
 
 

 

  

We describe how to harness the graphics processing abilities 
of a consumer video game console (Xbox 360) for general 
programming on graphics processing unit (GPGPU) purposes.  
In particular, we implement a linear GP (LGP) system to solve 
classification and regression problems.  We conduct inter- and 
intra-platform benchmarking of the Xbox 360 and PC, using 
GPU and CPU implementations on both architectures.  
Platform benchmarking confirms highly integrated CPU and 
GPU programming flexibility of the Xbox 360, having the 
potential to alleviate typical GPGPU decisions of allocating 
particular functionalities to CPU or GPU.   

I. INTRODUCTION 
odern video game consoles are, in essence, graphics 
supercomputers [1], particularly at product launch.  

The XBox 360, at its launch on November 22, 2005, was the 
first PC or console to feature CPU chip multi-processing 
(CMP) with more than 2 cores (using 3 cores).  It was also 
the first console to feature a graphics processing unit (GPU) 
with unified shader architecture (no distinct vertex and pixel 
shader engines).  New generations of consoles feature large 
jumps in system performance, and occur in approximately 
five year intervals.  Moreover, current GPUs in general 
provide considerable computational power.   A survey of 
GFLOP performance of nVidia and ATI graphics cards 
compared to Intel processors from 2002 to late 2005 
demonstrated that GPUs exceed Moore’s Law, which 
predicts that general computing power doubles every 18-24 
months [2].  In contrast, graphics hardware performance 
doubled every six months, whereas Intel PC CPUs did not 
meet predictions of Moore’s Law.    Similar results were 
reported for nVidia products up to late 2006 in [3]. 

In late 2006, Microsoft launched XNA’s Not Acronymed 
(recursive acronym “XNA”) Game Studio Express 1.0, 
which integrated with C# Studio Express.  Microsoft’s goal 
with the XNA framework was to empower academics and 
independent developers to create “homebrew” games for its 
commercial video game console Xbox 360 [4].  We describe 
how to perform genetic programming (GP) using XNA and 
the Xbox 360.  Furthermore, we attempt to maximize the 
hardware resources of the system: the central processing unit 
(CPU) is used to run a GP tournament, while the GPU is 
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used to perform parallel genetic operations.  This work thus 
presents the first implementation of a research-based GP 
system on a commercial video game platform.  It is also the 
first time that linear genetic programming (LGP) has been 
implemented in a general programming on graphics 
processing unit (GPGPU) application, and it is the first 
instance of the Xbox 360 being used for any GPGPU 
purpose.  To show that it is possible to program the Xbox 
360 for GP research is a step towards harnessing the power 
of future video game consoles.   

The following Section provides a brief description of 
GPGPU programming and describes previous evolutionary 
computation work involving GPUs.  Section III describes 
XNA programming and engineering considerations for the 
Xbox 360.  Implementation details of the GPGPU GP 
algorithm in the XNA framework, separated into CPU and 
GPU functionality, are provided in Section IV.  The 
regression and classification benchmarks are described in 
Section V.  Comparison of GPU run time performance 
versus an identical CPU-only implementation on a Windows 
PC and the Xbox 360 are provided in Section VI.   

II.  GPGPU OVERVIEW AND EVOLUTIONARY  
COMPUTATION WITH GPUS 

A. How GPGPU Programming Works 
GPUs have the ability to perform restricted parallel 

processing, hence the increasing interest among researchers 
in using them for applications requiring intensive parallel 
computations.  The type of parallel processing used by 
GPUs is referred to as single instruction multiple data 
(SIMD), where all the processors on the graphics unit 
simultaneously execute the same code on different data.  To 
be specific, a GPU is responsible for simultaneously 
rendering the pixels it is provided on an assembly of these 
pixels called a “texture.”  (Pixels of a texture are often called 
“texels” when considered as a portion of a texture.)  The 
GPU processes the texture it is provided and outputs a 
vector of four floating point numbers for each texel 
processed, traditionally corresponding to RGBA (red, green, 
blue, and alpha, for transparency) channels of a color.  The 
two components of GPU architecture that a user can control 
are the set of vertex processors and the set of pixel (or 
fragment) processors.  An effect file, which is a program to 
control the GPU, is divided into two parts corresponding to 
the architecture: a pixel shader and a vertex shader.  The 
vertex shader program transforms input vertices based on 
camera position, and then each set of three resulting vertices 
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compute a triangle from which pixel (fragment) output is 
generated and sent to the pixel processors.  The shader 
program instructs the pixel shaders (processors) to “shade” 
each pixel in parallel and produce the final pixel with 
associated RGBA values for final output.  Even though the 
latest GPUs (such as all those used this paper) use unified 
architecture, where the shader processors can handle vertex 
or pixel commands, the two functionalities are still separated 
when composing effect files.     

