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Abstract. We study an algorithm which allows sequences 
of binary numbers (strings) to interact with each other. 
The simplest system of this kind with a population of 
4-bit sequences is considered here. Previously proposed 
folding methods are used to generate alternative two- 
dimensional forms of the binary sequences. The inter- 
action of two-dimensional and one-dimensional forms of 
strings is simulated in a serial computer. The reaction 
network for the N = 4 system is established. Develop- 
ment of string populations initially generated randomly 
is observed. Nonlinear rate equations are proposed 
which provide a model for this simplest system. 

1 Introduction 

We want to study the application of a previously pro- 
posed algorithm inspired by the interaction of strands of 
RNA (Banzhaf 1993a). The algorithm is based on the fact 
that an RNA sequence can assume two forms, depending 
on the conditions of its environment. The one-dimen- 
sional form of the sequence ("genotype"), which only 
contains and conserves the information of the ordered 
sequence of nucleotides, may be termed a structural form. 
Under certain specific conditions, however (proper sol- 
vent and temperature range), an RNA sequence assumes 
a two-dimensional and even a three-dimensional form 
("phenotype"), resulting from weaker hydrogen bondings 
and van der Waals interactions between the nucleotides. 

Like proteins, which may be called the machines of 
life (Fraunfelder 1988), RNA molecules can perform 
certain functions such as cutting and splicing (Kruger 
et al. 1982; Guerrier-Takada et al. 1983). It is the alterna- 
tive phenotypic form of the RNA sequence which deter- 
mines its ultimate function and whether it has a function 
at all (Cech and Bass 1986). 
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Therefore, if we take sequences of binary numbers in 
a computer and add, in close analogy to the RNA system, 
an alternative form of the sequences, we can expect some 
interesting phenomena of self-organization to take place. 
For  this purpose, we have set up in a previous contribu- 
tion (Banzhaf 1993a) the algorithmic framework of 
a competitive system consisting of binary strings. We 
provided a mapping from one-dimensional sequences of 
binary numbers to two-dimensional forms, and rules for 
the interaction of these two forms with each other. In the 
present paper we want to start filling this framework by 
considering the simplest nontrivial system of this kind 
with strings of length N = 4. We shall refer to equations, 
figures, and tables of the previous report (Banzhaf 1993a) 
by adding I to the respective numbering. 

2 Static features 

Let us start by naming the string types. We shall use 
decimal numbers that correspond to the binary numbers 
carried by a string as compact descriptions. Thus, e.g., 

will be called s (5~. 
Folding strings into 2 x 2 matrices can take place in 

various ways. One of these ways will allow us to consider 
the operations involving scalar products [according to 
(I-4)] with the string acting on itself as ordinary matrix 
multiplications, so we shall consider it first. The arrange- 
ment is sl) ( ) 

$2 $1 $2 s = -- ~', = (1) 
$3 S3 $4. 

$4 

which can be easily generalized to the arbitrary size 
(see Fig. I-la). 
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Another example of folding is a topological folding 
method where string neighbors also assume neighboring 
positions in the matrix (see also Fig. I-lb, c): 

$2 t S1 $2 
s = ~ ~ 8  = . ( 2 )  

$3 $4 $3 

$4 

It goes without saying that each folding method comes 
also in a transposed form ~ r ,  ~,sr. Table 1 gives the 
resulting operators for both folding methods. 

Next we shall give an example of each of the five types 
of reactions listed as 0-7 to 11). Using the squashed 
scalar product and the first folding method, we find, for 
example, 

~S 'n  @ S (6) ::~ S (4) (3) 

~s'~' @ s m  ~ s m (4) 

~s ,a  ) @s(11) ::::> s(1) (5) 

~s'*' O s  ~4) ~ s ~s) (6) 

~s,8, O s  ~s) ~ s ~s) (7) 

where the sign ~ indicates only the string that was 
newly produced by the interaction (suppressing the con- 
served reactants). A list of all reactions for the present 
case is given in Table 2. Similar reaction tables can be 
derived for other folding methods. 

Note again the fact that we are dealing here with 
a system of binary strings, each of which has only four 
components. This poor material is able to "react" in quite 
a complicated manner, as a glance at Table 2 tells us. 
Hence, already for N = 4, we expect rather complicated 
dynamic behavior. In general, these systems exploit the 
phenomenon of combinatorial explosion (see Table I-l). 
Therefore, by studying N = 4, we shall have gained only 
a slight impression of what might be possible in larger 
systems of this sort. An entire reaction universe is opened 

Table 1. Results of folding methods l [Eq. (1)], and 2 [Eq. (2)], applied to strings 0 . . . .  ,15, where only a rearrangement of 
matrices is observable 

