Check for
Updates

Bias-Variance Decomposition: An Effective Tool to Improve
Generalization of Genetic Programming-based Evolutionary
Feature Construction for Regression

Hengzhe Zhang
hengzhe.zhang@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

Wolfgang Banzhat
banzhafw@msu.edu
Michigan State University
East Lansing, MI, USA

ABSTRACT

Evolutionary feature construction is a technique that has been
widely studied in the domain of automated machine learning. A
key challenge that needs to be addressed in feature construction is
its tendency to overfit the training data. Instead of the traditional
approach to control overfitting by reducing model complexity, this
paper proposes to control overfitting based on bias-variance de-
composition. Specifically, this paper proposes reducing the vari-
ance of a model, i.e., reducing the variance of predictions when
exposed to data with injected noise, to improve its generalization
performance within a multi-objective optimization framework. Ex-
periments conducted on 42 datasets demonstrate that the proposed
method effectively controls overfitting and outperforms six model
complexity measures for overfitting control. Moreover, further anal-
ysis reveals that controlling overfitting adhering to bias-variance
decomposition outperforms several plausible variants, highlighting
the importance of controlling overfitting based on solid machine
learning theory.

CCS CONCEPTS

« Computing methodologies — Genetic programming.

KEYWORDS

Genetic programming, bias-variance decompostion, automated ma-
chine learning, evolutionary feature construction

ACM Reference Format:

Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang.
2024. Bias-Variance Decomposition: An Effective Tool to Improve General-
ization of Genetic Programming-based Evolutionary Feature Construction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO °24, July 14-18, 2024, Melbourne, VIC, Australia

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0494-9/24/07...$15.00

https://doi.org/10.1145/3638529.3654075

Qi Chen
qi.chen@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

998

Bing Xue
bing.xue@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

Mengjie Zhang
mengjie.zhang@ecs.vuw.ac.nz
Victoria University of Wellington
Wellington, New Zealand

for Regression. In Proceedings of The Genetic and Evolutionary Computa-
tion Conference 2024 (GECCO °24). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3638529.3654075

1 INTRODUCTION

Automated feature construction is an important topic in the field
of automated machine learning, attracting considerable attention
in recent years [38]. Formally, given a dataset (X,Y), the goal of
automated feature construction is to construct a set of features
®(X) to improve the predictive performance of a specific machine
learning algorithm A. Representative examples of automated fea-
ture construction techniques include neural networks [22], kernel
methods [34] and genetic programming [19].

Despite the remarkable success of neural network-based feature
construction methods, genetic programming (GP)-based evolution-
ary feature construction has been gaining increasing attention [1].
Compared to deep learning methods, GP has advantages such as
an interpretable representation [17] and a gradient-free and global
search mechanism, making it well-suited for automated feature con-
struction, especially for constructing features for non-differentiable
loss functions and base learners.

In current GP feature construction algorithms, a significant chal-
lenge is that the constructed features may overfit the training
data, especially when sample size is limited or the dataset contains
noise [31]. In GP-based learning, a common strategy to enhance
generalization is controlling the size of the GP model [10], thereby
reducing the risk of overfitting. However, other studies indicate
that model size alone is insufficient to ensure good generaliza-
tion [37]. In contrast, the semantics of GP trees significantly impact
generalization performance [37]. Therefore, complexity measures
such as VC dimension [7], Rademacher complexity [5], and model
smoothness [36] are considered for optimization to improve the
generalization of GP.

In the context of feature construction, it has been observed that
large feature construction layers in deep neural networks can gen-
eralize effectively [42]. However, for a ReLu neural network with L
layers and W parameters, the VC dimension has a lower bound of
Q(WLIlog(W/L)) [2], often exceeding the dataset size in modern
neural networks. This observation raises questions about the practi-
cality of avoiding models with high VC dimension and Rademacher

https://doi.org/10.1145/3638529.3654075
https://doi.org/10.1145/3638529.3654075
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638529.3654075&domain=pdf&date_stamp=2024-07-14

GECCO ’24, July 14-18, 2024, Melbourne, Australia

complexity in mitigating overfitting. In contrast, bias-variance anal-
ysis successfully demonstrates that large models can generalize
well because of variance reduction introduced into large regular-
ized neural networks, such as L2-regularized networks [40].

Given the success of the bias-variance decomposition framework
in analyzing overfitting phenomena, the key objective of this pa-
per is to propose a variance reduction technique for enhancing
the generalization performance of GP-based feature construction
within the context of bias-variance decomposition. More specifi-
cally, when using mean square error as the loss function, the test
error on unseen data can be decomposed as [18]:

Ep [{f(xtest;z}) - ytest}z] = {Ep [f Xtest; D)] - ytest}z

Bias

+Ep [{f(xtestZD) -Ep [f(xtestQD)]}z] .

1

Variance

Here, D represents the data distribution, and Ey represents the
expectation over the data sampling process. The first objective Oq
represents the squared error between the average prediction over
models trained by bootstrapped training data and the ground truth,
while O, represents the variance among different predictions over
models trained by bootstrapped training data. The bias-variance
decomposition is a general framework applicable to all learning
algorithms. Commonly, in the GP domain, the bias-variance de-
composition is used to analyze the behavior of a GP algorithm [29].
This means that the learning algorithm A will produce different
models f through sampling from the training data X, and the bias-
variance decomposition is performed on the test data xest based
on these different trained models f. The entire process of classical
bias-variance decomposition [18] is illustrated in Figure 1. In con-
trast, as depicted in Figure 2, this paper focuses on the variance of
a specific model f on the training data X¢rain. Our aim is to obtain a
robust model f that yields stable predictions with minor variations
on the training data X, rather than developing a robust algorithm
A. The objective is defined in Equation (2):

01 = {Ep [f (Xtrain; D)] - ytmin}za

Bias

02,=Ep [{f(xtraimﬂ) -Ep [f(xtraimﬂ)]}z] .

minimize

Variance
@
Here, the first objective O represents the squared error between
the average prediction over data with noise and the ground truth,
whereas Oy represents the variance among different predictions
over data with noise.