GPGPU applications tend to take advantage of pixel 
shader programming rather than using the vertex shaders, 
mainly because there are typically more pixel than vertex 
shaders on a GPU and the output of the pixel shaders is fed 
directly to memory [5].  (In contrast, vertex processors must 
send output through both the rasterizer and the pixel shader 
sections of the GPU.)  In terms of traditional data structures 
and execution, GPU textures are analogous to arrays, the 
shader program is like a Kernel program, and rendering 
effectively executes the program.  The CPU runs the main 
program, and sends data in texture form to the GPU when 
parallel processing is required.  The GPU renders to a 
texture in its memory (rather than to the screen), and the 
output texture data is consumed by the main (CPU-side) 
program.  A summary of the elements of GPU hardware and 
flow of execution in GPU programming as they apply to our 
XNA implementation is given in Figure 1. 

 

 
 

Fig. 1.  GPU architecture and execution flow in GPGPU programming.  
Programmable elements of the GPU are shaded darkest.  Thin arrows 
indicate passing of data in texture form between pixel shaders and CPU. 
 

APIs for accessing the functionality of the GPU differ in 
level of abstraction.  Lower level alternatives for GPU 
programming include DirectX and the Open Graphics 
Library (OpenGL).  The next level of abstraction features C-
style languages including C for Graphics (Cg), Microsoft’s 
High Level Shader Language (HLSL), and nVidia’s 
Compute Unified Device Architecture (CUDA).  At the 
highest level are libraries that are integrated with object-
oriented languages such as Sh (now RapidMind) with C++ 
and Microsoft Research’s Accelerator [6] with C#.      

B. Evolutionary Algorithms on GPUs 
The first GPU-centered applications to use evolutionary 

algorithms in general naturally applied them to textures for 
use in image processing.  The idea of applying genetic 
programming to evolve shaders was first suggested by 
Musgrave [7].  Loviscach and Meyer-Spradow  used genetic 
programming to evolve pixel shaders in OpenGL, and 
applied them to textures with user feedback based on 
aesthetic required for determination of a fitness [8].  Ebner 
et al. [9] implement a similar strategy with Cg.  Lindblad et 
al. [10] apply linear GP (LGP) with DirectX to the 
interpretation of 3D images.   

Moving from GPU for traditional image analysis, general 
purpose computation (GPGPU) techniques were later tried 
using evolutionary algorithms.  In [11], Yu et al. use Cg to 
implement a GA on a GPU using the fine-grained parallel 
model where each point of a 2D grid is an individual, which 
itself becomes a parent with its best neighbor.  The 
chromosome of each individual is divided sequentially into 
several segments that are distributed across a number of 
textures with the same position.  Each chromosome segment 
consists of four genes in each of a pixel’s RGBA 
components, with a separate texture storing the fitness 
values of the pixel individuals.  Unlike others, they 
implement fitness evaluation, selection, crossover, and 
mutation operators in shader programs on the GPU.  For 
large populations, the GPU implementation was found to be 
faster than one on the CPU for the regression benchmark. 
Indeed, performance gains through GPU use for large 
populations have been found to be typical in EC-based 
GPGPU research.  

Fok et al. implement EP (evolutionary programming) on 
the GPU in [12].  The individuals in a population are 
represented as textures on the GPU, as are fitness, random 
number, and indexing requirements. They determine 
empirically that it is most effective to implement mutation, 
reproduction, and fitness evaluation with the GPU while the 
CPU performs competition and selection (where GPU 
versions of those functionalities were also tried).  Cartesian 
GP is implemented by Harding and Banzhaf in [13] using 
C# and Microsoft Accelerator, with Accelerator handling the 
compilation of CGP expressions into shader programs, 
execution of the programs, and the return of results as array 
data.  Chitty [14] implements a tree-based GP 
implementation, using OpenGL to create data textures and 
converting tree GP individuals to Cg shader programs for 
evaluation on the GPU.  Langdon and Banzhaf [15] created 
a GPU-based interpreter using RapidMind and C++ that 
operates on tree-based individuals.  A modified 
implementation of the GPU-based interpreter approach is 
applied by Langdon and Harrison to represent extremely 
large populations for a bioinformatics application in [16]. 

