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Abstract. We propose the general framework of a new 
algorithm, derived from the interactions of chains of 
RNA, which is capable of self-organization. It considers 
sequences of binary numbers (strings) and their inter- 
action with each other. Analogous to RNA systems, 
a folding of sequences is introduced to generate alterna- 
tive two-dimensional forms of the binary sequences. The 
two-dimensional forms of strings can naturally interact 
with one-dimensional forms and generate new sequences. 
These new sequences compete with the original strings 
due to selection pressure. Populations of initially random 
strings develop in a stochastic reaction system, following 
the reaction channels between string types. In particular, 
replicating and self-replicating string types can be 
observed in such systems. 

I Introduction 

In this contribution we want to study an algorithm 
derived from prebiotic evolution. Its investigation was 
suggested by the application of genetic algorithms (GAs) 
(Rechenberg 1973; Holland 1975; Schwefel 1981; Gold- 
berg 1989) to problems of combinatorial optimization. 

In a particular formulation of the GA based on 
notions from molecular biology (Dewdney 1985; Wang 
1987; Banzhaf 1990a) a solution to the optimization 
problem is represented as a string of data. Improvements 
of a solution during the optimization process are then 
achieved by machines operating on the data string. An 
entire population of solutions with different qualities is 
processed at the same time in these algorithms, giving rise 
to explicit parallelism in the space of data strings and 
machines. 

The right choice of a representation for the optimiza- 
tion problem to be solved is crucial for the success or 
failure of the GA. Strings have to fulfil certain feasibility 
criteria for a general solution to the problem. To select 
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a promising representation requires detailed knowledge 
about the particular optimization problem. The set of 
data strings can be initialized with random numbers. 

The second ingredient of a GA is the availability of 
various types of machines that constantly process data 
strings. Processing one (or more) string(s) means that 
a machine picks up a solution(s) to the problem and tries 
to improve it (them) with the help of its operation 
program. Here, again, knowledge about the particular 
optimization problem is required, namely, in the form of 
programs for machines which try to improve solutions. 
A considerable part of these programs, however, can also 
be left to random number generators. 

The GA proceeds, therefore, by stochastically search- 
ing in parallel for better solutions to the optimization 
problem than those already given in the form of initially 
generated data strings. If the quality of a string newly 
generated by a machine is better than its "parent" or 
predecessor from which it was derived, it is released into 
the ensemble of strings; otherwise it is discarded. Note 
that this selection process is completely local in the sense 
that it depends only on the string and its variant (Banzhaf 
1990a, b). Nevertheless, during the processing of strings, 
one can observe a nearly continuous improvement of 
solutions until the algorithm finally settles into a local or 
global optimum of the problem. 

If we take a look at real evolutionary processes, we 
can observe the following differences: 

1. A living organism has to adapt to a dynamically 
changing environment, whereas an artificial optimization 
process usually adapts to a fixed selection criterion deter- 
mined by the optimization problem. 
2. Organisms live in an open environment and therefore 
have to invent and sustain metabolism. Data strings in an 
optimization algorithm, on the other hand, are isolated 
from the underlying material substrate and usually exist 
in a closed world. 
3. Conserving and reproducing the accumulated know- 
ledge or information is a must for living beings, and thus 
a value in itself. In fact, one may say that the mechanisms 
developed for this purpose constitute the very essence of 
life. In contrast, the degree of reproduction for the solu- 
tions to an optimization problem is in the average case 
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completely controlled by the performance of a string with 
respect to a single criterion, the particular optimization 
problem to be solved. 

In living organisms, the main goals (sustained metabol- 
ism and reproduction) are achieved by (1) information 
storage (in double strands of DNA), which could be said 
to carry solutions to the problems of life (the genotype) 
and (2) active functional units (proteins etc.) for perform- 
ing various operations in the real world (the phenotype), 
e.g., reproduction or metabolism. 