1.1 Goals

To simultaneously optimize bias and variance in Equation (2), we in-
troduce a multi-objective optimization framework for evolutionary
feature construction in regression!. While multi-objective opti-
mization is not mandatory, it aligns with the common approach in
existing literature to control overfitting [5, 7]. The main goals of
this paper are summarized as follows:

Souce Code: https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/
experiment/methods/VR_GP.py

999

Zhang, et al.

e To address the problem of overfitting, we propose a multi-
objective feature construction framework that optimizes
both bias and variance of a regression model with GP con-
structed features, based on the bias-variance decomposition
framework.

e To align with the objective function derived from bias vari-
ance decomposition, we propose an empirical method to
estimate the variance for a fixed learning model.

e To demonstrate the effectiveness of the proposed method, we
compare it with six popular overfitting control techniques
in GP, as well as standard GP, on a regression benchmark
with 42 datasets.

2 RELATED WORK

2.1 Evolutionary Feature Construction

Evolutionary feature construction is an automated machine learn-
ing technique that has received widespread attention. It can be
categorized into filter-based, wrapper-based, and embedded feature
construction methods based on the evaluation approach used [33].
Filter-based methods often utilize information-theory-based or
other statistical and fuzzy metrics, such as impurity [24], to evaluate
feature quality. The advantage of filter-based methods is their speed
and generalizability to different learning algorithms, but they often
provide sub-optimal learning performance. In contrast, wrapper-
based methods evaluate feature quality using specific learning al-
gorithms, such as decision trees [46] or linear regression [43]. In
wrapper-based methods, multi-tree GP is widely employed as a
representation for constructing multiple features, with notable ex-
amples including M3GP [23] and M4GP [21]. Wrapper-based meth-
ods are typically slower than filter-based methods, but they can
achieve superior learning performance. Finally, embedded feature
construction methods integrate feature construction into the learn-
ing process, with GP-based symbolic regression methods being a
typical example [6]. Embedded methods often provide a compro-
mise on learning performance and training speed between filter-
based methods and wrapper-based methods. In this paper, our main
focus is on wrapper-based feature construction methods because
of their superior performance.

2.2 Overfitting Control in GP

Regarding overfitting control techniques in GP, it can be broadly
categorized into three categories. The first category is optimizing
from a statistical machine learning theory perspective, including
techniques like Tikhonov regularization [26], VC dimension [7],
Rademacher complexity [5], Bayesian model selection [3], and also
includes implicit model size reduction methods like equality satu-
ration [11] and hoist mutation [44]. Although these methods are
underpinned by strong theoretical foundations, the success of mod-
ern deep learning techniques, particularly in large computer vision
and language models, challenges the applicability of these mea-
sures. For instance, large computer vision model architectures can
fit datasets with both correct and shuffled labels [42], yet they
demonstrate robust generalization capabilities. This contradicts the
theory of Rademacher complexity.

The second category is based on bias-variance decomposition
theory, with a notable example being ensemble GP. Recent studies

https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/VR_GP.py
https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/VR_GP.py

Bias-Variance Decomposition: An Effective Tool to Improve Generalization of Genetic Programming-based Evolutionary Feat(&Coastdclidy fie-R8gresiphielbourne, Australia

Training
Data A
Training
Data B

Algorithm

|| Model A I
Model B

Test Data H Test Error

Variance

Figure 1: The traditional workflow of bias-variance decomposition for decomposing the test error into bias and variance. The
variance arises from various models induced by a learning algorithm trained on different datasets [18] and random seeds [29].

Training
Data A

Training
Error

Model H

Training .

Figure 2: The workflow of bias-variance decomposition for
overfitting control without involving the test data. The model
refers to GP-constructed features with a base regression
model. The variance arises from a model that makes dif-
ferent predictions for data with different minor variations.

demonstrate that an ensemble of GP-constructed features, using
either homogeneous [46] or heterogeneous base learners [45], can
yield impressive generalization performance. However, in many
scenarios where interpretability is paramount, a single model is
often preferred.

The third category is applying commonly used strategies in ma-
chine learning, such as early stopping [35], random sampling [15],
semi-supervised learning [32], feature selection [39], and soft tar-
gets [36]. However, these methods generally lack a solid theoretical
foundation, making their applicability to various scenarios less
certain.

Given the success of bias-variance decomposition in explaining
the generalization of deep learning techniques [40], as well as GP
techniques [30], this paper takes a further step to optimize the
variance of a model to control overfitting.

3 VARIANCE REDUCTION GP

3.1 Individual Representation

In this paper, a multi-tree GP representation is used for feature con-
struction. Here, the number of trees m can be dynamically changed
by the mutation operator, as illustrated in Figure 3. All GP trees
in a GP individual, denoted as ® = {¢, ..., dm }, are employed to
construct m features from input data X. These features are then
input into a linear regression model LM to generate predictions Y.

3.2 Algorithm Framework

The algorithm framework follows the traditional GP framework.
However, to consider optimizing variance, we employ a multi-
objective framework to evolve GP trees. The framework consists of
the following five components:

o Population Initialization: In the initialization stage, a set of N
GP individuals is randomly initialized, each with a single GP
tree. However, these GP individuals are extendable, meaning

1000

that the number of trees in each individual can be extended
through mutation operations.

Parent Selection: In the selection phase, the parent selection
operator selects several parents for crossover and mutation.
In this paper, the lexicase selection operator is used because
of its superiority in preserving population diversity [16]. To
select one individual from a population, lexicase selection
randomly selects one training instance k to eliminate indi-
viduals based on a threshold L (p) < miny ep Li(p”) + €,
where mingy ep Ly (p") represents the minimum squared er-
ror achieved by the best individual, and € represents the
mean absolute deviation [20]. The elimination process re-
peats until only one individual remains, which is then se-
lected as the parent.

