
Chapter 26
Making Better Use of Repair Templates in
Automated Program Repair: A Multi-Objective
Approach

Yuan Yuan and Wolfgang Banzhaf

Abstract The automation of program repair can be coached in terms of search al-
gorithms. Repair templates derived from common bug-fix patterns can be used to
determine a promising search space with potentially many correct patches, a space
that can be effectively explored by GP methods. Here we propose a new repair sys-
tem, ARJA-p, extended from our earlier ARJA system of bug repair for JAVA, which
integrates and enhances the performance of the first approach that combines repair
templates and EC, PAR. Empirical results on 224 real bugs in Defects4J show that
ARJA-p outperforms state-of-the-art repair approaches by a large margin, both in
terms of the number of bugs fixed and of their correctness. Specifically, ARJA-p
can increase the number of fixed bugs in Defects4J by 29.2% (from 65 to 84) and
the number of correctly fixed bugs by 42.3% (from 26 to 37).

Key words: Program repair, evolutionary multi-objective optimization, genetic
programming, repair templates

26.1 Introduction

Automated program repair [9, 32] aims to fix bugs in software automatically and
has shown promise recently. Such techniques generate a patch for a bug that can
satisfy a specification. Our study focuses on the test-suite based program repair in
JAVA where the specification is given by a test suite.
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A test suite should contain at least one initially failing, negative test case which
triggers the bug to be repaired plus any number of initially passing, positive test
cases that define the expected functionality of the program. In terms of test-suite
driven repair, a bug is said to be fixed or repaired, if a patch can allow the modified
program to pass the entire test suite. Such a patch is called test-adequate [26].

GenProg [20, 21] is among the most well-known approaches for test-suite based
repair. This approach uses three types of statement-level mutations/edits (i.e., re-
place a destination statement with another, insert another statement before a desti-
nation or delete a destination statement) to rearrange the extant code of the buggy
program. To explore the search space, GenProg uses genetic programming [3, 16]
to search for potential patches that fulfill the test suite. However, due to the ran-

domness of mutation operations, GenProg often generates patches which simply
overfit the test suite [36]. To relieve this problem, Kim et al. [15] proposed PAR, an
approach using common fix patterns (e.g., adding a null checker) manually learned
from human-written patches. In PAR, a repair template is the central concept, a kind
of program transformation schema derived from fix patterns. Unlike GenProg, PAR
generates new program variants by using such predefined repair templates. To find
a patch, PAR also employs an EC technique like GenProg, but focuses the search
on more meaningful program transformations compared to GenProg, resulting in
better chances to produce test-adequate or correct patches. PAR was the first repair
approach that combined repair templates with EC techniques.

However, the performance of PAR is far from satisfactory. As reported by Le
et al. [19], a reimplementation of PAR for JAVA can only fix very few bugs cor-
rectly in the Defects4J [13] dataset. Note that there are generally two key elements
in a successful repair approach: the search space and the search algorithm [36]. The
search space should contain as many correct patches as possible while the search
algorithm should be powerful enough to explore such a large search space. PAR
has limitations in both regards. Regarding the search space, although the templates
used in PAR define potentially useful program transformations, they are often not
sufficiently general and cover only a very limited number of fix patterns. Regarding
the search algorithm, PAR uses an EC framework similar to that of GenProg, which
recombines and mutates high-granularity edits via crossover and mutation opera-
tors. Recent studies [34, 45] have shown, however, that evolving such high-level
units strongly limits the ability to effectively traverse a search space, which may
be a reasons why GenProg usually generates patches that are equivalent to a single
functionality deletion [36].

Our work is motivated by recent progress on both issues. Several repair ap-
proaches such as ELIXIR [38], SPR [24] or Cardumen [28] use a richer set of repair
templates than PAR to generate program variants, achieving state-of-the-art perfor-
mance on well-known datasets of bugs. Also, very recent studies [34, 45] suggest
that evolving patches with lower-granularity patch representations via advanced EC
techniques can lead to a substantially improved search ability.

Given the above, we want to exploit the benefits of both, recent template based
approaches (they work over a richer and more promising search space) and EC
approaches, more powerful than previous ones, in order to improve over the PAR
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algorithm. We hence develop a new repair approach for Java, extended from ARJA
[45], called ARJA-p. In ARJA-p, the repair templates in PAR are made more gen-
eral to cover a larger set of fix patterns for potential use in patches. To bridge the
gap between template based edits (usually in the expression-level) and the lower-
granularity patch representation of ARJA (only applies to statement-level edits), we
execute the templates offline, thereby abstracting various template based edits into
two types of statement-level edits (i.e., replacement and insertion). We can then in-
troduce a lower-granularity patch representation for template based repair. Lastly,
we formulate program repair as a multi-objective search problem and use a classi-
cal multi-objective evolutionary algorithm (i.e., NSGA-II [8]) to search for simpler
patches, following the paradigm of search-based software engineering [2, 11, 12].

ARJA-p is evaluated on 224 real bugs in Defects4J [13] and compared to other
state-of-the-art approaches. We can show that ARJA-p outperforms all the other ap-
proaches with a significant margin. Overall, ARJA-p is able to increase the number
of bugs fixed in Defects4J by 29.2% (from 65 to 84) and the number of correctly
fixed bugs even more, by 42.3% (from 26 to 37). Notably, ARJA-p can correctly fix
several multi-location bugs, impossible for most of the existing repair approaches.

The rest of this paper is structured as follows. Section 26.2 provides background
knowledge and a motivating example. Section 26.3 describes our repair approach in
detail. Section 26.4 presents the experimental design and Section 26.5 reports our
empirical results.