Folding String number 
method 

0 1 2 3 4 5 6 7 

, (o ~ Oo) (; :) (o ~ :) (; ;) (; Oo) (, :) (o 'o) 
(::) ( ; : ) ( : : ) ( ; ; ) ( : o ) ( :  ~ ) ( :  '1) 

(', '0) 
(; :) 

8 9 10 11 12 13 14 15 

, (; o) (; o) (: ,) (; :) (; ;) (, o) (; ,) (, :) 
(; :) (: ~ (; 'o) (', 'o) (; ;) (', ;) (; ',) ('1 i) 

Table 2. Reactions using computations according to (1-4) with folding (1). Four reactions are self-replications (1~1, 8~8,  9~9,  15~15), 76 are 
replications 

Operator String 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5 
2 0 1 1 0 0 1 1 4 4 5 5 4 4 5 5 
3 1 1 l 4 5 5 5 4 5 5 5 4 5 5 5 
4 2 0 2 8 10 8 l0 0 2 0 2 8 10 8 10 
5 3 0 3 12 15 12 15 0 3 0 3 12 15 12 15 
6 2 1 3 8 10 9 ll  4 6 5 7 12 14 13 15 
7 3 1 3 12 15 13 15 4 7 5 7 12 15 13 15 
8 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10 
9 1 2 3 4 5 6 7 8 9 10 1! 12 13 14 15 

10 0 3 3 0 0 3 3 12 12 15 15 12 12 15 15 
11 1 3 3 4 5 7 7 12 13 15 15 12 13 15 15 
12 2 2 2 8 10 l0 I0 8 10 10 10 8 10 10 10 
13 3 2 3 12 15 14 15 8 11 10 I1 12 15 14 15 
14 2 3 3 8 10 11 11 12 14 15 15 12 14 15 15 
15 3 3 3 12 15 15 15 12 15 15 15 12 15 15 15 



once we consider larger strings with length, say, of order 
N ~ O(100). 

In the real world, the smallest virus contains about 
3 000 base pairs. Since its elements are certainly able to 
interact in much more complicated ways than the binary 
strings we are considering here, we may have a small hint 
about how intricate the fundamental mechanisms of life 
really are. 

3 Dynamic behavior 

For a discussion of the system's dynamic behavior we 
first have to identify observables. Global quantities 
which characterize the time development of this system 
(Haken 1983) are the concentrations xi(t) of all the differ- 
ent string types s"): 

xi (t) = mi ( O / M  (8) 
where m~(t) is the number of actual appearances of string 
type s t~ in the string soup at time t, and M - M1 = M2 is 
the total number of strings. We have 

n s 

E x,(t)= 1 (9) 
i = 1  

Figure 1 shows the first 2 • 10 6 iterations through the 
algorithm with a population size of M = 10 5. A very 
special initial distribution of strings was used here, con- 
centrating the entire population in one type, Xs(0) = 1. 
The system relaxes to a macroscopic attractor state given 
by a fixed distribution of type concentrations at some 
later time. Despite the fact that the initial distribution 
favored one self-replicating string type with additional 
selective advantage, other types emerge until a stable 
distribution is reached. 

1 , ( ~ ( ~  I h I I J L I I I 

0 
Time 

C )  

0.0C( I 

2(33 

Fig. 1. Time development of ns = 15 string-type concentrations xi. 
Folding according to (1). Number  of strings, M = 100 000; initial condi- 
tion, Xs(0)= 1, x i (0)= 0Vi. Shown are the first 200 time steps, each 
consisting of 10 000 sweeps through the algorithm 
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Fig. 2. Selection parameter  n = 5. Same folding and initial conditions 
as in Fig. 1 

Running the algorithm under different initial condi- 
tions, for instance, nearly equal initial distribution of 
strings (Banzhaf 1993c), reveals that the macroscopic 
behavior changes only slightly, well within the range of 
fluctuations present in the system. We observe, however, 
more pronounced oscillations between concentrations of 
the various string types if we use smaller population sizes. 

If we change selection probabilities by choosing 
another parameter n in (1-13), we end up with a different 
distribution of types s ~ (see Fig. 2). Note that this change 
of global behavior was brought about by applying 
a higher selection pressure on the system. Thus, s ~8) is 
more reluctant to give room to other string types. The 
global behavior also changes if we use another folding 
rule. Figure 3 shows the development of concentrations 
for the second folding method. The difference shows up 
clearly as another combination of concentrations domi- 
nates the long-term behavior. 

As far as the overall stability of the system is con- 
cerned, we observe in Fig. 4 a case where the balance 
between string sorts is seriously disturbed. It was gener- 
ated by altering the basic algorithm of part I (Banzhaf 
1993a) to include destructors (by skipping step 6 of the 
algorithm). This example clearly demonstrates the need 
for the countermeasure taken in the algorithm. 