The entire system providing all these abilities must be 
very complex, since the information about how to con- 
serve information has also to be conserved in the DNA 
itself (e.g., Lewin 1987). Naturally, this provokes the ques- 
tion: what came first, DNA or proteins? What was long 
the subject of conjecture was finally confirmed a decade 
ago (Kruger et al. 1982; Guerrier-Takada et al. 1983): 
there exists a simpler system, based on RNA, capable of 
both information storage and enzyme-like operations. 
This system is visible in higher organisms even today, 
when it has been fully integrated by performing many 
useful auxiliary functions for the DNA-protein system. 
The most common plausible sequence of events leading 
to the present-day replication-transcription-translation 
machinery is: unknown precursor template molecule 

RNA ~ RNA + protein ~ RNA + protein + DNA. 
As proteins RNA has a natural tendency to fold itself 

into a secondary and tertiary structure, depending on 
the sequence of nucleotides (amino acids in the case of 
proteins) in the strand. The only difference between RNA 
and DNA is that the ribose moiety causes it to prefer the 
"A" conformation of the double helix. Structure forma- 
tion in RNA is driven by the formation of intramolecular 
RNA double helices. Folded RNA molecules have been 
shown to be protein-like, occasionally able to perform 
operations either on themselves ("ribozyme") or on other 
strands of RNA. Hence, the sequence on a strand of RNA 
can be interpreted as information, whereas the three- 

dimensional  shape of the RNA molecule resulting from 
the attractive and repulsive forces of physics determines 
its operational counterpart,  that is, its function. 

If we now turn to the world of modern computers, we 
can state that sequences of binary numbers, which we 
shall here call binary strings, are the simplest form of 
information storage and representation. What we shall 
do in this study is to consider a population of binary 
strings in which strings can act, much like RNA, as both 
information storage (strings) and machines (operators) 
changing strings. This will require the introduction of at 
least a second form of strings, analogous to the secondary 
or tertiary form that primary amino acid (or nucleotide) 
sequences can assume. The resulting algorithm cannot be 
considered a GA anymore. Rather, it is a prebiotic algo- 
rithm, concerned with the onset of replication in an en- 
semble of artificial macromolecules (the strings of numbers). 

On a higher level of organization, Fontana has re- 
cently proposed a model called algorithmic chemistry 
(Fontana 1991), in which he considers similar interac- 
tions between strings. The strings in his model, however, 
are taken from pure LISP (Chaitin 1987), a special ver- 

sion of the LISP computer language inspired by Church's 
A-calculus. Interestingly, similar phenomena of self- 
organization occur in both models. Other important 
work in this context has been done by Kauffman, who 
proposed simplified models of autocatalytic sets of pro- 
teins (Kauffman 1986). 

This paper is the first part of a series organized as 
follows. Part I describes the general algorithm for an 
interaction between the two forms of strings and intro- 
duces the basic notions necessary to understand the 
dynamics of such a system. Part II (Banzhaf 1993a) 
discusses the simplest nontrivial system of this kind with 
string length N = 4. Static and dynamic features of this 
system are studied using selected simulations. It also 
outlines our efforts to model the simple system by deter- 
ministic rate equations. Finally, Part III (Banzhaf 1993b) 
considers more complicated systems with larger strings. 
Simulations are presented on the N = 9 system. Also in 
this part, mutations of strings are introduced and the 
existence of evolutionary processes is demonstrated. 

2 The basic algorithm 

As we deal with the evolution of strings of numbers or 
symbols, two principles have to be embodied in the 
algorithm: 

1. Machines, which we shall call operators, should exist, 
able to change strings according to specified rules. 
2. Strings should be equivalent to machines in that 
a predefined mapping law determines which operator can 
be generated from which string type. 

Since we want to construct an algorithm as simple as 
possible, we restrict ourselves here to strings of binary 
numbers. Therefore, let us consider string s, consisting of 
concatenated numbers 0 and 1: 

s = ( s l , s 2  . . . . .  si . . . .  ,ss),  sic{0, 1}, l <~i<~N.  (1) 

For  N, the length of strings, we adopt a square number, 
at least in this contribution. 

The restriction for si to be a binary number is by no 
means necessary, but it will serve us in the course of our 
discussion to concentrate on some of the essential points. 
In principle, real numbers and even strings of symbols 
may be considered, provided appropriate (and, maybe, 
natural) rules can be found that govern the formation of 
operators and their interaction with strings. 