 



 
 

 

III. DESIGN CONSIDERATIONS FOR XBOX 360 GPGPU 
The C# XNA framework naturally provides the user with 

access to the Xbox 360 CPU.  In addition, HLSL programs 
can also be loaded in an XNA program, allowing the user to 
perform vertex and shader programming with the Xbox 360 
GPU.   In early 2007, the updated XNA Game Studio 
Express 1.0 (Refresh) was released, which is used in this 
work.  Given the accessibility that Microsoft has provided to 
the Xbox 360’s CPU and GPU, and its continuing 
development of the XNA product, it is an obvious choice for 
implementing GPGPU applications.  At the time of this 
writing, the authors are not aware of any other console 
manufacturers that have provided consumer access to 
programming of the GPU hardware.  Microsoft Accelerator 
is not compatible with the XNA framework, so 
programming of shaders in HLSL is required to provide 
GPU access in XNA.  The Xbox 360 hardware is ideal for 
graphics processing: each console features a custom built 
IBM PowerPC-based CPU with three 3.2GHz core 
processors sharing a 1Mb L2 cache.  Each CPU core also 
has an associated complement of three SIMD vector 
processing units.  The CPU cache, cores, and vector units 
are customized for graphics-intensive computation, and the 
GPU is able to read directly from the CPU L2 cache.  The 
Xbox GPU by ATI houses 48 parallel shaders with unified 
architecture and 10 MB of embedded DRAM (EDRAM) [1], 
with 512 MB of DRAM as main memory. 

Implementations created with the XNA framework can be 
deployed on the Xbox 360, Windows XP with SP2, and 
Vista variants.  An XNA project requires that separate 
initialization (Initialize), update of program logic (Update), 
and rendering of graphics (Draw) methods be implemented.  
The program runs simply by repeatedly updating the Update 
and Draw methods—it is implemented as a video game that 
is constantly checking its logic and updating the graphics on 
the screen.  The Draw method is the main component of a 
GPGPU implementation, as this is where the shader 
programs on the GPU will be called from.  Rather than use a 
typical loop construct for GP tournament execution, the 
repeated execution of the Draw method is harnessed to 
conduct generational tournaments over trials.   

The XNA framework provides a means of processing and 
compiling supported game assets such as textures and 
shaders called the “content pipeline.”  The content pipeline 
does not permit dynamic loading or switching of shader 
programs to the GPU.  This precludes GP implementations 
(such as [13, 14])  that provide individuals to the GPU for 
processing, use the CPU to subject them to genetic 
operators, and reload them to the GPU.  This allows XNA to 
provide faster loading of the GPU for rendering because all 
data is already pre-compiled to the correct format [17].  This 
decision certainly makes sense from the viewpoint of Xbox 
360 console end users and speeds up genetic programming 
with GPGPU that repeatedly uses the shader (as we do).  
The XNA framework currently does not feature I/O to the 

Xbox hard drive or memory units, so all data must be output 
to the screen.  An open source XNA keyboard component 
available from [18] allowed user input from the Xbox 360 
control pad or USB keyboard connected directly to the 
console.  

Pixel Shader version 3.0 (the most advanced shader 
profile supported by the Xbox 360 GPU) was used.  
Textures were rendered with XNA’s surface format 
HalfVector4 type, so that four 16 bit floats were placed per 
texel with one float per channel.  A list of rendering options 
using the Xbox 360 GPU with XNA is available at [19], 
with HalfVector4 being the highest precision supported by 
the Xbox GPU while still allowing texture compactness of 
four channels per pixel.  Some pertinent restrictions for the 
shader program are practically universal to all GPUs at the 
time of this writing.  For instance, it is important to keep in 
mind when designing the GPGPU shaders that GPUs can 
only implement gather, but not scatter.  (At least this has 
been the case until very recently, since nVidia has 
introduced that functionality in CUDA [3].)  The only way 
to retrieve data from a shader program in XNA is to render 
results to a texture on a target buffer, and then read the 
texture’s content back into the main calling program.  One 
cannot load array or variable parameters into a shader 
program, alter their values in the shader code, and have their 
new values returned following execution.  The GPU is 
optimized to only render textures, and that is its only means 
of returning values: any values required must thus be 
rendered by the GPU to internal targets.  Furthermore, array 
data stored on textures passed to shaders as parameters must 
be referenced in the shader programs using texture 
coordinates appropriate to the mapping scheme of the GPU-
dependent coordinate system. 