Offspring Generation: Once parents are selected, random
subtree crossover and mutation operators are applied to
generate offspring. Moreover, random subtree addition and
random subtree deletion [23] are invoked according to a
probability to add or delete one tree unless the upper or
lower limit is reached.

Objective Evaluations: In this stage, each GP individual ®
constructs features ®(X) using the training data X. To ensure
that these features generalize well on unseen data, they are
evaluated with ridge regression using a leave-one-out cross-
validation strategy. In addition to the cross-validation loss,
we evaluate the variance of the constructed features on a
linear model LM using the method proposed in Section 3.3.
The cross-validation loss and variance compose the two
objectives.

Survival Selection: After objective evaluations, survival se-
lection is performed on the combined pool of parents and
offspring. For a population of 2N individuals, non-dominated
sorting with crowding distance [12] is used to rank individ-
uals and reduce the population to N.

Archive Maintenance: An archive is maintained, and the in-
dividual with the smallest sum of the two objectives, O1 () +
O2(®), is considered the historically best individual to be
stored and preserved for making final predictions.

The processes of parent selection, offspring generation, objective
evaluations and environmental selection are repeated until the
maximum generation is reached.

3.3 Variance Estimation

3.3.1 Challenges in Variance Estimation. Currently, bias-variance
decomposition frameworks mainly rely on a bootstrapping strategy
to estimate variance [14]. This approach is feasible for estimating

GECCO ’24, July 14-18, 2024, Melbourne, Australia

[MEETRVI A Vutation

Linear Model

en

Figure 3: GP individual with a variable number of trees.

the variance of a learning algorithm but is not suitable for estimating
the variance for a specific model. When estimating the variance
of a learning algorithm, different sets of bootstrapping sampling
data Xpootstrap produce different models fpoosssrap» resulting in
variance on test data X;es;. However, for the variance of a specific
model firqin on training data, there is no clear definition of the
variance term when using the bootstrapping method. One way to
circumvent this issue is to optimize surrogate variance, as shown
in Equation (3), and then use bootstrapping [14]:

Vargp [{f(xbootstrap; D) - Y}z] ®)

The intuition behind this equation is to treat the variance of squared

errors { f (Xbootstraps D) — Y}2 as the variance. Clearly, there is a
discrepancy between optimizing Equation (3) and the actual vari-
ance in Equation (2). Thus, in this section, we propose a novel way
to empirically estimate the variance of a model.

3.3.2 Empirical Estimation. To empirically estimate the variance
of a GP individual, we assume that the unseen data is sampled from
the same distribution as the training data but with some different
values. Formally, we consider the test data to be X + €, where € is
random noise sampled from a Gaussian distribution N (0, 0). The
empirical bias and variance of Equation (1) can be formulated as
01 and 02:

0, (®) = (lLM(q>(x+ €)) -)2

1
minimize X Lse
02(®) = 7y Tex (LM(@(x +€)) = FLM(@(x + e)))

4
where K is the number of iterations to sample noise from a Gauss-
ian distribution for reliable variance estimation. The goal of this
paper is not to construct an ensemble model in which the average
prediction, %LM (®(x + €)), approximates the targets Y. Thus, in
this paper, we replace the expectation of model outputs on noisy
data, LM (®(x + €)), with predictions on clean data LM(®(x)) to
implicitly encourage the expectation of model outputs on noisy data
Ep [f (Xtrain; D)] to optimize predictions on clean data LM (®(x)),

resulting in the following objectives:

O1(®) = 17 Zxex (LM(®(x)) - Y)?,
02(®) = g7 Zwex (LM(®(x +€)) = LM(®(x)))?.
)

Based on Equation (5), the algorithm framework is outlined in
Algorithm 1.

minimize {

e Model Training (Lines 2-3): Initially, features ®(X) are con-
structed from the original features X and GP trees ®. A linear
model LM is then fitted to the constructed features ®(X) to
make predictions Y. After this stage, both GP trees and the
linear model will be fixed, and only the data will change.

1001

Zhang, et al.

Algorithm 1 Variance Estimation

Require: GP Tree @, Inputs X, Target Outputs Y, Linear Model LM,
Gaussian Noise Standard Deviation o, Number of Iterations K

1: Initialize variance V « 0

2: ®(X) « Feature Construction (X, @)

3. LM « Linear Regression(®(X))

4 Y « Prediction(LM, (X))

5: fork=1,...,K do

6 forl—l,...,Ndo

7 € « Sample Noise (N (0, 0))

8)Z, — Xj+e

9: <I>(X,) « Feature Constructlon(i, @)

10: Y — Prediction(LM, D(X;))

1 Vi = Vi + (Y - Yp)?
return Variance Z{il Vi/(N = K)

e Model Prediction (Lines 7-10): In each round of variance
estimation, noise € is first sampled and then added to the
training data X;, forming the noisy data X; + €. Subsequently,
features ®(X;) are constructed from the noisy data, and the
linear model generates predictions Y; based on these newly
constructed features ®(X;).

e Variance Estimation (Line 11): Using the predictions on the
original training data Y; and the predictions on the noisy data
Y;, the estimated variance based on Equation (5) is obtained.

As mentioned, to ensure reliability, the variance estimation process
is repeated K iterations, and the average variance across these K
iterations is used as the final variance.

4 EXPERIMENTAL SETTINGS
4.1 Experimental Datasets

The experiments consider only real-world datasets from the PENN
machine learning benchmark (PMLB) [28]. PMLB contains 120
regression datasets. After excluding datasets generated by Friedman
and those with fewer than 5 features, 42 datasets are selected for
the experiments.

