrast, the mutation shader operates on all
instructions in all individuals at once, maximizing shader
utility. Given these considerations, we compared execution
times of both Fitness and Mutation shaders, the Mutation
shader only, and the CPU on the Windows platform with
nVidia GPU. Results are shown in Figure 4.

Fig. 4. PC CPU to GPU mean trial time ratios for both 1 (Mutation) and 2
(Mutation and Fitness) GPU shaders with standard error, based on 10 trials
of 50 generations for classification (left) and regression (right) benchmarks.
Ratios greater than 1 show GPU use is faster, less than 1 that CPU is faster.

GPU performance gains of 4% and 2% over CPU are seen

for the two larger populations in regression, with a
substantial gain of almost 50% in speed with the population
of 4000 for classification. It is expected that the GPU
algorithm performance increasingly exceeds CPU
performance with larger population sizes, with this trend
likely being amplified by the high number of training cases
in the classification problem (251) as opposed to regression
(50). It is evident from Figure 4 that LGP fitness evaluation
is best left to the CPU: for neither benchmark does the use
of Fitness.fx provide a performance gain. Standard errors
reflect that times are quite consistent across all trials. Thus,
the GPU functionality of the Mutation.fx shader only was
compared to the CPU on the Xbox 360 (Figure 5).

Fig. 5. Xbox 360 CPU to GPU mean trial time ratios with standard error,
based on 10 trials of 50 generations. Ratios greater than 1 show GPU use is
faster, less than 1 that CPU is faster.

For the lowest population level, no speed increase with
GPU usage is seen. Speed increase with higher populations
(1000 and 4000) for classification is very low (less than
1%), whereas the speed increases for those populations in
regression is somewhat more substantial (2.5% and 2.9%,
respectively). The smaller contributions of GPU processing
to the Xbox 360 benchmarking may be due to the CPU
being optimized for graphics workloads (Section III): the
CPU even features SIMD vector processing units for each
core and the GPU reads directly from the CPU L2 cache.
Rather than the segregated CPU and GPU components in a
PC, the Xbox provides highly integrated cooperation
between CPU and GPU. Thus, while the GPU enhances
performance over CPU-only implementations, the difference
is just not as significant as on PC platforms. A benefit of
this tight integration of CPU and GPU on the Xbox 360 is
that the programmer need not be as concerned about
performance consequences of opting to place functionality
on the CPU as opposed to GPU, providing flexible design
decisions on hardware optimized for GPGPU.

B. Inter-Platform CPU and GPU Performance
While benchmarking shows that Xbox 360 CPU and GPU

are tightly integrated, and thus reduce the impact of CPU
versus GPU design dilemmas, it is of interest to see how the
Xbox 360 fairs in terms of speed performance against the
PC. Both implementations again contain identical code, and

are created with the XNA framework. A comparison of PC
and Xbox CPUs is shown in Figure 6.

Fig. 6. PC CPU to Xbox 360 CPU mean trial time ratios with standard error,
based on 10 trials of 50 generations. Ratios greater than 1 show the Xbox
360 CPU use is faster, less than 1 that the PC CPU is faster.

For both classification and regression problems, the PC
CPU is faster than the Xbox 360 CPU. With increasing
population, the performance of the Xbox 360 CPU further
decreases in relation the PC CPU. This analysis must be
interpreted with due consideration: the Xbox 360 CPU was
designed for graphics processing. Furthermore, these
metrics are obviously affected by the type of PC processor
used (Athlon 64 Processor 3500+ 2.21 GHz), and the RAM
available on the PC (1023 MB of RAM). The amount of
RAM was the minium recommended system requirement for
use of Vista Business, and the Xbox is put at a disadvantage
with its 512 MB of RAM.

Furthermore, by coding the implementation to not use the
GPU, even the Xbox 360 CPU is not being used at its full
capacity. (As mentioned in the last section, the Xbox 360
CPU actually includes SIMD vector processors.) The CPU
is custom made for the console, and while the graphics
capabilities of the integrated CPU and GPU is enhanced, the
graphics capabilities of the CPU are likely creating
substantial additional overhead when traditional CPU
implementations are run on the Xbox 360.

A more useful comparison, at least for practical purposes
at time of publication, is that of the nVidia GeForce 8800
GTX GPU to the Xbox 360 GPU. The results for this
comparison are given below in Figure 7.