26.2 Background and Motivation

Search-based repair approaches determine a search space potentially containing cor-
rect patches and employ metaheuristic search techniques or random search to find
test-adequate patches.

GenProg [20, 21] is a representative approach that uses genetic programming
(GP) to search for test-adequate patches. This approach is based on the redundancy
assumption [4, 29] (i.e., the ingredients for a fix exist elsewhere in the current pro-
gram) and performs three kinds of statement-level edits, replacement, insertion and
deletion. [22] studied the influence of different solution representations and genetic
operators in GenProg; [35] presents RSRepair that replaces GP in GenProg with ran-
dom search; [39] suggested a set of anti-patterns to inhibit GenProg from generat-
ing nonsensical patches; [34] introduce a lower-granularity patch representation and
several related crossover operators. PAR [15] is a pioneering approach that exploits
repair templates to generate bug fixes. ARJA-p extends repair templates iof PAR
to accommodate more useful fix patterns and conducts more effective search via
evolutionary multi-objective optimization. ARJA [45] is a GP based approach for
JAVA, characterized by a novel patch representation, multi-objective search and sev-
eral auxiliary techniques for speeding up fitness evaluation and reducing the search
space. Unlike ARJA, which follows the redundancy assumption, ARJA-p uses tem-
plates to generate fix ingredients either for replacement or for insertion and puts
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them into two separate evolvable segments. Other typical search-based approaches
include AE [40], SPR [24], HDRepair [19], ACS [42], ssFix [41] and Cardumen
[28].

Besides search-based approaches, semantics-based approaches [7, 14, 17, 30,
31, 33, 43] are other techniques that have been extensively studied. There, semantic
constraints are inferred from the given test-suite which are then used to generate
test-adequate patches by solving the resulting constraint satisfaction problem. Very
recently, some emerging techniques (e.g., deep learning) have been introduced into
program repair, leading to several novel repair systems [6, 10, 25, 23, 38].

Another line of research focuses on the empirical aspects of program repair, in-
cluding the problem of patch overfitting [36, 44], performance evaluation of differ-
ent repair systems [18, 26] and analysis of real-world bug fixes [27, 48].

26.2.1 Brief Introduction to PAR

PAR [15] is an automatic program repair technique based on repair templates. Like
GenProg, PAR takes a buggy program and a test suite with at least one negative test
as input, with the goal to find a patch that allows all test cases to pass. Unlike Gen-
Prog which uses random statement replacement, as well as insertion and deletion
to edit a program, PAR exploits repair templates to generate new program variants.
Each repair template represents a common way to fix a specific kind of bug. For ex-
ample, a specific bug is the access to a null object reference, and a common fix is to
add if statement to check whether the object is null (this template is called “Null
Pointer Checker” in PAR). PAR collects 10 repair templates by manually inspecting
human-written patches and adopts an evolutionary process to use these templates.

The overall procedure of PAR is summarized as follows: First, PAR uses a simple
fault localization strategy to find a number of suspicious statements. Its evolution-
ary process starts with an initial population of program variants iterating through
two tasks: reproduction and selection. In reproduction, each program variant de-
rives a new one by applying templates to the selected suspicious statements. In the
selection, a tournament selection scheme chooses better (in terms of passing tests)
program variants for the next generation. Iterations are stopped when a program
variant passes all the tests.

From an EC perspective, PAR uses an evolutionary process similar to that in
GenProg, but PAR only relies on template-based mutation and does not use any
crossover at all. In other words, individual programs in the population of PAR do
not exchange information with each other, so good genetic material cannot be prop-
agated from one individual to another.
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26.2.2 A Motivating Example

In this subsection, we take a bug as an example to highlight the key insights under-
lying ARJA-p which motivates our algorithm design.

Figure 26.1 (a) shows a correct patch for the real bug Math98 in Defects4J [13].
The two methods operate(BigDecimal[] v) and operate(double[] v) imple-
ment similar functionality: multiply the current matrix Am⇥n by a n-dimensional
vector x (stored in the array v) and return the product Ax that is a m-dimensional
vector. However, in the buggy program, a vector with size n (i.e., v.length) is used
to store the m-dimensional vector Ax by mistake. To correctly fix the bug, v.length
in lines 4 and 11 should both be changed to m (represented by the variable nRows in
the code).

Based on two modifications in Figure 26.1 (a), if we make an additional modi-
fication as shown in Figure 26.1 (b), the synthesized patch (containing three edits)
can still pass the whole test suite but is indeed incorrect. To understand this, we
have to look at the meaning of line 3 in Figure 26.1 (b): This line checks whether
the current matrix A can be multiplied by vector x. Obviously, the only require-
ment is that the column dimension of A is equal to the vector dimension of x. The
original program checked this correctly, but the test-adequate (but incorrect) patch
adds a further condition isSingular() (lines 4–5) that judges whether matrix A is
singular. The patched program introduces some unexpected program behavior: if A
is not singular, it can be multiplied by vector x with any dimension. However, this
behavior cannot be detected by the test suite associated with Math98.

(a) Correct patch (b) An additional modification

Fig. 26.1: Correct patch and test-adequate patch for Math98.