In addition to XNA framework and general GPU 
restrictions, the Xbox GPU hardware (and Pixel Shader 3.0) 
have additional specifications that can be determined by 
querying the Xbox 360 with the XNA GraphicsDevice class 
or checking XNA documentation [20].  On the Xbox 360, a 
shader program can consist of 2048 instructions, with flow 
control depth of 4.  (That is, a maximum of four instructions 
can be called from inside each other.)   The Xbox 360 GPU 
can also support 16 simultaneous textures, with a maximum 
texture height and width of 8192.  All engineering 
requirements of this section are met in the implementation 
now presented in Section IV. 

IV. IMPLEMENTING THE GP ALGORITHM USING XNA  

A. GPU-side XNA GP Textures and Shaders 
Populations of individuals are, naturally, represented as 

textures to be processed by the GPU.  Fitness cases are also 
represented as a texture that is passed to the GPU and 
referenced by the shader programs.  Each individual’s 
instructions are divided into eight chromosomes, separated 
into two sets of four, and each set is placed on a texel on two 



 
 

 

separate textures.  Collectively, the two textures perform an 
operation on the contents of either of two sources (fitness 
case or register content), and place the result in a target 
register according to the equation 
    

     target = src1 op src2. 
 

The variable integer op, op = [0, 3], indicates one of four 
operators ADD, SUB, MUL, or DIV. The integer target, 
target = [0, 3], indicates one of four target registers.  The 
sources src1 and src2 can specify either fitness cases or 
registers based on flags in each instruction, and thus take 
values in [0, MAX(classification features or regression 
inputs, registers)].  An integer id, id = [0, population size] is 
also used in these textures to label the individual, and an 
integer PC, PC = [0, instructions] serves as a program 
counter to the current instruction.  Boolean flags f1, f2, 
indicate whether to load from fitness cases or registers for 
src1 and src2, respectively.  The texels of the first texture 
each possess the variables {op, target, id, PC} in their four 
color channels, and the texels of the second texture 
correspond to {f1, src1, f2, src2}.  As the XNA HalfVector4 
surface format was used, each chromosome (channel) was a 
16 bit float (interpreted as an integer as appropriate).  The 
two textures represent a whole population, with each 
individual being a column of texels, and each texel in the 
column being an instruction.  The width of the textures (in 
texels) is thus the number of individuals in the population, 
and its height is the number of instructions in an individual.  
As the shader interprets each dual-texel instruction across 
both textures at the same coordinate, the current state of an 
individual’s four registers (following that instruction) are 
kept in a third texture’s texel (at the same coordinates) as a 
set of four floats.  With this representation, the fitness shader 
program can interpret an instruction across all individuals in 
the population at once, using the program counter to track 
which instruction is currently being executed.  Textures 
representing individuals are depicted to the left in Figure 2. 

 

 
 

Fig. 2.  Individual (left) and mutation (right) texture representations. 
 
Textures are also associated with the mutation operator to 

allow its implementation on the GPU.  To accomplish this, a 
texture with the same dimensions of the two chromosome 
textures is filled with randomly generated float values in the 
interval [0, 1] in the C# code (CPU-side).  The value of each 
chromosome (texel color channel) is evaluated against the 
mutation threshold, and if it is less than or equal to the 

threshold, the corresponding original chromosome in the 
population is replaced with a chromosome at the same 
texture coordinate in a third replacement texture.  The 
replacement texture is filled with randomly generated 
chromosome values meeting the specifications of the two 
original population textures.  The textures to implement 
mutation are shown to the right in Figure 2. 