4.2 Parameter Settings

The parameter settings are presented in Table 1. Following the con-
vention in GP, a high crossover rate is used for combining building
blocks, while a low mutation rate is used to avoid disruption. The
sum of the tree addition and tree deletion rates is set to a high value
to encourage exploration [23]. To prevent zero-division errors, the
analytical quotient (AQ) [25], defined as AQ(x,y) = re-

+y2 ’
places the traditional division operator. Additionally, an analytical

=log(Vx2 + 1), is used.

4.3 Benchmark Methods

The algorithm proposed in this paper is referred to as the vari-
ance reduction (VR) method because it optimizes both the cross-
validation score and variance simultaneously. The benchmark meth-
ods used in this paper include traditional GP, as well as state-of-
the-art techniques for controlling overfitting in GP, which are:

log operator, defined as ALog(x)

Bias-Variance Decomposition: An Effective Tool to Improve Generalization of Genetic Programming-based Evolutionary Feat(&Coastdclidy fie-R8gresiphielbourne, Australia

Table 1: Parameter Settings for GP.

Parameter Value
Maximal Population Size 200
Number of Generations 200
Crossover and Mutation Rates 0.9 and 0.1

Tree Addition Rate 0.5

Tree Deletion Rate 0.5

Initial Tree Depth 0-3
Maximum Tree Depth 10
Initial Number of Trees 1
Maximum Number of Trees 20
Elitism (Number of Individuals) 1

Standard Deviation of Noise 0.5
Iterations of Variance Estimation 5

+, -, %, AQ, Square,
Log, Sqrt, Max, Min,
Sin, Cos, Abs, Negative

Functions

Standard GP without regularization: Standard GP relies solely
on leave-one-out cross-validation loss as the optimization
objective.

Parsimonious Pressure (PP) [41]: For parsimonious pressure,
complexity is determined by the size of all GP trees. In this
case, a smaller model size is preferred to enhance general-
ization.

Tikhonov Regularization (TK) [26]: This paper employs zero-
order Tikhonov regularization. For a function f, it is defined
as |f(x)|, which regularizes extremely large values.

Grand Complexity (GC) [26]: Grand Complexity incorpo-
rates both zero-order Tikhonov regularization and model
size. The dominance rank of these two factors is utilized as
the objective value.

Rademacher Complexity [5]: Rademacher Complexity is a
data-dependent metric that measures the capability of a
model to fit a given dataset with arbitrary labels. Formally,
Rademacher Complexity is defined as:

where o; is the Rademacher variable. A lower Rademacher
Complexity indicates a simpler model.

Weighted MIC between Residuals and Variables (WCRV) [4]:
WCRYV aims to reduce the correlation between residuals and
input features. For those important features, i.e., MIka’Y >
mo, WCRV minimizes their correlation with residuals. For
less important features, i.e., MIka’Y < mo, WCRV mini-
mizes their selection frequency.

Ra(£) =B |sup ~ > ail (x1,91) ©)

leL "4

WCRV () = MIC, ik y X MIC ik g
MIka’Y >mo

()

+ (1-MIC,y).

MIka7Y<mu

1002

Correlation between Input and Output Distances (IODC) [36]:
IODC first calculates the pairwise distance between input fea-
tures and the pairwise distance between output predictions,
resulting in two matrices, I and O. The Pearson correlation
of these matrices is computed as the IODC value:

Cov(L,0)
0100
Intuitively, a higher correlation indicates better smoothness

between input and output. Therefore, to achieve better gen-
eralization, IODC should be maximized.

I0DC(®) = (8)

All baseline methods, except standard GP without regularization,
are optimized using the same multi-objective optimization frame-
work. To balance accuracy and complexity, we use the minimum
Manbhattan distance (MMD)-based knee-point selection method [9]
for the final model selection for these baseline methods. In brief,
objectives are normalized to O1(®) and O2(®) since the baseline
complexities have different scales compared to mean square error.
Then, the Manhattan distance between each point and the extreme
points is computed as O1(®) + O2(®), and the model with the min-
imum Manhattan distance is selected as the final model. For the
standard GP without regularization, the model with the best cross-
validation loss is selected as the final model. For a fair comparison,
all methods use the same parameter settings as shown in Table 1.

4.4 Evaluation Protocol

To ensure reliable results, experiments are independently conducted
using 30 different random seeds on each dataset. For each seed, 100
samples are randomly chosen from the dataset for training, and
the remaining samples are used for testing [27]. Before training,
all datasets are standardized [30], and categorical variables are en-
coded using one-hot encoding. When making final predictions, the
predictions are clipped according to the maximum Yj(,x and mini-
mum Yy, targets to prevent extreme predictions. The evaluation
metric used is the R? score, a normalized metric where 1 represents
i (yi=9i)*
2i(yi-9)*°
y; is the predicted value, §; is the true value, and 7 is the average
of the true values. To assess statistical significance, the Wilcoxon
signed-rank test with a significance level of 0.05 [13] is employed
for statistical comparisons.

the optimal result. Formally, it is defined as 1 — where

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results for the proposed
method and the benchmark methods on the 42 regression datasets.
First, we show the test R? scores, followed by the training R? scores,
to compare the effectiveness of various overfitting control methods.
Additionally, we provide a comparison between the tree sizes of
the final model and the training time.

5.1 Test Performance

5.1.1 General Analysis. The experimental results for test R? scores
are presented in Table 2. These results show that GP with the
proposed VR technique significantly outperforms other overfitting
control techniques. For example, when compared to standard GP,
VR significantly improves test R scores on 35 datasets while leading
to worse results on only 5 datasets, indicating the effectiveness of

GECCO ’24, July 14-18, 2024, Melbourne, Australia

OpenML_195 OpenML_201
08 075
o ®
3 g 0.50
@ 06 @
x X 0.25
04 i
0 50 100 150 200 0 50 100 150 200
Generation Generation
OpenML_230 OpenML_294

Zhang, et al.