This brings us to the decisive question: how can these 
operators be formed from binary strings? In nature, 
amino acid strands tend to fold together according to the 
laws of chemistry and physics. Although it is quite clear 
that formation is governed mainly by a tendency of the 
strands to relax into energy-minimal configurations in 
three dimensional physical space, studying the formation 
of secondary and tertiary structures which result from 
primary amino acid sequences is in itself a field of 
vigorous scientific interest (Robson and Garnier 1986; 
Bryngelson and Wolynes 1987; Li and Scheraga 1987; 
Quian and Sejnowski 1988 and references therein). 
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2.1 Folding of sequences 

For  binary strings we propose the following procedure. 
A string s with N components  folds into an operator 

which can be represented mathematically by a quad- 
ratic matrix of size x / ~ x  x / ~ ,  as is schematically 
depicted in Fig. 1 for three particular foldings. At this 
stage of the discussion, it is not necessary to fix the exact 
method of string folding. Any kind of mapping 

J / : s  ~ ~s  (2) 

of the topologically one-dimensional strings of binary 
numbers into a two-dimensional (quadratic) array of 
numbers is allowed. Depending on the method of folding, 
we can expect various transformation paths between 
strings. 

Computationally,  the proposed folding methods are 
equivalent to the treatment of polar and nonpolar  resi- 
due sequences studied by Lau and Dill (1989). They 
consider the conformation of globular proteins as the 
outcome of a self-avoiding random walk on a two-dimen- 
sional square lattice. The compact  conformations they 
examine as candidates for minimal energy configurations 
precisely correspond to the square matrices in our model. 

Let us assume now that an operator  ~ ,  was formed 
from string s. This operator, in turn, can act on another 
string s' and generate still another string s" (see Fig. 2): 

~,s'  =~ s". (3) 

Specifically, we require that neither ~ ,  nor s' is deleted by 
this operation} Rather, a new string s" is generated by 
the cooperation o f ~ ,  and s'. In other words, the system is 
open with an ongoing production of new strings from 
some sort of raw material (corresponding to energy-rich 
monomers  in nature). In this interpretation, only the 
information carried by ~,  and s' is considered important  
here, and this information is required to be conserved. 
The options to control the continued production of new 
strings are the following: 

1. One can run the system with a fixed number  of strings 
M. Each new string produced causes the deletion of an 

1 This is the symmetric case we consider in further detail here. It is also 
possible to require that only one of either string or operator should be 
conserved. Qualitatively, the behavior of such a system is similar 

already existing one. The string to be replaced can be 
selected by chance, i.e., according to its frequency in the 
ensemble; or by some quality criterion, length of string, 
number  of ls, etc.; or by a combination of both. 
2. One can fix a maximum number  of strings M2 after 
allowing for an initial period of unrestricted growth 
started from a small number  of strings M1. 
3. One can restrict the raw material that may be used to 
produce strings. As a consequence, an initial growth 
period in the number of strings causes a rapid depletion 
in the supply of raw materials, in our case 0s and 1 s, 
which, in turn, restricts the formation of new strings. 

The net effect of these or other countermeasures is to 
force strings into a fierce competit ion for available re- 
sources (Eigen 1971). Strings with selective advantages 
will be preferred strongly by the system. 

2.2 Operators at work 

For  the moment,  however, we have to come back to the 
question of exactly how an operator  can act on a string. 
Consider Fig. 2. We can think of s' as being concatenated 
from x / N  segments with length v / N  each. The operator  
~ ,  is able to transform one of these segments at a time, 
using semilocal operations. In this way, it moves down 
the string in steps of size w/N until it has finally com- 
pleted the production of a new string s". Then, operator  

4N 
t 

$ 

4N 
$ 

N 

String ~" 

, 1" 

4N 

> N 

Operator P~ String s" 

Fig. 2. An operator ~, of matrix dimension n/N x ~ (derived from 
string s) acts on a string s' consisting of ~ segments, each of length 
,,/-N, to produce a new string s" 
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~s unfolds back into its corresponding form as a string 
s and is released, together with s' and s", into the en- 
semble of strings. (We will call this "string soup.") 
Thus, we have to require that the mapping from one- 
dimensional strings into two-dimensional operators is 
reversible. 

The semilocal character of operations is an important 
feature of this model as it enables the interaction of 
similar operator and string pairs to result in similar 
product strings. We call the operations semilocal, since 
their interaction range is restricted to the size of one 
dimension of the operator  form of a string x/N. Interest- 
ingly, it is the folding mechanism itself which causes this 
restriction in the interaction range. 