Using the population textures just described, fitness 
evaluation in the shader uses the HLSL pseudocode:   

 
float4 FitnessShader(float2 currentLocation : TEXCOORD0 ) : COLOR      

 if (row in instruction textures == program counter)    
if (flag1 == 1) source1 = fitnessCases[src1] 

  else  source1 = registers[src1]  // flag1 == 0 
if (flag2 == 1) source2 = fitnessCases[src2] 

  else  source2 = registers[src2]  // flag2 == 0 
  if (op == 0) register[target] = source1 + source2 

if (op == 1) register[target] = source1 - source2 
if (op == 2) register[target] = source1 * source2 
if (op == 3) register[target] = source1 / source2 

return registers; 
 
The fitness shader above forces the GPU to process the 

population one instruction at a time (via the program counter 
check in the first IF statement).  The shader thus runs for k 
passes, k = instructions per individual.  As each instruction 
is interpreted, the register states for the previous instruction 
are retrieved via texture lookup.  Depending on the source 
flags, data is retrieved via texture lookup from the fitness 
cases or from the registers.  The operation is determined, 
and the result is placed in the appropriate target register.  
The shader program does k = 16 passes (number of 
instructions per individual) in its single technique definition. 
(Techniques define which functions of the shader Effect 
files are to be executed and what parameters they will be 
given.)  As each pass is completed, the updated register 
texture is fed back to the shader on the CPU (C#) side where 
the loop over the passes is conducted.  The shader thus 
interprets the correct instruction in each individual with 
updated register contents.  

The mutation shader, Mutate.fx, is run with two 
techniques  with identical logic, one with the mutation 
texture and original and replacement {op, target, id, PC} 
textures, and one with the mutation texture and the original 
and replacement {f1, src1, f2, src2} textures.  The mutation 
shader operation is relatively simple: the color channel of 
each texel in the original texture is replaced by the 
replacement channel value in the replacement texture if the 
mutation’s texture channel value at the same coordinate 
exceeds the threshold.  The mutation shader thus executes 
mutation on every instruction in every individual in the 
entire population simultaneously.  The mutation HLSL 
shader code is: 
 
float4 MutateShader1(float2 currentLocation : TEXCOORD0 ) : COLOR   

 // default is to keep all chromosomes the same  
 float4 outData = tex2D(originalPopSampler, currentLocation.xy); 
 // look up mutation thresholds, potential replacement chromosomes 
float4 mutate = tex2D(mutatePopSampler, currentLocation.xy); 



 
 

 

float4 replacement = tex2D(replacePopSampler, currentLocation.xy); 
// if mutate pixel value exceeds threshold, replace chromosome 
if (mutate.x <= mutationThreshold) outData.x = replacement.x; 
if (mutate.y <= mutationThreshold) outData.y = replacement.y; 
if (mutate.z <= mutationThreshold) outData.z = replacement.z; 
if (mutate.w <= mutationThreshold) outData.w = replacement.w; 

 return outData; 

B. CPU-side XNA GP Algorithm Implementation 
Using the flow control of an XNA program (all relevant 

required methods to implement the XNA Game class are 
shown) and implementing arrays conforming to XNA 
texture objects where possible (rather than traditional C# 
data structures such as Collections or Lists), the CPU 
controls the overall operation of an LGP generational 
tournament: 

 
GPGame { 

 GPGame()  //constructor 
  provide set of random seeds for trials  
 Initialize()  
  prompt for user input using on-screen keyboard 
  declare and populate HalfVector4[] data arrays for all textures 
Update(GameTime)  
  check for exit key pressed on control pad 
  parse user keyboard input until completed 
Draw(GameTime)  // evaluates fitness case over population 
    // each pass evaluates an instruction over all individuals 

for passes in fitnessEffect  
   run Fitness.fx  HLSL program (see above)  
   resolve render target to texture, get array data from texture 
    // do for each fitness case 
    adjust all individual’s fitnesses; fitCase++ 
   if at the end of a generation 

  fitness-proportionate generational selection 
  run Mutate.fx HLSL program (on two texture sets)  

    if at the end of a trial  
   trial++;  round = 0; 
   add best fitness to growing List for output  

if all trials are not yet done 
 display fitness, timer, and population texture output 
 

The above pseudocode for the main program (C#) uses 
the continual frame refresh of an XNA program as the 
driving force behind the GP tournament.  By using the 
Boolean checks throughout the Draw method, a GP 
tournament is implemented.  The program begins with the 
on-screen keyboard, where the user specifies whether or not 
to include GPU functionality, population size, mutation rate, 
and number of rounds.  In the Draw() method of the GP 
tournament, for each fitness case, the Fitness.fx shader 
interprets all instructions across all individuals, updating 
register information over effect passes as described in 
Section IV.A.  Fitnesses are then updated and fitness-
proportionate roulette wheel generational selection, followed 
by mutation, is performed on the population textures.  
Finally, textures and fitness information are displayed on the 
screen.  As the population converges toward a solution, the 
population textures will move from random pixel colors 
throughout to colored bands across the texture 
(corresponding to greater uniformity of instructions across 
individuals).  Upon publication, all XNA projects (including 

source code) will be available at 
www.cs.mun.ca/~gwilson/XNA_LGP.html.  A screen shot of 
the implementation is provided in Figure 3. 