OpenML_195

OpenML_201

R? Score

200

0 50 100 150 200 50 100 150
Generation Generation
OpenML_294

OpenML_230

0 50 100 150 200 0 50 100 150 200
Generation Generation
— VR e RC - 10DC WCRV
PP e GC e K e Standard GP

Figure 4: Evolutionary plots of the test R? scores for different
complexity measures.

improving test R? scores using VR. Furthermore, evolutionary plots
of test R? scores are provided in Figure 4. From Figure 4, it is evident
that on some datasets like "OpenML_294," standard GP overfits after
several generations of the evolutionary process, whereas the VR
method successfully curbs overfitting and ultimately leads to better
generalization performance.

5.1.2 Estimated Variance vs. Model Size. While model size has
been shown to be ineffective in controlling overfitting in single-
tree-based symbolic regression, for multi-tree-based evolutionary
feature construction, model size remains a competitive complexity
measure for overfitting control, as shown in Table 2. The reason is
that with the help of the base learner, even a set of small features
can perform well as long as they are relevant to the target and
complementary [44]. A comparison of test R? scores between VR
and PP in Table 2 shows that VR outperforms PP on 23 datasets and
performs significantly worse on 9 datasets. These results indicate
that VR is better in more cases despite PP being an effective way
to control overfitting in many cases. Evolutionary plots of test R?
scores in Table 2 provide a deeper understanding of the difference
between PP and VR. These plots show that PP is a pessimistic
metric for avoiding overfitting, and it restricts GP search to the
region of simple models with low R? values to prevent overfitting. In
comparison, VR is less restrictive and effectively controls overfitting
while avoiding excessive restriction.

5.2 Training Performance

5.2.1 General Analysis. To further confirm the occurrence of over-
fitting, we present the training R? scores in Table 3. The results
indicate that optimizing solely cross-validation loss can yield better
training performance compared to optimizing both cross-validation
loss and variance. However, as shown in Figure 4 and Figure 5, opti-
mizing only cross-validation loss tends to lead to overfitted models,
whereas optimizing variance typically results in better generaliza-
tion performance. To further confirm that using VR as an additional
objective effectively controls overfitting, i.e., there is no significant
decrease in test R? scores with the increase of training R? scores,

1003

0 50 100 150 200 0 50 100 150 200
Generation Generation
— VR e RC - 10DC WCRV
PP e GC e TK e Standard GP

Figure 5: Evolutionary plots of the training R? scores for

various complexity measures.

the Pearson correlation between training R? and test R? when us-
ing VR is presented in Figure 6. The results show that GP with VR
establishes a high correlation between performance on training
data and test data, indicating the effectiveness of VR in controlling
overfitting.

5.2.2 Comparisons on R* Reduction. In order to improve general-
ization ability, different complexity measures add different inductive
biases to select simpler models. Due to these different inductive
biases, the reductions in training R? vary. As depicted in Figure 5,
all complexity measures reduce training performance below the
level achieved by standard GP. However, when checking these re-
sults together with those in Figure 4, it becomes apparent that the
inductive biases added by the complexity measures, other than VR,
seem too strong in favoring underfitting models, resulting in both
training R? and test R? stay at low levels. In comparison, VR is a
more effective strategy for controlling overfitting in GP compared
to traditional complexity measures, as it only introduces moderate
regularization in training accuracy to avoid underfitting while still
effectively managing overfitting.

5.3 Tree Size

In the GP domain, several studies have already recognized that
controlling overfitting involves more than merely controlling tree
size [37]; it also requires considering semantic complexity. The
results regarding tree size, as presented in Figure 7, further confirm
this. In this paper, we define tree size as the number of nodes in
an individual. As illustrated in the figure, VR does not significantly
reduce tree size compared to standard GP. In fact, the median tree
sizes of VR and standard GP are 81 and 86, respectively, suggesting
that the tree sizes induced by VR and standard GP are not much
different. Combining these results with those shown in Table 2, we
confirm that reducing tree size is not always necessary to mitigate
overfitting. Instead, semantic complexity plays an important role in
controlling overfitting, especially the variance of semantics under
noise as shown in this paper.

Bias-Variance Decomposition: An Effective Tool to Improve Generalization of Genetic Programming-based Evolutionary Feat(&Coastdclidy fie-R8gresiphielbourne, Australia

“«

Table 2: Statistical comparison of test R? scores when optimizing various model complexity measures. (“+”~”, and “-” indicate
that using the method in a row is better than, similar to, or worse than using the method in a column, respectively.)

PP RC GC I0DC TK WCRV Standard GP
VR 23(+)/10(~)/9(-) 32(+)/10(~)/0(-) 23(+)/15(~)/4(-) 31(+)/10(~)/1(-) 35(+)/5(~)/2(-) 22(+)/14(~)/6(-) 35(+)/2(~)/5(-)
PP - 24(+)/13(~)/5(-) 17(+)/17(~)/8(-) 18(+)/18(~)/6(-) 18(+)/24(~)/0(-) 17(+)/18(~)/7(-) 28(+)/10(~)/4(-)
RC — — 6(+)/11(~)/25(-) 11(+)/15(~)/16(-) 9(+)/13(~)/20(-) 5(+)/12(~)/25(-) 17(+)/5(~)/20(-)
GC — - - 22(0)/17(~)/3(-) 20(+)/20(~)/2(-) 14(+)/23(~)/5(-) 20(+)/15(~)/7(-)
10DC — — — — 11(+)/20(~)/11(-) 12(+)/14(~)/16(-) 19(+)/10(~)/13(-)
TK — — — — — 6(+)/23(~)/13(-) 16(+)/16(~)/10(-)
WCRV - - - - - - 17(+)/15(~)/10(-)
Table 3: Statistical comparison of training R? scores when optimizing various complexity measures.
PP RC GC 10DC TK WCRV Standard GP
VR 28(+)/8(~)/6(-) 42(+)/0(~)/0(-) 32(+)/7(~)/3(-) 25(+)/14(~)/3(-) 25(+)/10(~)/7() 35(+)/6(~)/1(-) O(+)/0(~)/42(-)
PP — 40(+)/2(~)/0(-) 30(+)/10(~)/2(-) 20(+)/16(~)/6(-) 20(+)/11(~)/11(-) 35(+)/6(~)/1(-) O(+)/0(~)/42(-)
RC - - 0(+)/3(~)/39(-) 1(+)/3(~)/38(-) O(+)/1(~)/41(-) 1(+)/11(~)/30(-) 0(+)/0(~)/42(-)
GC — — — 9(+)/16(~)/17(-) 5(+)/19(~)/18(-) 28(+)/9(~)/5(-) 0(+)/0(~)/42(-)
I0ODC — — — — 10(+)/14(~)/18(-) 30(+)/6(~)/6(-) 0(+)/0(~)/42(-)
TK _ — — — - 31(+)/7(~)/4(-) 0(+)/0(~)/42(-)
WCRV - - — - - - 0(+)/0(~)/42(-)
9 gpen 1o 9 Speni 20t w0
Joo g Joe s [”
E a <; 50 100 150 2007 7 g E o <; 50 100 150 2007 - E % 2 . ‘\‘ .
Generation Generation © 10 | Ti 1 o |
OpenML_230 OpenML_294
© Pearson:0.929 Y 2 Pearson:0.9574"/ . .
g T 0§ 2o ///Mi 073 o 20 40 60 80 100 120 140
E -0.7 & g ol -06 % Tree Size
E 0.87 c'> 50 100 150 2007 oo g 0 50 100 150 2007 e VR RC 10DC WCRV
Generation Generation PP GC TK Standard GP