We can make three observations using this example:
(1) The bug fixing Math98 needs to replace a qualified name (i.e., v.length) with
a variable nRows. However, this fix pattern cannot be handled by any of the 10 re-
pair templates defined in PAR [15], because such a replacement in PAR can only be
applied to a method parameter whereas v.length is an array index.
(2) The correct patch shown in Figure 26.1(a) requires multi-line changes that fix
multiple buggy locations. A single modification in either line 4 or 11 cannot produce
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a functionally correct program. To repair such multi-location bugs is hard or even
impossible for almost all existing repair approaches. Since PAR uses an evolution-
ary framework similar to GenProg it can change multiple locations of a program in
principle. However, [36] showed that seemingly complex patches generated by such
search mechanisms are equivalent to single line modifications in the overwhelming
majority of cases. PAR can only fix 4 bugs correctly in Defects4J, none of which
was claimed to be a multi-location bug [19].
(3) As shown in Figure 26.1(b), an additional modification will turn the correct patch
into a test-adequate but incorrect one. This implies that simpler or smaller patches
should be preferred. With a weak test suite, looking for a smaller patches avoids
making undesirable modifications. However, most of existing repair approaches in-
cluding PAR do not explicitly take simplicity of a patch into account.

Here we aim to improve template-based repair approaches, particularly PAR,
in the following way. First, we extend the repair templates used in PAR so as to
make them more general and accommodate more fix patterns. Second, we pro-
pose a new evolutionary framework with a lower-granularity patch representation
for template-based repair, which allows to fix multi-location bugs by leveraging
its stronger search ability. Third, we formulate program repair as a multi-objective
search problem and use evolutionary multi-objective optimization techniques to dis-
cover smaller patches.

26.3 Approach

The input of ARJA-p is a buggy program associated with a number of JUnit tests.
Among these tests, there is at least one negative test. The others are positive tests
defining the expected program functionality. The basic goal of ARJA-p is to modify
a buggy program so as to allow it to pass all tests cases. ARJA-p consists of the
following four main steps.

(1) Fault Localization: Given an input, ARJA-p first applies a spectrum-based
fault localization technique called Ochiai [1] to locate a list of likely-buggy state-
ments (LBSs). Each LBS is given a suspiciousness value susp 2 [0,1] by Ochiai,
which indicates the likelihood of this LBS to contain the bug. In ARJA-p, we only
consider some of the LBSs returned by fault localization in order to reduce the
search space. This is determined by two parameters denoted by gmin, the minimal
suspiciousness value, and nmax, the maximal number of LBSs.

(2) Generating Potential Fix Ingredients: After fault localization, we apply
the predefined repair templates to each LBS in the reduced set. By executing the
transformations specified by repair templates each LBS can derive a number of new
statements, which we call ingredient statements to be either inserted before or re-
placing the corresponding LBS.

(3) Test Filtering: Before entering into the evolutionary search, we conduct cov-
erage analysis to filter out those positive test cases that are not influenced by the
manipulation of selected LBSs. Specifically, we run the positive tests one by one,
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and record the statements visited by this test. If none of the LBSs is touched, this
positive test can be ignored. Thus, modified program variants can be validated on a
reduced test suite, which speeds up fitness evaluation in our MOEAs.

(4) Searching Test-Adequate Patches: Now that we have selected a number of
LBSs, each of which with a number of ingredient statements for replacement or in-
sertion we try to find test-adequate patches consisting of replacement/insertion edits,
with smaller patches preferred. In ARJA-p, we formulate this problem as a multi-
objective combinatorial optimization/search problem and use MOEAs to explore the
search space.

Buggy 
program

JUnit tests

Fault 
localization

Test filtering

Likely-buggy 
statements

Applying 
repair 

templates

A subset of 
JUnit tests

Ingredient 
statements

Multi-objective 
evolutionary 

search

Test-adequate 
patches

Input of Pare

Input/Output

Module

Entity

Output of Pare

Fig. 26.2: Overview of our repair approach (i.e.,ARJA-p).

Figure 26.2 shows an overview of the proposed repair approach. In the remainder
of this section, we detail the second and fourth steps (i.e., how to apply the repair
templates to generate potential fix ingredients and how to evolve the patches via
MOEAs), which are two characteristic procedures in ARJA-p.

26.3.1 Repair Templates

ARJA-p uses 7 repair templates that are mainly derived from templates in PAR.
Each template specifies a type of transformation of code.

(1) Element Replacer: This template replaces an abstract syntax tree (AST)
node element in a LBS with another compatible one. Table 26.1 lists the elements
that can be replaced and illustrates alternative replacers for each kind of element.
Note that templates “Parameter Replacer” and “Method Replacer” used in PAR are
just a subset of a template here. Some replacement rules shown in Table 26.1 with a
widened type follow, e.g. rules from ELIXIR [38] or REFAZER [37].

(2) Method Parameter Adder or Remover: This template is applicable for the
method invocation that has overloaded methods. To restrict the complexity, ARJA-
p only considers to add or remove a single element from the parameter list of the
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Table 26.1: List of Replacement Rules for Different Elements

Element Format Replacer

Variable x (i) The visible fields or local
variables with compatible type
(ii) A compatible method invocation
in the form of f() or f(x)

Field access this.a or The same as above
super.a

Qualified name a.b The same as above

Method name f(...) The name of another visible method
with compatible parameter and
return types

Primitive type e.g., int or A widened type,
double e.g., float to double

Boolean literal true or The opposite boolean value
false

Number literal e.g., 1 or Another number literal located in
0.5 the same method

Infix operators e.g., + or A compatible infix operator
> e.g., + to -, > to >=

Prefix/Postfix operators e.g., ++ or The opposite prefix/postfix operator
-- e.g., ++ to --

Assignment operators e.g.,+= or The opposite assignment operator
*= e.g., += to -=, *= to \=

Conditional expression a ? b : c b or c

current method invocation. The order of current parameters can be rearranged pro-
vided that their types are compatible to the corresponding types declared in the
overloaded method. When adding a parameter, ARJA-p collects all fields and local
variables within the scope of an LBS’s location, and candidates to be added must be
type-compatible with the corresponding parameter type in the method declaration.