 

 
 
Fig. 3.  XNA-based Linear GP GPGPU implementation screenshot.  Each 
Result indicates the best hits, best raw error, and trial time (seconds). 
 
From top to bottom of the screenshot in Figure 3, the first 

two textures display the relevant instruction components in 
each instruction (texture row) over the whole population 
(each individual is a texture column).  It is these two 
textures that will form uniform horizontal bands as the 
population converges toward a solution. The state of each 
of the four registers at each instruction for the population 
is found in the third texture from the top.  Mutation values 
for instruction segments in the first and second texture are 
in the fourth and fifth textures, respectively, with their 
potential replacement values located in the sixth and 
seventh textures, respectively.  Results at the bottom of the 
screen display best hits, best raw error, and trial time in 
seconds. 

V. EXPERIMENTS 
Both a classification and regression benchmark were 

implemented.  A CPU-only version of the implementation 
was also created, which simply implemented all shader 
functionality with appropriate C# code.  The Ecoli problem 
from the UCI machine learning repository was chosen for 
classification [21], using 75% of the entire data set for 
training while retaining class distribution.  Training was 
performed over 50 generations to benchmark processing 
times.  Problem implementations were checked for 
correctness: CPU and GPU variants produced identical or 
similar results (given CPU and GPU float rounding 
differences).  The CPU and GPU implementations are 
identical on both PC and Xbox 360, so the same code on 
both platforms is always compared, with respect to 
implementation.  The sextic polynomial x6 – 2x4 + x2 
introduced by Koza [22] was implemented for regression, 
using float inputs in the range [0, 1] for 50 fitness cases.  For 



 
 

 

the experiments, the implementation was run on a Windows 
Vista Business PC, using an AMD Athlon 64 Processor 
3500+ (2.21 GHz), 1023 MB of RAM, and a (at time of 
writing) state of the art ASUS EN8800GTX video card with 
an nVidia GeForce 8800 GTX GPU on board.  The nVidia 
GPU features 128 parallel stream processors with unified 
shader architecture [23].  See Table 1 for parameterizations. 
 

TABLE I 
XNA LINEAR GP GPGPU PARAMETERS 

Function Set ADD, SUB, MUL, DIV (on floats) 
Fitness fitness-proportionate  roulette wheel 
Population  10, 1000, or 4000 individuals 
Mutation threshold = 0.1 
Tournament generational, 50 rounds   
Fitness Cases Classification: 251 training cases, 7 

     float features,  8 integer categories  
Regression: 50 cases, x = [0, 1]  

Fitness Metric      Classification: correct classification, 
      based on Reg[0] mapping to category  

Regression: 50 hits, where a hit is 
     Absolute(Reg[0] – y) <= 0.01   

VI. RESULTS 

A. Intra-Platform CPU and GPU Performance 
The fitness evaluation shader, while it does allow 

parallelization in that it processes every instruction in every 
individual at once, is relatively expensive for a shader.  In 
order to process register subresults for LGP, it cannot 
process every instruction in every individual (all texels) at 
once (as is typically possible in EC and GA).  Even 
interpreter approaches such as [15] process some instruction 
per pixel, rather than necessitating multiple passes that only 
operate on portions of the texture at a time.  LGP requires 
such a process to store subresults in registers following each 
instruction.  In contrast, the mutation shader operates on all 
instructions in all individuals at once, maximizing shader 
utility.  Given these considerations, we compared execution 
times of both Fitness and Mutation shaders, the Mutation 
shader only, and the CPU on the Windows platform with 
nVidia GPU.  Results are shown in Figure 4. 

  

 
 
Fig. 4.  PC CPU to GPU mean trial time ratios for both 1 (Mutation) and 2 
(Mutation and Fitness) GPU shaders with standard error, based on 10 trials 
of 50 generations for classification (left) and regression (right) benchmarks.  
Ratios greater than 1 show GPU use is faster, less than 1 that CPU is faster. 
      