Since the overall system behavior is approximately 
the same for different initial conditions and qualitatively 
similar for different folding rules, we shall consider our 
first simulation example in more detail. Table 3 shows 
the average concentration levels of the different sorts of 
strings for the simulation reported in Fig. 1. Interestingly, 
the most frequent string types are not necessarily self- 
replicating strings [ S ( 1 ) , s ( S ) , s ( 9 ) , S ( 1 5 ) ' ] ,  but other sorts 
able to muster support from cross-reactions and resistant 
to the selection pressure. 
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Fig. 3. Folding according to (2), system otherwise same as in Fig. 1. 
System relaxes to a different attractor characterized by another combi- 
nation of concentration levels 
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Fig. 4. The destructor xs not removed regularly. M = 1000. Folding 
and initial conditions as in Fig. 1. All concentrations, except Xo(t), are 
shown for 10000 elementary sweeps through the algorithm. The de- 
structor is able to suppress all activity quickly, a.u., arbitrary units 
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Fig. 5. Reaction frequency histogram for all 225 reactions accumu- 
lated over elementary sweeps 90000,. . . ,  100000. Same folding as in 
Fig. 1. M = 1000 

If we recall that  the algori thm creates each string type 
by an approximately cons tant  rate (at the expense of 
removed destructors), we can imagine that nearly every 
possible reaction is actually taking place once in a while. 
Figure 5 demonstrates  this fact clearly, as it shows a fre- 
quency histogram for the reactions accumulated over 
10000 iterations. We can see that all reactions have 
happened at least sometimes. 

This concludes the section on N = 4. As we consider 
longer strings in a for thcoming con t r ibu t ion  (Banzhaf 
1993b), more complicated systems will emerge, and  soon 
the combinator ia l  explosion will prohibi t  us from com- 
pletely investigating the sequence space of strings. This 
was the reason why we studied the .N = 4 system in so 
much detail. 

4 Model equations 

A system of coupled differential equat ions similar to 
those studied by Eigen and Schuster for the hypercycle 
(Eigen and Schuster 1977, 1978a, b) can model  the pro- 
posed string reactions. As was shown by Gillespie 
and Mangel  (1981), most stochastic reaction systems are 
sufficiently well behaved to allow for a deterministic 
description with cont inuous  n o n r a n d o m  concent ra t ion  
functions yi(t)  of the different string types 1 ~< i ~< ns. The 

Table 3. Concentrations xl for simulation of Fig. 1 at t = 200 

Sort 2 4 8 1 12 3 5 10 
Frequency 10.6% 10.5% 10.5% 10.4% 8.9% 8.8% 8.8% 8.7% 

Sort 15 9 6 7 11 13 14 0 
Frequency 6.5% 2.9% 2.8% 2.6% 2.6% 2.6% 2.6% 0% 



functions y~(t) are considered to approximate the time- 
averaged concentrations (x~>t: 

yi(t) ~- (x~),, 0 <~ yi(t) ~< 1. (10) 

For  the simplest algorithm used in N = 4, determinis- 
tic rate equations for yi(t) can be easily formulated: 

~Vi(t) = A(t) + [B, yi(t) + Z CikYk(t) -- Di]yi(t) 

y~(t) 
+ Y, w~j~yj(Oy~(t) - -  e( t )  01)  

i,~,~ ~kYk(t)  

where B~, C~k, Di, and W~jk are (coupling) constants; A(t) 
is an unspecific growth term; and ~(t) is a flow term used 
to enact competition between the various string types s ~~ 

Let us discuss in more detail the different contribu- 
tions to (11). The first term, A(t) > 0 is a growth term due 
to step 6 in our algorithm. For  this term, we may assume 
that the probability to generate the destructor does not 
change over time and is, hence, approximately equal for 
all types of strings. If this is too rough an approximation, 
we may compute A by 

A(t) = ~ a j , ( t )  yj(t) (12) 
ij 

where 

1 if s~~176 ~ s ~~ 
aij = 0 otherwise (13) 

reflects reactions producing the destructor. 
The second term describes self-replications of type s ") 

[-see (I-11)] in steps 3 and 4 with B~ = 1, if this reaction 
exists, and B~ -- 0 otherwise. It is quadratic in concentra- 
tion y ,  since operator and string are required to be of 
type i. The third term describes all other replication 
reactions between strings [-see (I-8) and (I-9)] in steps 
3 and 4 of the algorithm with C~k = 1, if replication 
occurs between i and k, and 0 otherwise. It depends on 
two concentrations, y~ and Yk. The fourth term is linear in 
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y~ as it models the spontaneous decomposition of strings 
according to step 7. 