(3) Boolean Expression Adder or Remover: This template is applicable for an
LBS that has a conditional branch. Take the if statement as example and suppose
the LBS is like if (c1 && c2){...}. When adding a boolean expression in the
predicate, this template collects all boolean expressions that are in the same file
with the LBS, and those within the scope of the LBS’s location can be alternatives
to be added. Suppose c3 is chosen, ARJA-p uses the following four transformation
schemas to edit the predicate in the LBS: (i) c1 && c2 && c3 (ii) c1 && c2 ||

c3 (iii) c1 && c2 && !c3 (iv) c1 && c2 || !c3. When removing a term in the
predicate, ARJA-p can select any one (e.g., c1 or c2) to remove.

Note that ARJA-p extends this template from PAR in two ways: The added
boolean expression can be any one from the file that meets the scope, not just the
one in the predicate. Second, ARJA-p adopts more transformation schemata.
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(4) Null Pointer Checker: For a LBS, this template first extracts all objects in
the statement that have object references (e.g., o1 and o2). Then it creates a pred-
icate (e.g., o1!= null && o2 != null) to assure that all these objects cannot be
null when executing the LBS. With this predicate, ARJA-p uses the following 6
transformation schemata to manipulate the LBS.
(i) if (o1 != null && o2 != null)buggyStatement;

(ii) if (!(o1 != null && o2 != null))return sth;

(iii) if (!(o1 != null && o2 != null))throw exception;

(iv) if (!(o1 != null && o2 != null))break;

(v) if (!(o1 != null && o2 != null))continue;

(vi) if (o1 == null)o1 = new Obj1();

if (o2 == null)o2 = new Obj2();

The first schema makes the LBS a part of the if statement whereas each of the oth-
ers inserts the entire if statement before the LBS. The second and third schemata
need to be instantiated since they require another return and throw statement, re-
spectively. For return statements, the return type of the method containing the LBS
is first checked, then the corresponding values according to this type are returned: (i)
boolean: return true or false; (ii) void: return nothing; (iii) the other primitives: re-
turn 0 or 1; (iv) an object: return null. ARJA-p always uses the last return statement
in the method. As for throw statements, ARJA-p collects alternative thrown excep-
tions in three ways: (i) find the method declaration where the LBS located and use its
declared thrown exception types; (ii) if the considered objects are in method param-
eters, consider the IllegalArgumentException; (iii) consider the exception types
defined in the buggy program that are extended from the NullPointerException.
The last schema uses the basic constructor to initialize null objects having refer-
ences.

To avoid compile errors, sometimes not all 6 schemata are applicable. Specifi-
cally, the first schema can only be applied to an LBS which is not a variable decla-
ration statement and the fourth and fifth schema can only be used if the LBS is in a
for or while loop.

We introduce three further repair templates that are similar to “Null Pointer
Checker”. They use the same 6 schemata mentioned above to edit a buggy program,
but their predicates in the if statement check different contexts.

(5) Range Checker: This template mainly checks whether all array or list ele-
ment accesses are valid in an LBS (i.e., indices cannot exceed the upper and lower
bounds of the size of an array or list). Different from PAR, it also considers to check
the validity of char access (in the form of charAt or substring) for String ob-
jects since String is a list of characters and is frequently used in Java.

(6) Cast Checker: This template checks whether, in each class-casting expres-
sion, the variable or expression to be converted is an instance of casting type (using
instanceof operator).

(7) Divide-by-Zero Checker: This template checks whether all the divisors are
not equal to 0. It is not used in PAR.
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26.3.2 Offline Execution of Templates

As described in Section 26.3.1, repair templates in ARJA-p enrich those used in
PAR, so that ARJA-p can potentially handle more fix patterns. Our system ex-
ploits repair templates in a way different from PAR and other related approaches
[19, 37, 41]. PAR executes templates on-the-fly (i.e., during the evolutionary pro-
cess), whereas our system uses them offline. Specifically, ARJA-p executes all pos-
sible transformations defined by templates for all considered LBSs before searching
for patches. Each LBS can derive a number of new statements and each of these
statements can either replace the LBS or be inserted before it. These template based
repair actions (some occur in the AST node level) are abstracted into two kinds
of statement-level edits (i.e., replacement and insertion). Figure 26.3 illustrates this
abstraction for a supposed LBS of a.add(x,y). In order to avoid combinatorial ex-
plosion, ARJA-p only applies a template to a single node at a time. For example,
ARJA-p does not use the template “Element Replacer” to simultaneously change a

and add in a.add(x,y).

1:

2:

3:

a.add(x, z);

b.add(x, y);

c.add(x, y);

For replacement

.

.

.

l: a.sub(x,y); 

For insertion

1:
if (a == null)

return; 

2:
if (a == null)

break; 

m:
if (a == null)

continue; 

.

.

.

LBS

a.add(x, y);

1. Element Replacer
2. Method Parameter Adder …
3. Boolean Expression Adder …
…
7. Dived-by-Zero Checker

Repair templates

Fig. 26.3: Illustration of the offline template execution.

After offline template execution, repair templates are invisible to the evolutionary
search in ARJA-p. Only two kinds of statement-level edits are visible to the search.