A particular example of the action of an operator 
onto a string is the computation of scalar products. This 
computation, however, will not conserve the binary 
character of strings unless we introduce a nonlinearity. 
Therefore, in Part II (Banzhaf 1993a) we shall examine in 
more detail the following related computation: 

- 1 S i + k 4 ~ = (7 ~) 
L j = l  

i =  1 . . . . .  ~ k = 0  . . . . .  x / N - - 1 .  (4) 

The symbol (7[ ] stands for the squashing function 

(TEx]={~  for x~>0  
for x < 0 (5) 

and O is an adjustable threshold. For  the case O = 1 
discussed in Parts II and III (Banzhaf 1993a, b), (4) 
amounts to a combination of boolean operations, 
applied separately in each segment k of the string. 

In order to gain a better understanding of the entire 
system, it helps to adopt the reaction notation of chem- 
istry. In this picture, consider an operator ~ ,  formed 
from s (1), which reacts with S (2~ to produce S (3) under 
conservation of all reactants. 2 We can write this as a 
general reaction of the kind 

S (1) "]- S (2) -~ X ~ S (1) + s (2) "-[- S (3) (6) 

and classify the possible reactions into five classes: 

�9 ~ s  it) ( ~  S (2) -'~ S (1) -~- S (2) -{" S (3) (7) 

~ S  t', (~) S (2) ~ S (1) + S (2) "~ S (2) (8)  

~ s  I1' (~) S (2) -'~ S (1) -[- S (2) -~- S (1) (9) 

~ S  '') G S (1) ~ S (1) -~ S (1) "-~ S (2) (10) 

~',,', | s ") --' s m + s ") + s ") (11) 

where operators Ps,~, are characterized by the strings to 
which they correspond. The symbol @ indicates the 
active process of the operator working on a string (using 
X as raw material). Interesting reactions are given in (8), 

(9), and (11), which show replication of one reactant (the 
former two) and self-replication (the latter). 

2.3 Equilibration 

We have to mention the fact that potentially "lethal" 
strings exist in these systems. A string is said to be lethal 
or "pathological" if it is able to replicate in an unpropor- 
tionally large number in almost any ensemble configura- 
tion. In the particular case of (4), the string consisting of 
only 0s is pathological because it is able to replicate with 
itself and with every other string. We call this string the 
destructor and shall constantly monitor string soup reac- 
tions in order to remove the destructor on appearance. 
Another potentially hazardous string consists of is only. 
We call it the exploitor. In addition to replicating itself it 
is able to replicate with a large fraction of string types. 
Although the exploitor is pathological, we can deal with 
it in a more gentle way by providing a means of non- 
deterministic string removal. 

To this end, for example, we introduce the following 
general stability criterion for strings: the fewer number of 
ls a string contains, the more stable it becomes. Its 
chance to be removed, therefore, depends on 

N 
I(k)= ~ S! k), k =  1 . . . .  , M  (12) 

i=1  

I (k) measures the number of ls in string k and will 
determine a probability 

p(k)= [ i tk ) /S] .  (13) 

with which an encountered string should be removed. 
The parameter n shall serve us to adjust probabilities 
slightly. Note that the exploiter has probability p = 1 and 
must disappear on encounter. 

2.4 Summary 

The simplest version of the entire algorithm can now be 
stated as follows: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Generate M1 random binary strings of length 
N each. 
Select a string and fold it into an operator 
(a matrix) of dimension x / ~  x x/N. 
Select another string and apply the operator 
generated in step 2. 
Release the new string, the old string, and the 
operator (as string) into the string soup. 
Remove one randomly chosen string with prob- 

M1 . 
ability p -- M22 m order to compensate for the 

addition of a string in step 4. 
Monitor the soup and replace destructors with 
randomly generated strings. 3 