The first of the two remaining terms describes a reac- 
tion between operator ~s,J~ and string s ~k) leading to string 
s t~), in which case W~jk = 1, and 0 otherwise. Such reac- 
tions take place as a consequence of steps 5 and 8 of the 
algorithm. The flow term, finally, assures that the sum of 
all concentrations is constant over the relaxation process. 
4~(t) is defined as 

4~(t) = ~ 3~i(t) �9 (14)  
i 

By keeping ~ y~ constant, a strong competition between 
string types is caused. The flow term corresponds to step 
4 in the algorithm. 

We are now in a position to examine the behavior of 
these equations for 15 string types with concentrations 
yi(t) in two special cases: (a) with random couplings and 
(b) with couplings derived from the N = 4 system. 

Table 4 shows the choice for the various parameters 
in these two cases. Qualitatively, the behavior for both 
cases is quite similar, as can be seen from a comparison of 
Figs. 6 and 7. Figure 6 depicts a typical random para- 
meter run. Most of the concentrations are relaxing to 
individual levels, and these are independent of the start- 
ing concentrations. The system is competitive, having 
point attractors in state space. 

Figure 7 demonstrates a run with couplings from an 
N = 4 binary string system. In this case, we have used the 
reaction tables to compute the outcome which is only 
feasible for N = 4 or 9. Figure 7 then shows the simula- 
tion of the differential equations (11) under the same 
initial conditions as that for the stochastic system simula- 
tion of Fig. 1. We can clearly observe that some concen- 
trations merge into the same levels, due to the particular 
interactions present in the dynamics of this binary string 
system. The comparison between the statistical data 
and the numerical integration of (11) shows very good 
agreement. 

Figure 8 gives a more systematic account of what 
happens if we change the selection pressure. Resulting 

Table 4. Couplings between 15 string types of the N = 4 system for a simulation of (11) and D = ~kDkyk 

Coupling Short description Random value System value 

A Spontaneous generation 1 

240 

B i Self-replication S 1 with p = �88 
l 0 with p = �88 

C~k Replication f 0 if i =  k 
1 with p = 31 
0 with p = z3 

D~ Spontaneous decomposition 0 ~< Di ~< 1 

Wijk Reaction 0 if i = j  or i = k  

1 with p = 

0 with p = 

D 
~aijylYj + 

1 if reaction exists 

0 otherwise 

0 if i = k  
1 if reaction exists 

0 otherwise 

0 i f i = j  or i = k  
1 if reaction exists 

0 otherwise 
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Fig. 6. Simulation of the differential equations (11). Random choice of 
coupling constants according to Table 4. 
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Fig. 8. Varying selection pressure in model equations for N = 4. Para- 
meter n of (1-13) is increased until asymptotic concentrations xi(~) 
show no further change. The selective pressure favors types with low 
numbers of l's: s m, s (2~, s t4), s ts). 
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Fig. 7. Simulation of the differential equations (11). Constants derived 
from binary string system N = 4. 

asymptot ic  concentra t ions  xi( oo ) stabilize when suffi- 
cient selection pressure is applied. 

If  we want  to apply the equat ions to cases involving 
larger strings, however, we quickly run into problems. 
For  N = 9, Wuk has 1.3 x 108 components .  

was the simplest nontrivial system possible within the 
proposed framework. 

Certainly one lesson that  can be drawn from these 
simulations is that, provided populat ions are large 
enough,  the characteristic feature of self-replication is not  
the most  impor tant  feature of a string type. What  is more 
impor tant  is the network or  web of interactions that 
a type can exploit to maintain or increase its level of 
concentrat ion,  i.e., the catalytic cycle or hypercycle in 
which it is involved (see also Kauffman 1986). As a conse- 
quence, we expect that  mutat ions  possibly occurring dur- 
ing a string interaction are not  as impor tant  as the 
semilocal character of the interaction itself. In other 
words, the role of  mutat ions to explore neighborhoods  of 
already existing strings in sequence space may be taken 
over by regular string interactions which usually generate 
(at least slightly) modified strings (except for replication 
and self-replication reactions). For  much larger strings, 
however, we expect muta t ion to play an impor tant  role. 

In this report  we have only discussed the basic algo- 
ri thm applied to a very simple system, N = 4. More  
complex systems will be treated elsewhere (Banzhaf 
1993b, d), at least preliminarily. Together  with applica- 
tions of these systems centering a round  combinator ia l  
optimizat ion (W. Banzhaf, in preparation) they will con- 
stitute -a major  part  of future work. Yet the algori thm 
outlined here is but  one example of an entire class of 
algori thms employing a new interpretation of  the manip-  
ulation of  logical and mathematical  symbols. 

5 Conclusion 

In this contr ibut ion we have discussed a part icular  
example for a new self-organizing system based on 
sequences of  binary numbers.  The example we studied 
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