26.3.3 Evolving Patches

Suppose n likely-buggy statements (LBSs) are selected by fault localization, with
each of them having two sets of ingredient statements (one for replacement and an-
other for insertion) that are produced through the offline execution of templates. We
can then view template based patch generation as a three-level decision process: (1)
Choose to edit some statements among n LBSs; (2) Select which operation (“re-
place” or “insert before”) to apply for each LBS to be edited; (3) Choose statements
from the corresponding ingredient statements for replacement/insertion. ARJA-p
uses a lower-granularity patch representation that properly decouples the search
subspaces of potentially buggy locations, operation types and replacement/insertion
statements. Based on this representation, we can evolve patches via multi-objective
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evolutionary algorithms (MOEAs) that effectively explore this search space. The
details are described as follows.

Patch Representation

To encode a patch as a MOEA individual, we first sequence the n LBSs in a random
order. For the j-th LBS, j = 1,2, . . . ,n, its associated two sets of ingredient state-
ments are denoted as R j (for replacement) and I j (for insertion) respectively, and the
statements in R j/I j are numbered from 1 to |R j|/|I j| in any order. These ID numbers
are fixed throughout the evolutionary process.

A solution (i.e., a patch) to the program repair problem is represented as a co-
lated vector x = (b,c,u,v),with four parts each being a vector of size n itself.
b = (b1,b2, . . . ,bn) is a binary vector, where b j 2 {0,1}, j = 1,2, . . . ,n indicates
whether the j-th LBS is to be edited or not. c = (c1,c2, . . . ,cn) is also a binary vec-
tor, where c j = 0 (c j = 1) means the “replace” (“insert before”) operator is chosen
for the j-th LBS. u = (u1,u2, . . . ,un) is an integer vector and u j indicates that patch
x selects the u j-th ingredient statement in the set R j. Similar to u, v = (v1,v2, . . . ,vn)
is also an integer vector in which v j means the v j-th statement in the set I j is selected
by patch x. Suppose the j-th LBS is a.add(x,y), Figure 26.4 illustrates the patch
representation in ARJA-p. Figure 26.5 describes how to apply a patch x to the buggy
program (i.e., decoding procedure) so as to obtain a modified program.

1 … 1 … 0 1 … 0 … 0 8 … 3 … 6 5 … 2 … 4

b
1 … j … n 1 … j … n 1 … j … n 1 … j … n

1:

2:

3:

a.add(x, z);

b.add(x, y);

c.add(x, y);

Rj

.

.

.

|Rj|: a.sub(x,y); 

Ij

1:
if (a == null)

return; 

2:
if (a == null)

break; 

|Ij|: if (a == null)
continue; 

.

.

.

The j-th LBS is to 
be edited

The “Replace” 
operator is 

selected for the 
j-th LBS

x

c u v

Fig. 26.4: Illustration of the patch representation in ARJA-p.

Fitness Function

The automated program repair is formuated as a multi-objective search problem. To
evaluate the fitness of each individual x, we employ a multi-objective function to
simultaneously minimize the patch size (denoted by f1(x)) and a weighted failure
rate (denoted by f2(x)). Patch size is defined as f1(x) = Ân

i=1 bi, refering to the
number of edits contained in the patch. Weighted failure rate is defined as
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are selected by fault lo-
of them has two sets of ingredient statements

(one for replacement and another for insertion) that are produced
execution of templates (see Section 3.3). Then,

we can view template based patch generation as a three-level deci-
LBSs; (2)

ct which operation (“replace” or “insert before”) for each LBS
to be edited; (3) Once the operation has been determined, choose

from the corresponding ingredient statements
replacement/insertion. Bearing this in mind, we present a new

lower-granularity patch representation that properly decouples the

Algorithm 1: The procedure to apply a patch x
Input: A patch x = (b, c, u, v); the buggy program; n LBSs; .
Output: A modi�ed program.

1 for j = 1 to n do
2 if bj = 1 then
3 st  the j-th LBS;
4 if c j = 0 then
5 st ⇤  the uj -th statement in the set Rj ;
6 Replace st with st ⇤ ;
7 else
8 st ⇤  the �j -th statement in the set Ij ;
9 Insert st ⇤ before st ;

Fig. 26.5: The procedure to apply a patch.

f2(x) =
|{t 2 Tf | x fails t}|

|Tf |
+w⇥ |{t 2 Tc | x fails t}|

|Tc|
(26.1)

where Tf is the set of negative test cases, Tc is the reduced set of positive test cases,
and w 2 (0,1] is a global parameter used to emphasize the passing of negative test
cases. f2(x) measures how well the modified program behaves in terms of passing
the given test cases. f2(x) = 0 means x does not fail any test case and is thus a
test-adequate patch.

By simultaneously minimizing these two objectives, we introduce search bias
toward smaller patches. Note that if the modified program fails to compile or runs
out of time, f1(x) and f2(x) are both set to +•. Moreover, f1(x) = 0 is meaningless
since no modifications would be made to the buggy program. Should f1(x) reach
0, we reset both f1(x) and f2(x) to +•, in order to eliminated this solution by
selection.

Population Initialization

We initialize the population by combining prior knowledge and randomness: For
each individual x, b is initialized using fault localization information. Suppose susp j
is the suspiciousness of the j-th LBS, then b j is initialized to 1 with probability
susp j ⇥ µ and to 0 with 1 � susp j ⇥ µ , where µ 2 (0,1) is a predefined parameter.
The remaining three parts are randomly initialized.