Figure 7: Distribution of tree sizes over the 42 datasets when

Figure 6: Evolutionary plots of the training and test R scores
& yP g optimizing different model complexity measures.

for VR.

5.4 Training Time 6 FURTHER ANALYSIS

In this section, we conduct a further analysis of the proposed al-
gorithm. Specifically, we present two alternative loss functions
designed without the guidance of bias-variance decomposition to
highlight the importance of bias-variance decomposition-guided
overfitting control.

A comparison of training times between using VR and other al-
gorithms is presented in Figure 8. Calculating the variance of GP
trees is more time-consuming than traditional complexity measures,
such as parsimonious pressure, because semantics on the data with
noise need to be computed. The training time for VR centers around
1950 seconds, while that for GP without regularization concentrates
around 574 seconds. This indicates that the training time with VR
is three times longer than that of training without regularization.
However, it is important to note that effectively addressing over-
fitting cannot be achieved solely by increasing the training time.
Considering the improvements in generalization performance, the
increase in consumed time is still acceptable.

6.1 Variance based on Ground Truth (VGT)

In this paper, we adhere to the bias-variance decomposition frame-
work. A practical question arises: Can we replace the target in the
variance term, which is the GP predictions LM(®(x)), with the
ground truth Y, because LM (®(x)) is not the actual target, whereas

1004

GECCO ’24, July 14-18, 2024, Melbourne, Australia

150
E100 l
=)
3 \
O
50 +
]
. .
500 1000 1500 2000 2500 3000 3500 4000 4500
Training Time (s)
e VR RC 10DC WCRV
PP e GC TK Standard GP

Figure 8: Distribution of training time over the 42 datasets
when optimizing different complexity measures.

38 5 19 20
10
3
0 .
; .o~

(a) VGT: Training

0 é

+

0

(b) VGT: Test

42 34
40
20
20
o O 0 0 mes T
+ ~ - + ~ -

(c) SV: Training (d) SV: Test

Figure 9: Statistical comparison of training R?/test R* scores
between VR and VGT/SV. "+"/"~"/"-" indicate VR outperforms
VGS/SV on the corresponding number of datasets.

the ground truth Y is. This is formally defined as follows:

O1(®) = 17 Zxex (LM(®(x)) -)

02(®) = [Deex LM@(x+)-1)? O

minimize {
This approach appears reasonable, as it would be beneficial if the
predictions on noisy data LM (®(x + €)) approximating the ground
truth Y. The experimental results for training and test R? scores
are presented in Figure 9a and Figure 9b, respectively. The test R?
scores show that replacing LM(®(x)) with Y in Equation (5) signif-
icantly decreases test R? scores on 19 datasets, while it improves
performance on only 3 datasets. Regarding training R? scores, us-
ing Y as the target leads to higher training R? scores. These com-
bined results indicate that overfitting occurs when using Y as the
target. In fact, the two objectives in Equation (9) are highly corre-
lated, mainly reflecting bias rather than variance. In other words,
individuals with lower (LM(®(x)) — Y)? could also have lower
(LM(®(x + €)) — Y)2. Therefore, the training loss has been overem-
phasized, resulting in the final model overfitting the training data.

1005

Zhang, et al.

6.2 Surrogate Variance (SV)

To estimate variance through bootstrapping, one possible solution
is to use a surrogate variance [14], as shown in Equation (10).

O1(®) = 1x7 Zxex LM(®(x)) - Y)?
02(®) = STDx+ (137 Exex- (LM(®(x)) = Y)?)
(10)
Here, STDx+ represents the standard deviation of errors across the
bootstrap samples of X. The final model is determined based on the
multiplication of two objectives, i.e., arg ming O1(®) x O2(®P) [14].
The experimental results are presented in Figure 9¢ and Figure 9d,
respectively. These results reveal that using surrogate variance
leads to a significant overfitting problem, where training R? scores
improve but test R? scores decrease. It is clear that the gap between
surrogate variance and real variance cannot be ignored. Our pro-
posed VR method, which measures the actual variance, significantly
outperforms the surrogate variance in terms of overfitting control.
Based on the results from these two variants, the advantage of
the proposed variance estimation method, with a theoretical basis,
compared to empirically designed optimization objectives, has been
further confirmed.

minimize {

7 CONCLUSIONS

This paper proposes optimizing the variance of the regression out-
puts within a bias-variance decomposition framework to mitigate
the overfitting issue in GP-based evolutionary feature construc-
tion methods for regression tasks. The experimental results across
42 regression datasets demonstrate that optimizing based on bias-
variance decomposition yields superior performance compared
to standard GP, as well as six overfitting control methods in GP.
The results confirm that controlling overfitting is more about con-
trolling variance rather than simply reducing tree size. Moreover,
further analysis highlights the importance of reducing variance
based on bias-variance decomposition theory, as it outperforms
several empirically designed optimization objectives for overfitting
control.