GPU performance gains of 4% and 2% over CPU are seen 

for the two larger populations in regression, with a 
substantial gain of almost 50% in speed with the population 
of 4000 for classification.   It is expected that the GPU 
algorithm performance increasingly exceeds CPU 
performance with larger population sizes, with this trend 
likely being amplified by the high number of training cases 
in the classification problem (251) as opposed to regression 
(50).  It is evident from Figure 4 that LGP fitness evaluation 
is best left to the CPU: for neither benchmark does the use 
of Fitness.fx provide a performance gain.   Standard errors 
reflect that times are quite consistent across all trials.  Thus, 
the GPU functionality of the Mutation.fx shader only was 
compared to the CPU on the Xbox 360 (Figure 5). 

 

 
Fig. 5. Xbox 360 CPU to GPU mean trial time ratios with standard error, 
based on 10 trials of 50 generations.  Ratios greater than 1 show GPU use is 
faster, less than 1 that CPU is faster.      
 

For the lowest population level, no speed increase with 
GPU usage is seen.  Speed increase with higher populations 
(1000 and 4000) for classification is very low (less than 
1%), whereas the speed increases for those populations in 
regression is somewhat more substantial (2.5% and 2.9%, 
respectively).  The smaller contributions of GPU processing 
to the Xbox 360 benchmarking may be due to the CPU 
being optimized for graphics workloads (Section III): the 
CPU even features SIMD vector processing units for each 
core and the GPU reads directly from the CPU L2 cache.  
Rather than the segregated CPU and GPU components in a 
PC, the Xbox provides highly integrated cooperation 
between CPU and GPU.  Thus, while the GPU enhances 
performance over CPU-only implementations, the difference 
is just not as significant as on PC platforms.  A benefit of 
this tight integration of CPU and GPU on the Xbox 360 is 
that the programmer need not be as concerned about 
performance consequences of opting to place functionality 
on the CPU as opposed to GPU, providing flexible design 
decisions on hardware optimized for GPGPU. 

B. Inter-Platform CPU and GPU Performance 
While benchmarking shows that Xbox 360 CPU and GPU 

are tightly integrated, and thus reduce the impact of CPU 
versus GPU design dilemmas, it is of interest to see how the 
Xbox 360 fairs in terms of speed performance against the 
PC.  Both implementations again contain identical code, and 



 
 

 

are created with the XNA framework.  A comparison of PC 
and Xbox CPUs is shown in Figure 6. 

 
Fig. 6. PC CPU to Xbox 360 CPU mean trial time ratios with standard error, 
based on 10 trials of 50 generations.  Ratios greater than 1 show the Xbox 
360 CPU use is faster, less than 1 that the PC CPU is faster. 
 

For both classification and regression problems, the PC 
CPU is faster than the Xbox 360 CPU.  With increasing 
population, the performance of the Xbox 360 CPU further 
decreases in relation the PC CPU.  This analysis must be 
interpreted with due consideration: the Xbox 360 CPU was 
designed for graphics processing.  Furthermore, these 
metrics are obviously affected by the type of PC processor 
used (Athlon 64 Processor 3500+ 2.21 GHz), and the RAM 
available on the PC (1023 MB of RAM).  The amount of 
RAM was the minium recommended system requirement for 
use of Vista Business, and the Xbox is put at a disadvantage 
with its 512 MB of RAM.   

Furthermore, by coding the implementation to not use the 
GPU, even the Xbox 360 CPU is not being used at its full 
capacity.  (As mentioned in the last section, the Xbox 360 
CPU actually includes SIMD vector processors.)  The CPU 
is custom made for the console, and while the graphics 
capabilities of the integrated CPU and GPU is enhanced, the 
graphics capabilities of the CPU are likely creating 
substantial additional overhead when traditional CPU 
implementations are run on the Xbox 360. 

A more useful comparison, at least for practical purposes 
at time of publication, is that of the nVidia GeForce 8800 
GTX GPU to the Xbox 360 GPU.  The results for this 
comparison are given below in Figure 7. 