Genetic Operators

Genetic operators crossover and mutation are used to produce offspring in MOEAs.
In ARJA-p, crossover and mutation are applied to each part of the patch repre-
sentation separately, in order to inherit good traits from parents. For b and c we
employ half uniform crossover (HUX) and bit-flip mutation. For u and v), we use
single-point crossover and uniform mutation due to their integer nature. Figure 26.6
demonstrates how crossover and mutation are performed on two parents.
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Fig. 26.6: Illustration of the crossover and mutation in ARJA-p. Only one offspring shown.

Multi-Objective Search

As a selection (including mating and environmental selection) framework, we use
NSGA-II [8], a classical Pareto dominance-based MOEA. Note that recently pro-
posed MOEAs like q -DEA [46] and MOEA/D-DU [47] can also be used here.

The NSGA-II search procedure works as follows: First, an initial population with
N (the population size) individuals is generated using the initialization strategy in-
troduced in Section 26.3.3. Then the algorithm iterates over generations until a ter-
mination criterion is met. In the g-th generation, binary tournament selection [8] and
the genetic operators of Section 26.3.3 are applied to the current population Pg so
as to create an offspring population Qg of size N. Then the fast non-dominated sort-
ing and crowding distance comparison [8] (based on two objectives formulated in
Section 26.3.3) are used to select the best N individuals from the union population
Pg [Qg, arriving at the next population Pg+1.

When the search is terminated, the obtained non-dominated solutions with f2 = 0
are output as test-adequate patches found by ARJA-p. If there is no such solution,
ARJA-p has failed to repair the bug.

26.4 Experimental Design

Our evaluation is conducted on four open-source Java projects (i.e., Chart, Time,
Lang and Math) from Defects4J [13], a database widely used for evaluating Java re-
pair systems [6, 19, 26, 28, 38, 41, 42, 45]. Table 26.2 shows the the basic informa-
tion of the four projects. There are 224 real-world bugs in total: 26 bugs from Chart
(C1–C26), 27 bugs (T1–T27) from Time, 65 bugs (L1–L65) from Lang and 106
bugs (M1–M106) from Math. Note that Defects4J indeed contains another project,
namely Closure. We do not use Closure because its customized testing format is
incompatible with GZoltar [5], a third-party fault localization tool used in our repair
system.

Table 26.3 shows the basic parameter setting for ARJA-p in our empirical study,
where n is the number of LBSs determined by gmin and nmax together (see Section
26.3). We run 5 random trials in parallel for each bug. Each trial is terminated after
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Table 26.2: The descriptive statistics of Defects4J dataset

Project ID #Bugs #JUnit Tests Source Test
KLoC KLoC

JFreeChart C 26 2,205 96 50
Joda-Time T 27 4,043 28 53

Commons Lang L 65 2,295 22 6
Commons Math M 106 5,246 85 19

Total 224 13,789 231 128

3 hours following the practice in refs. [26, 28]. Our experiments are performed on
HPC machines with 2.4 GHz Intel Xeon E5 Processors and 20 GB memory.

Table 26.3: The parameter setting for ARJA-p in the experiments

Parameter Description Value

N Population size 40
gmin Threshold for the suspiciousness 0.1
nmax Maximum number of LBSs considered 60

w Refer to Section 26.3.3 0.5
µ Refer to Section 26.3.3 0.06
pc Crossover probability 1.0
pm Mutation probability 1/n

26.5 Results and Discussions

Table 26.4 shows the bugs in Defects4J that can be fixed (i.e., test-adequate patches
are found) and correctly fixed by ARJA-p. Note that only non-dominated solutions
with f2 = 0 are meaningful for program repair. Among all 224 bugs considered,
ARJA-p can generate test-adequate patches for 84 bugs.

A major concern raised recently [36] was whether test-adequate patches are cor-
rect beyond passing the test suite. Following previous work [26, 38, 41, 42, 45],
we manually checked the correctness of these patches found by ARJA-p. A test-
adequate patch is deemed as correct if it is exactly the same as or semantically
equivalent to a human-written patch. After a careful manual study, we confirmed
that ARJA-p found correct patches for 37 bugs.

We compare ARJA-p with 11 state-of-the-art repair tools in terms of the num-
ber of bugs fixed (i.e., test-adequate) and correctly fixed. The 11 tools for compar-
ison are jGenProg [26] (an implementation of GenProg for Java), jKali [26] (an
implementation of Kali for Java), xPAR (a reimplementation of PAR by Le et al.
[19]), Nopol [26, 43], HDRepair [19], ACS [42], ssFix [41], JAID [6], ELIXIR [38],
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Table 26.4: The bugs for which the test-adequate patches and the correct patches are synthesized
by ARJA-p

Project Test-Adequate Correct

Chart

C1, C3, C4, C5, C7, C10, C1, C4, C10, C11, C14,
C11, C13, C14, C15, C17, C17,C19, C24
C19 ,C24, C25, C26

Â = 15 Â = 8

Time T4, T11, T14, T17, T20 T4

Â = 5 Â = 1

Lang

L7, L16, L20, L21, L22, L24, L20, L24, L33, L34, L39,
L27, L33, L34, L39, L41, L44, L47, L57, L59, L61
L45, L47, L50, L51, L57, L58,
L59, L60, L61, L63