Fig. 7. PC GPU to Xbox 360 GPU mean trial time ratios with standard error,
based on 10 trials of 50 generations. Ratios greater than 1 show the Xbox

360 GPU use is faster, less than 1 that the PC GPU is faster.

The GPU implementation on the Xbox 360 is
approximately 25% and 22% of the PC GPU solution for
populations of 1000 in both benchmarks, and 13% to 16% of
the PC GPU performance for both benchmarks at a
population of 4000. While these results demonstrate that the
nVidia graphics card is faster than that of the Xbox 360 for
every population level, they must be considered in the
appropriate context. Recall that the Xbox 360 GPU
incorporates 48 parallel shaders, while the nVidia card
boasts 128. The Xbox technology is approximately two
years older than the nVidia card: the nVidia GeForce 8800
GTX GPU was released November 2006 [24]. So if the
Xbox was current with the PC GPU, would the integrated
CPU and GPU provide a GPGPU performance advantage?
To determine this approximately, we normalize the speed of
Xbox 360 according to observed performance increase in
GPUs over the past few years. According to [2, 3], the
speed of GPUs ought to increase by 2n where n is the
number of 6-month periods between GPU products. The
Xbox 360 benchmark is thus scaled to be 22 = 4 times as
fast; results are shown in Figure 8.

Fig. 8. PC GPU to Xbox 360 GPU mean trial time ratios with standard error,
normalized to current generation of GPUs, based on 10 trials of 50
generations. Ratios greater than 1 show the Xbox 360 GPU use is faster,
less than 1 that the PC GPU is faster.

Again, these results must be interpreted while keeping in
mind that they are affected by PC CPU choice and the Xbox
360 possessing half the RAM of the PC platform. It is also
likely that an integrated CPU will provide added
performance to future iterations of the Xbox product. Even
so, the Xbox 360 scaled performance surpasses (with
approximately 2.8 times the speed) the CPU-intensive
(lower population) graphics parameterizations. At the
moderate population level of 1000, it is competitive with the
nVidia with practically the same performance for
classification and 86% of the regression performance. Only
at the highest population level is the integrated architecture
of the Xbox 360 surpassed by the nVidia GPU. It appears
that if the Xbox 360 were to incorporate a current GPU, its
architecture likely would provide superior or competitive
performance for CPU-intensive applications that still

required moderate GPU use. For interested readers who
wish to determine actual execution times for the experiments
discussed, actual base CPU or GPU times are provided in
Table 2. To determine execution times for any benchmark,
simply multiply ratios in Figures 4 to 8 by the appropriate
times.

TABLE 2

BASE TIME IN SECONDS FOR ALL IMPLEMENTATIONS
POPULATION 10 1000 4000

 REGRESSION
PC, CPU VS. GPU (FIG. 4) 29.4 31.8 99.4

XBOX, CPU VS. GPU (FIG. 5) 41.7 145.5 608.2
PC CPU VS.XBOX CPU (FIG.6) 29.4 31.8 99.4

PC GPU VS. XBOX GPU (FIG. 7, 8) 29.4 30.7 97.7
 CLASSIFICATION

PC, CPU VS. GPU (FIG. 4) 147.7 149.6 453.6
XBOX, CPU VS. GPU (FIG. 5) 209.4 603.7 2380.1

PC CPU VS.XBOX CPU (FIG. 6) 147.7 149.6 453.6
PC GPU VS. XBOX GPU (FIG. 7, 8) 147.7 149.1 304.0

VII. CONCLUSION
The main goal of this work was to show how to

implement a GP system on a commercial video game
console (Xbox 360) using GPGPU. It is the first time that
GPGPU, or genetic programming, has been implemented on
a commercial video game console for research purposes. It
also describes the first instance of a Linear GP
implementation using GPGPU. We addressed performance
considerations for the Xbox 360 for evolutionary
computation in the GPGPU paradigm (and for GPGPU
development in general), and found the Xbox 360 to offer
tightly coupled CPU and GPU graphics performance.

Now that Microsoft’s XNA framework has provided GPU
access on a commercial video game console, it seems likely
that this trend will continue to the next iteration of the Xbox
console as Microsoft currently continues development of the
XNA product. Programming for the Xbox 360 will likely
place GPGPU developers in a position to take advantage of
future console hardware advancements, while providing
greater design flexibility with regard to CPU and GPU
functionality. From a practical programming and future
hardware viewpoint, it is worthwhile to use the Xbox 360 as
an evolutionary computation GPGPU development platform.

REFERENCES
[1] J. Andrews and N. Baker, "XBox 360 System Architecture," IEEE

Micro, vol. 26, no. 2, pp. 25-37, 2006.
[2] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.

E. Lefohn, and T. J. Purcell, "A Survey of General-Purpose
Computation on Graphics Hardware," in Eurographics 2005, State
of the Art Reports, 2005.