For future work, it is worth investigating the effectiveness of
the proposed method in classification or other learning problems.
Careful derivation of bias-variance decomposition for other loss
functions should be undertaken in advance. Another avenue is to
employ a reference-guided evolutionary algorithm [8] to search
in the interested region, which could potentially strike a better
balance between the two objectives while saving computational
resources.

ACKNOWLEDGMENTS

This work was supported in part by the Marsden Fund of New
Zealand Government under Contract VUW1913, Contract VUW 1914,
and Contract VUW2016; in part by the Science for Technological
Innovation Challenge (SfTI) Fund under Grant E3603/2903; in part
by the MBIE Data Science SSIF Fund under Contract RTVU1914; in
part by Huayin Medical under Grant E3791/4165; and in part by the
MBIE Endeavor Research Programme under Contract C11X2001
and Contract UOCX2104.

Bias-Variance Decomposition: An Effective Tool to Improve Generalization of Genetic Programming-based Evolutionary Feat(&Coastdclidy fie-R8gresiphielbourne, Australia

REFERENCES

(1]

[2

=

3

=

[10

[11

[12]

[13]

[14]

[15]

[20

[21]

[22]

[23]

[24]

Harith Al-Sahaf, Ying Bi, Qi Chen, Andrew Lensen, Yi Mei, Yanan Sun, Binh
Tran, Bing Xue, and Mengjie Zhang. 2019. A survey on evolutionary machine
learning. Journal of the Royal Society of New Zealand 49, 2 (2019), 205-228.
Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. 2019.
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear
neural networks. The Journal of Machine Learning Research 20, 1 (2019), 2285—
2301.

Geoffrey F Bomarito, Patrick E Leser, NCM Strauss, Karl M Garbrecht, and Jacob D
Hochhalter. 2022. Bayesian model selection for reducing bloat and overfitting in
genetic programming for symbolic regression. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. 526—529.

Qi Chen, Bing Xue, and Mengjie Zhang. 2020. Improving symbolic regression
based on correlation between residuals and variables. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference. 922-930.

Qi Chen, Bing Xue, and Mengjie Zhang. 2022. Rademacher Complexity for
Enhancing the Generalization of Genetic Programming for Symbolic Regression.
IEEE Transactions on Cybernetics 52, 4 (2022), 2382-2395.

Qi Chen, Mengjie Zhang, and Bing Xue. 2017. Feature selection to improve
generalization of genetic programming for high-dimensional symbolic regression.
IEEE Transactions on Evolutionary Computation 21, 5 (2017), 792-806.

Qi Chen, Mengjie Zhang, and Bing Xue. 2018. Structural risk minimization-driven
genetic programming for enhancing generalization in symbolic regression. IEEE
Transactions on Evolutionary Computation 23, 4 (2018), 703-717.

Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. 2016. A reference
vector guided evolutionary algorithm for many-objective optimization. IEEE
Transactions on Evolutionary Computation 20, 5 (2016), 773-791.

Wei-Yu Chiu, Gary G Yen, and Teng-Kuei Juan. 2016. Minimum manhattan
distance approach to multiple criteria decision making in multiobjective opti-
mization problems. IEEE Transactions on Evolutionary Computation 20, 6 (2016),
972-985.

Fabricio Olivetti de Franca. 2023. Alleviating overfitting in transformation-
interaction-rational symbolic regression with multi-objective optimization. Ge-
netic Programming and Evolvable Machines 24, 2 (2023), 13.

Fabricio Olivetti de Franca and Gabriel Kronberger. 2023. Reducing Overparame-
terization of Symbolic Regression Models with Equality Saturation. In Proceedings
of the Genetic and Evolutionary Computation Conference. 1064-1072.
Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182-197.

Junlan Dong, Jinghui Zhong, Wei-Neng Chen, and Jun Zhang. 2022. An effi-
cient federated genetic programming framework for symbolic regression. IEEE
Transactions on Emerging Topics in Computational Intelligence (2022). https:
//doi.org/10.1109/TETCI.2022.3201299

Jeannie Fitzgerald, R Muhammad Atif Azad, and Conor Ryan. 2013. A bootstrap-
ping approach to reduce over-fitting in genetic programming. In Proceedings of
the 15th Annual Conference Companion on Genetic and Evolutionary Computation.
1113-1120.

Ivo Gongalves and Sara Silva. 2013. Balancing learning and overfitting in genetic
programming with interleaved sampling of training data. In Genetic Program-
ming: 16th European Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013.
Proceedings 16. Springer, 73-84.

Thomas Helmuth, Lee Spector, and James Matheson. 2014. Solving uncom-
promising problems with lexicase selection. IEEE Transactions on Evolutionary
Computation 19, 5 (2014), 630-643.

Ting Hu. 2023. Genetic Programming for Interpretable and Explainable Machine
Learning. In Genetic Programming Theory and Practice XIX. Springer, 81-90.
Maarten Keijzer and Vladan Babovic. 2000. Genetic programming, ensemble
methods and the bias/variance tradeoff-introductory investigations. In European
Conference on Genetic Programming. Springer, 76-90.

Krzysztof Krawiec. 2002. Genetic programming-based construction of features
for machine learning and knowledge discovery tasks. Genetic Programming and
Evolvable Machines 3 (2002), 329-343.