Â = 22 Â = 9

Math

M2, M3, M5, M6, M7, M22, M5, M22, M25, M30, M34,
M24, M25, M28, M30, M32, M56, M57, M58, M70, M75,
M34, M40, M42, M49, M50, M79, M80, M82, M89, M94,
M56, M57, M58, M62, M63, M98, M105
M65, M70, M71, M73, M75,
M77, M78, M79, M80, M81,
M82, M84, M85, M88, M89,
M94, M95, M96, M98, M104,
M105

Â = 42 Â = 19

Total 84 (37.5%) 37 (16.5%)

ARJA [45] and Cardumen [28], which cover almost all the tools that have ever been
tested on Defects4J. Table 26.5 shows our comparison results. Note that for xPAR,
HDRepair and Cardumen, some results were not reported by the original authors.
ARJA-p performs best and indeed outperforms all 11 other techniques by a large
margin, both in terms of the number of bugs fixed and correctly fixed. Specifically,
ARJA-p is able to increase the highest number of fixed bugs in Defects4J by 29.2%,
from 65 (achieved by Cardumen) to 84; it increases the highest number of cor-
rectly fixed bugs in Defects4J by an even larger margin, 42.3%, from 26 (achieved
by ELIXIR) to 37. Moreover, xPAR can only correctly fix 3 bugs, which is much
less than the number achieved by ARJA-p. Since our ARJA-p is based on PAR, the
much improved performance of ARJA-p strongly demonstrates the improvements
over PAR.

Figure 26.7(a) presents a Venn diagram showing the intersections of fixed bugs
among ARJA-p, ARJA and Cardumen. We select ARJA and Cardumen since they
are the best-performing tools among the 11 existing ones in terms of producing test-
adequate patches. ARJA-p is able to fix 22 bugs that neither ARJA nor Cardumen
could fix. But although ARJA-p fixes more bugs, ARJA and Cardumen can also
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Table 26.5: Comparison with 11 techniques in terms of the number of bugs fixed and
correctly fixed (Test-Adequate/Correct).

Project ARJA-p jGenProg jKali xPAR Nopol HDRepair

Chart 15/8 7/0 6/0 NA/0 6/1 NA/2
Time 5/1 2/0 2/0 NA/0 1/0 NA/1
Lang 22/9 0/0 0/0 NA/1 7/3 NA/7
Math 42/19 18/5 14/1 NA/2 21/1 NA/6

Total 84/37 27/5 22/1 NA/3 35/5 NA/16

Project ACS ssFix JAID ELIXIR ARJA Cardumen

Chart 2/2 7/2 4/4 7/4 9/3 15/NA
Time 1/1 4/0 0/0 3/2 4/1 6/NA
Lang 4/3 12/5 8/5 12/8 17/4 7/NA
Math 16/12 26/7 8/7 19/12 29/10 37/NA

Total 23/18 49/14 20/16 41/26 59/18 65/NA

“NA” means the data is not available.

fix 16 and 19 bugs, respectively, that cannot be fixed by ARJA-p. This indicates
that state-of-the-art repair approaches are complementary to each other, and further
attempts at combinations should be envisioned.

Figure 26.7(b) shows a Venn diagram to compare ARJA-p with two other state-
of-the-art approaches, ACS and JAID, in terms of correct bug fixing. Note that the
ELIXIR paper reported the highest number of bugs correctly fixed in the literature
but did not show which bugs were correctly fixed, so we cannot compare with it here.
The Figure shows that ARJA-p, ACS and JAID can uniquely generate a correct patch
for 25, 10 and 9 bugs, respectively, compared to their counterparts. Again, these
systems exhibit good complementarity in terms of producing correct bug fixes.

Pare
-N

ARJA

Cardumen

27

16

19 5
22 11

14

(a) Test-adequate bug
fixing

25 3

Pare
-N

ACS

JAID

5

4 0
10

9

(b) Correct bug fixing

Fig. 26.7: Venn diagram of bugs for which test-adequate patches (ARJA-p, ARJA and Cardumen)
and correct patches (ARJA-p, ACS and JAID) are found.



26 Making Better Use of Repair Templates 401

Pare Others

76

12 40

C10, T20, 
L(34,47,57),
M(7,9,24,34,
75,77,94)

(a) Test-adequate bug fixing

ARJA-p Others

18

19 34

C(4,10,11,17),
T(4), 
L(34,39,47,57,61), 
M(30,34,56,57,65,
75,79,94,105)

(b) Correct bug fixing

Fig. 26.8: Venn diagram of bugs for which test-adequate patches and correct patches are found.
Our results are compared with the combined results of all the other techniques
mentioned in Table 26.5.

Finally, we compare the results of ARJA-p with the combined results of all 11
existing techniques. Figure 26.8 shows that our technique can uniquely find test-
adequate patches for 12 bugs and uniquely generate correct patches for 20 bugs. To
our knowledge, each of these 12 bugs (listed in Figure 26.8(a)) is fixed for the first
time, and each of 20 bugs (listed in Figure 26.8(b)) is repaired correctly for the first
time.

26.5.1 Results on Multi-Location Bugs

Among the 37 bugs correctly fixed by ARJA-p, C14, C19, L20, L34, L47, L61,
M22 and M98 are deemed multi-location bugs, since the correct patch by ARJA-p
for these 8 bugs contains at least two edits at multiple buggy locations.

Fig. 26.9: Correct patch generated by ARJA-p for the bug L34.