[3] nVidia, "NVIDIA CUDA Compute Unified Device Architecture
Programming Guide," nVidia Corp., Santa Clara, USA, Version
0.8.2, 2007.

[4] Microsoft, (2007, Nov.). "XNA Game Studio Express." [Online].

Available: http://msdn2.microsoft.com/en-
us/directx/aa937795.aspx

[5] M. Harris, "Mapping Computational Concepts to GPUs," in GPU
Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation M. Pharr and R.
Fernando, Eds. Boston, MA: Addison-Wesley Professional, 2005.

[6] D. Tarditi, S. Puri, and J. Oglesby, "Accelerator: Using Data
Parallelism to Program GPUs for General-Purpose Uses " in
Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems
(ASPLOS '06), San Jose, CA, 2006, pp. 325-335.

[7] F. K. Musgrave, "Genetic Textures," in Texturing and Modeling: A
Procedural Approach, 2nd Ed., D. S. Ebert, F. K. Musgrave, D.
Peachey, K. Perlin, and S. Worley, Eds. Cambridge, USA: AP
Professional, 1998, pp. 373-385.

[8] J. Loviscach and J. Meyer-Spradow, "Genetic Programming of
vertex shaders," in Proceedings of EuroMedia 2003, Plymouth,
UK, 2003, pp. 29-31.

[9] M. Ebner, M. Reinhardt, and J. Albert, "Evolution of Vertex and
Pixel Shaders," in Proceedings of the 8th European Conference on
Genetic Programming, Lausanne, Switzerland, 2005, pp. 261-270.

[10] F. Lindblad, P. Nordin, and K. Wolff, "Evolving 3D model
interpretation of images using graphics hardware," in Proceedings
of the 2002 Congress on Evolutionary Computation (CEC 2002),
Honolulu, Hawaii 2002, pp. 225-230.

[11] Q. Yu, C. Chen, and Z. Pan, "Parallel Genetic Algorithms on
Programmable Graphics Hardware," Proceedings of the First
International Conference on Natural Computation, ICNC 2005,
vol. LNCS 3612, pp. 1051-1059, 2005.

[12] K.-L. Fok and T.-T. Wong, "Evolutionary Computing on Consumer
Graphics Hardware," IEEE Intelligent Systems, pp. 69-78, 2007.

[13] S. Harding and W. Banzhaf, "Fast Genetic Programming on
GPUs," in Proceedings of the 10th European Conference on
Genetic Programming, Valencia, Spain, 2007, pp. 90-101.

[14] D. M. Chitty, "A Data Parallel Approach to Genetic Programming
Using Programmable Graphics Hardware," in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-
2007), London, England, 2007, pp. 1566-1573.

[15] W. B. Langdon and W. Banzhaf, "A SIMD interpreter for genetic
programming on GPU graphics cards (in preparation)," 2007.

[16] W. B. Langdon and A. P. Harrison, "GP on SPMD parallel
Graphics Hardware for mega Bioinformatics Data Mining
(submitted)," Soft Computing Journal 2007.

[17] B. Nitschke, Professional XNA Game Programming: For Xbox 360
and Windows, 1st Ed. Hoboken, USA: Wrox, 2007.

[18] K. Jaegers and J. Jaegers, (2007, Nov.). "XNA Resources:
Resources for XNA Game Developers." [Online]. Available:
http://xnaresources.com/pages.asp?pageid=27

[19] Microsoft, (2007, Nov.). "Xbox 360 Surface Formats." [Online].
Available: http://msdn2.microsoft.com/en-
us/library/bb447675.aspx

[20] Microsoft, (2007, Nov.). "XBox 360 Device Capabilities."
[Online]. Available: http://msdn2.microsoft.com/en-
us/library/bb313967.aspx

[21] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, (2007,
Nov.). "UCI Repository of Machine Learning Databases.
University of California, Department of Information and Computer
Science." [Online]. Available:
http://www.ics.uci.edu/~mlearn/MLRepository.html

[22] J. Koza, Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge: MIT Press, 1998.

[23] nVidia, "Technical Brief: NVIDIA GeFOrce 8800 GPU
Architecture Overview," nVidia Corp., Santa Clara, USA, TB-
02787-001_v01, 2007.

[24] nVidia, (2007, Nov.). "New NVIDIA Products Transform the PC
Into the Definitive Gaming Platform: New NVIDIA GeForce 8800
and NVIDIA nForce 680 Redefine Reality on the PC " [Online].
Available: http://www.nvidia.com/object/IO_37234.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