William La Cava, Thomas Helmuth, Lee Spector, and Jason H Moore. 2019. A
probabilistic and multi-objective analysis of lexicase selection and e-lexicase
selection. Evolutionary Computation 27, 3 (2019), 377-402.

William La Cava, Sara Silva, Kourosh Danai, Lee Spector, Leonardo Vanneschi,
and Jason H Moore. 2019. Multidimensional genetic programming for multiclass
classification. Swarm and Evolutionary Computation 44 (2019), 260-272.

Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto
Miikkulainen. 2019. Evolutionary neural automl for deep learning. In Proceedings
of the Genetic and Evolutionary Computation Conference. 401-409.

Luis Mufioz, Leonardo Trujillo, Sara Silva, Mauro Castelli, and Leonardo Van-
neschi. 2019. Evolving multidimensional transformations for symbolic regression
with M3GP. Memetic Computing 11 (2019), 111-126.

Kourosh Neshatian, Mengjie Zhang, and Peter Andreae. 2012. A filter approach
to multiple feature construction for symbolic learning classifiers using genetic

1006

[25]

[26]

[27]

[28

[29]

(30]

(31]

[32

@
&

(34

[35

[36

[38

[39

[40

[41

=
)

[43

[44

[45

programming. IEEE Transactions on Evolutionary Computation 16, 5 (2012), 645~
661.

Ji Ni, Russ H Drieberg, and Peter I Rockett. 2012. The use of an analytic quotient
operator in genetic programming. IEEE Transactions on Evolutionary Computation
17,1(2012), 146-152

Ji Ni and Peter Rockett. 2014. Tikhonov regularization as a complexity mea-
sure in multiobjective genetic programming. IEEE Transactions on Evolutionary
Computation 19, 2 (2014), 157-166.

Miguel Nicolau and Alexandros Agapitos. 2021. Choosing function sets with
better generalisation performance for symbolic regression models. Genetic pro-
gramming and evolvable machines 22, 1 (2021), 73-100.

Randal S Olson, William La Cava, Patryk Orzechowski, Ryan] Urbanowicz, and
Jason H Moore. 2017. PMLB: a large benchmark suite for machine learning
evaluation and comparison. BioData mining 10, 1 (2017), 1-13.

Caitlin A Owen, Grant Dick, and Peter A Whigham. 2020. Characterizing genetic
programming error through extended bias and variance decomposition. IEEE
Transactions on Evolutionary Computation 24, 6 (2020), 1164-1176.

Caitlin A Owen, Grant Dick, and Peter A Whigham. 2022. Standardization and
Data Augmentation in Genetic Programming. IEEE Transactions on Evolutionary
Computation 26, 6 (2022), 1596-1608.

Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, and Wolfgang Banzhaf.
2010. Open issues in genetic programming. Genetic Programming and Evolvable
Machines 11 (2010), 339-363.

Sara Silva, Leonardo Vanneschi, Ana IR Cabral, and Maria J Vasconcelos. 2018. A
semi-supervised Genetic Programming method for dealing with noisy labels and
hidden overfitting. Swarm and Evolutionary Computation 39 (2018), 323-338.
Matthew G Smith and Larry Bull. 2005. Genetic programming with a genetic
algorithm for feature construction and selection. Genetic Programming and
Evolvable Machines 6 (2005), 265-281.

Keith M Sullivan and Sean Luke. 2007. Evolving kernels for support vector
machine classification. In Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation. 1702-1707.

Cliodhna Tuite, Alexandros Agapitos, Michael O’'Neill, and Anthony Brabazon.
2011. Early stopping criteria to counteract overfitting in genetic programming. In
Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary
Computation. 203-204.

Leonardo Vanneschi and Mauro Castelli. 2021. Soft target and functional com-
plexity reduction: A hybrid regularization method for genetic programming.
Expert Systems with Applications 177 (2021), 114929.

Leonardo Vanneschi, Mauro Castelli, and Sara Silva. 2010. Measuring bloat,
overfitting and functional complexity in genetic programming. In Proceedings of
the 12th Annual Conference on Genetic and Evolutionary Computation. 877-884.
Marco Virgolin, Tanja Alderliesten, and Peter AN Bosman. 2020. On explaining
machine learning models by evolving crucial and compact features. Swarm and
Evolutionary Computation 53 (2020), 100640.

Chunyu Wang, Qi Chen, Bing Xue, and Mengjie Zhang. 2023. Shapley Value
Based Feature Selection to Improve Generalization of Genetic Programming
for High-Dimensional Symbolic Regression. In Australasian Conference on Data
Science and Machine Learning. Springer, 163-176.

Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. 2020. Rethink-
ing bias-variance trade-off for generalization of neural networks. In International
Conference on Machine Learning. PMLR, 10767-10777.

Byoung-Tak Zhang and Heinz Miihlenbein. 1995. Balancing accuracy and parsi-
mony in genetic programming. Evolutionary Computation 3, 1 (1995), 17-38.
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2021. Understanding deep learning (still) requires rethinking generalization.
Commun. ACM 64, 3 (2021), 107-115.

Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang. 2023.
Modular Multi-Tree Genetic Programming for Evolutionary Feature Construction
for Regression. IEEE Transactions on Evolutionary Computation (2023).
Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang.
2023. A Semantic-Based Hoist Mutation Operator for Evolutionary Feature
Construction in Regression. IEEE Transactions on Evolutionary Computation
(2023).

Hengzhe Zhang, Aimin Zhou, Qi Chen, Bing Xue, and Mengjie Zhang. 2023.
SR-Forest: A Genetic Programming based Heterogeneous Ensemble Learning
Method. IEEE Transactions on Evolutionary Computation (2023).

Hengzhe Zhang, Aimin Zhou, and Hu Zhang. 2022. An Evolutionary Forest for
Regression. IEEE Transactions on Evolutionary Computation 26, 4 (2022), 735-749.

https://doi.org/10.1109/TETCI.2022.3201299
https://doi.org/10.1109/TETCI.2022.3201299