2 In the future, when  d iscuss ing  s t r ing types, we shall  omi t  the vector  3 R a n d o m l y  genera ted  str ings could  ei ther  be comple te ly  r a n d o m  
ar row and  only  use n u m b e r s  to charac ter ize  different s t r ing types b inary  s t r ings or result  from a m u t a t i o n  of a l ready exis t ing s t r ings 
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Table 1. Some low-dimensional examples 

x/N N ns nR 

2 4 15 210 
3 9 511 ~ 2.6-105 
4 16 65 535 ~ 4.109 
5 25 ~ l0 T ~ 1015 

10 100 ~ 1030 ~ 1060 

x/N, Matrix size in one dimension; N, length of strings; ns, 
number of different strings, excluding destructor; nR, number 
of possible reactions, excluding self-reactions 

Step 7: Select one str ing and subst i tu te  it accord ing  to 
the p robab i l i t y  of  (13), by  a r a n d o m l y  genera ted  
string. 3 

Step 8: G o  to step 2. 

This  a lgo r i thm implements  the resource l imi ta t ion  
scenar ios  previous ly  men t ioned  as con t ro l  op t ion  1, 
M 1  = M 2  =- M ,  or 2, M1 < M2 (see Sect. 2.1). 

Tab le  1 shows the impressive number  of poss ible  
in te rac t ions  be tween strings as we increase their  length 
N. F o r  a rb i t r a ry  N we have 

ns = 2 N - 1 (14) 

of  ope ra to r s  and  strings. W h e t h e r  we require  tha t  bo th  
in terac t ing  enti t ies or  only  one be conserved  seems 
u n i m p o r t a n t  relat ive to the genera l  i n t e rp re t a t ion  of the 
process  as being an open nonequ i l ib r ium process  (Haken  
1983). This  is, after all, the impl ica t ion  of  our  requ i rement  
tha t  str ings can be assembled  uti l izing the in format ion  
genera ted  by the ope ra to r - s t r ing  in teract ion.  

The  in terac t ions  between str ing types genera te  a reac- 
t ion ne twork ,  and  we expect  b r o a d  differences in the 
p roduc t i on  rates of var ious  types  of  strings. In  par t icu la r ,  
repl ica t ing or  self-replicating types m a y  feature p romin -  
ently. In  a p o p u l a t i o n  of  s tr ings this will lead  to a self- 
o rganiz ing  dynamic  with changing  relat ive frequencies of  
s tr ing types. 

O u r  next s tep will be a c o m p u t e r  s tudy  of the p ro-  
posed  a lgor i thm using a p o p u l a t i o n  of  str ings of shor tes t  
length, N = 4. This  will cons t i tu te  the second par t  of  our  
series (Banzhaf  1993a). 
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s t r ing types and  

n R = 2 2N - 3"2 N + 2 (15) 

different react ions,  excluding reac t ions  with the des t ruc-  
tor  and  self-reactions. The n u m b e r  of po ten t ia l  self- 
rep l ica t ions  nsR is, of course,  

nsR = ns (16) 

3 Conclusion 

In this con t r i bu t ion  we have discussed a new a lgor i thm 
for a sel f -organizing system based  on sequences of b ina ry  
numbers .  The  key e lement  of  this a lgo r i t hm is the p ro -  
posed  mechan i sm of in te rac t ion  between strings. I t  is 
based  on a two-d imens iona l  form tha t  the str ings can 
assume by app l i ca t ion  of  var ious  folding methods .  In  
con t ras t  to o the r  mode l s  ( F o n t a n a  and Schuster  1987; 
F o n t a n a  et al. 1989) the folding m e t h o d  as well as the 
ope ra t ions  of  the two-d imens iona l  (matrix)  form of  
str ings are  not  based  on phys ica l  and  chemical  effects. 
The  logic of our  mode l  seems to be much  s impler  than  
the physical  logic of R N A  folding in nature.  

There  is, of  course,  a lot  of r o o m  to make  the 
p r o p o s e d  f r amework  more  e labora te ,  for instance,  by 
inc luding  local  a t t rac t ive  forces between str ing compo-  
nents. A n o t h e r  poss ibi l i ty  would  be to  p rov ide  an addi -  
t ional  folding step of two-d imens iona l  forms into three- 
d imens iona l  "art if icial  g lobu la r  molecules".  

Any  in t roduc t ion ,  however ,  of  new elements  in to  the 
rules of  s tr ing folding mus t  not  des t roy  the ope ra t ing  
pr inciple  tha t  new strings are  p r o d u c e d  by an in te rac t ion  
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