 
Fig. 7. PC GPU to Xbox 360 GPU mean trial time ratios with standard error, 
based on 10 trials of 50 generations.  Ratios greater than 1 show the Xbox 

360 GPU use is faster, less than 1 that the PC GPU is faster. 
 

The GPU implementation on the Xbox 360 is 
approximately 25% and 22% of the PC GPU solution for 
populations of 1000 in both benchmarks, and 13% to 16% of 
the PC GPU performance for both benchmarks at a 
population of 4000.  While these results demonstrate that the 
nVidia graphics card is faster than that of the Xbox 360 for 
every population level, they must be considered in the 
appropriate context.  Recall that the Xbox 360 GPU 
incorporates 48 parallel shaders, while the nVidia card 
boasts 128.  The Xbox technology is approximately two 
years older than the nVidia card: the nVidia GeForce 8800 
GTX GPU was released November 2006 [24].  So if the 
Xbox was current with the PC GPU, would the integrated 
CPU and GPU provide a GPGPU performance advantage?  
To determine this approximately, we normalize the speed of 
Xbox 360 according to observed performance increase in 
GPUs over the past few years.  According to [2, 3], the 
speed of GPUs ought to increase by 2n where n is the 
number of 6-month periods between GPU products.  The 
Xbox 360 benchmark is thus scaled to be 22 = 4 times as 
fast; results are shown in Figure 8. 

 

 
Fig. 8. PC GPU to Xbox 360 GPU mean trial time ratios with standard error, 
normalized to current generation of GPUs, based on 10 trials of 50 
generations.  Ratios greater than 1 show the Xbox 360 GPU use is faster, 
less than 1 that the PC GPU is faster. 
 

Again, these results must be interpreted while keeping in 
mind that they are affected by PC CPU choice and the Xbox 
360 possessing half the RAM of the PC platform.  It is also 
likely that an integrated CPU will provide added 
performance to future iterations of the Xbox product.  Even 
so, the Xbox 360 scaled performance surpasses (with 
approximately 2.8 times the speed) the CPU-intensive 
(lower population) graphics parameterizations.  At the 
moderate population level of 1000, it is competitive with the 
nVidia with practically the same performance for 
classification and 86% of the regression performance.  Only 
at the highest population level is the integrated architecture 
of the Xbox 360 surpassed by the nVidia GPU.  It appears 
that if the Xbox 360 were to incorporate a current GPU, its 
architecture likely would provide superior or competitive 
performance for CPU-intensive applications that still 



 
 

 

required moderate GPU use.  For interested readers who 
wish to determine actual execution times for the experiments 
discussed, actual base CPU or GPU times are provided in 
Table 2.  To determine execution times for any benchmark, 
simply multiply ratios in Figures 4 to 8 by the appropriate 
times. 

 
TABLE 2 

BASE TIME IN SECONDS FOR ALL IMPLEMENTATIONS 
POPULATION 10 1000 4000 

 REGRESSION 
PC, CPU VS. GPU (FIG. 4) 29.4 31.8 99.4 

XBOX, CPU VS. GPU (FIG. 5) 41.7 145.5 608.2 
PC CPU VS.XBOX CPU (FIG.6) 29.4 31.8 99.4 

PC GPU VS. XBOX GPU (FIG. 7, 8) 29.4 30.7 97.7 
 CLASSIFICATION 

PC, CPU VS. GPU (FIG. 4) 147.7 149.6 453.6 
XBOX, CPU VS. GPU (FIG. 5) 209.4 603.7 2380.1 

PC CPU VS.XBOX CPU (FIG. 6) 147.7 149.6 453.6 
PC GPU VS. XBOX GPU (FIG. 7, 8) 147.7 149.1 304.0 

 

VII. CONCLUSION 
The main goal of this work was to show how to 

implement a GP system on a commercial video game 
console (Xbox 360) using GPGPU.  It is the first time that 
GPGPU, or genetic programming, has been implemented on 
a commercial video game console for research purposes.  It 
also describes the first instance of a Linear GP 
implementation using GPGPU.  We addressed performance 
considerations for the Xbox 360 for evolutionary 
computation in the GPGPU paradigm (and for GPGPU 
development in general), and found the Xbox 360 to offer 
tightly coupled CPU and GPU graphics performance.    

Now that Microsoft’s XNA framework has provided GPU 
access on a commercial video game console, it seems likely 
that this trend will continue to the next iteration of the Xbox 
console as Microsoft currently continues development of the 
XNA product.  Programming for the Xbox 360 will likely 
place GPGPU developers in a position to take advantage of 
future console hardware advancements, while providing 
greater design flexibility with regard to CPU and GPU 
functionality.  From a practical programming and future 
hardware viewpoint, it is worthwhile to use the Xbox 360 as 
an evolutionary computation GPGPU development platform. 
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