For M22 and M98, ARJA-p can synthesize a correct patch that is exactly the same
as a human-written patch. As for the remaining 6 bugs, ARJA-p generates a correct
repair semantically equivalent to a human-provided one. It is quite challenging for
correctly fixing these bugs. For example, for C14, ARJA-p generates a correct patch
that executes the “Null Pointer Checker” template at 4 different LBSs (located in two
different Java files). Another interesting example is fixing bug L34, which is shown
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in Figure 26.9. To correctly fix this bug, ARJA-p uses two kinds of templates for two
LBSs: “Element Replacer” for lines 3–4 and “Null Pointer Checker” for line 10. A
human-written patch for L34 differs in that it replaces line 10 with return m !=

null && m.containsKey(value);. Obviously, this modification is functionally
equivalent to the null pointer check done by ARJA-p. Note that L61 can also be
seen as a single-location bug in terms of a human-written patch that modifies only a
single LBS. However, that patch is not in the search space of ARJA-p.

To our knowledge, only two existing approaches (i.e., ACS [42] and ARJA [45])
reported correct fixes for multi-location bugs on Defects4J. For the 8 multi-location
bugs correctly fixed by ARJA-p, ACS can only generate correct patches for two of
them (i.e., C14 and C19), while ARJA can generate three (i.e., L20, M22 and M98).
Bugs L34, L47, L61 are correctly fixed by ARJA-p for the first time. The strength
of ARJA-p in fixing multi-location bugs demonstrates the power of evolutionary
multi-objective search.

26.5.2 Contribution of Repair Templates

ARJA-p uses 7 repair templates. It is interesting to understand the contribution of
each template on the number of bugs fixed (test-adequate or correctly), which should
provide insight into the strength and weakness of ARJA-p. If multiple patches are
obtained for a bug, we just randomly choose one for analysis. Note that a bug fix
may involve more than one template (e.g., L34 in Figure 26.9).

Table 26.6 summarizes the contribution of templates. It is clear that “ER” is the
most useful template for the performance of ARJA-p on Defects4J. This template
contributes to the generation of a test-adequate patch for 54 bugs and a correct one
for 27 bugs. “BEAR” helps to synthesize a test-adequate patch for 17 bugs (just
behind “ER”), however only 1 of them is identified as correct. “MPAR” and “NPC”
make moderate contribution for both test-adequate and correct bug fixing. “DC”,
“CC” and “RC” do not contribute much to ARJA-p’s performance on Defects4J,
and “RC” even contributes nothing.

Table 26.6: Contribution of each repair template

Template Test-Adequate Correct

Element Replacer (ER) 54 27
Method Parameter Adder or Remover (MPAR) 6 3
Boolean Expression Adder or Remover (BEAR) 17 1
Null Pointer Checker (NPC) 10 7
Range Checker (RC) 0 0
Cast Checker (CC) 2 1
Divide-By-Zero Checker (DC) 1 1
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It is not surprising that “ER” contributes most since it can manipulate many more
types of AST nodes than other templates. “BEAR” tries to synthesize a condition by
exploiting the intrinsic redundancy of a program, so the synthesized condition may
not be so accurate. This could be the reason that most of the test-adequate patches
contributed by this template are indeed incorrect. A promising way to enhance the
strength of “BEAR” is to incorporate a precise condition synthesis technique like
that in ACS [42]. “NPC” contributes much more than three similar templates (i.e.,
“RC”, “CC” and “DC”), implying that the null pointer bug could be quite common
in Java. Moreover, the patch produced by “NPC” has a relatively high probability
to be correct, may be because the manipulations performed by “NPC” are usually
harmless. Note that although “RC”, “CC” and “DC’ have limited contribution here,
they could be helpful for ARJA-p on other bug datasets.

26.5.3 Value of Test Filtering

We select the latest buggy versions of the four projects considered in Defects4J (i.e.,
C1, T1, L1 and M1) as the subject programs to examine the effect of test filtering.
For each buggy program, we vary gmin (i.e., the threshold of suspiciousness) from
0 to 0.2. For each gmin value chosen, we use our test filtering procedure to obtain
a subset of original JUnit tests and record two metrics associated with this reduced
test suite: the number of tests and the execution time. Fig. 26.10 shows the influ-
ence of gmin on the two metrics for each subject program. For comparison purposes,
the two metrics have been normalized by dividing by the original number of JUnit
tests and the CPU time consumed by the original test suite respectively. Note that
the fluctuations of CPU time in Fig. 26.10 are due to the dynamic behavior of the
computer system.

Fig. 26.10 shows that test filtering can achieve substantial benefits in terms of
reduction of computational costs. As we increase gmin the number of tests that needs
to be considered and the corresponding CPU time consumed both decrease signifi-
cantly and quickly. Even if we set gmin to a very small value, test filtering can result
in a considerable reduction of CPU time. Suppose as an example, we set gmin = 0.01,
then CPU time reduction is about 59% for C1, 31% for T1, 97% for L1 and 37% for
M1. Generally, if we set gmin to a larger value, we can consider a smaller test suite
for fitness evaluation. However, it is not desirable to use too large a gmin (e.g., 0.5),
because it could result in the repair approaches missing the actual faulty location.
In practice, we choose a moderate value for gmin (e.g., 0.1) to strike a compromise.
Normally, test filtering can significantly speed up the fitness evaluation in such a
case. For example, if we set gmin to 0.1 for M1, the number of tests considered is
reduced from 5,246 to 118, and the CPU time for one fitness evaluation is reduced
from 210 seconds to 3.4 seconds. Suppose the termination criterion of ARJA-p is
2,000 evaluations, then we can save up to 115 hours for just a single repair trial.
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(b) Joda-Time, bug T1
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Fig. 26.10: Illustration of the value of the test filtering procedure. The base 10 logarithmic scale is
used for the y axis in (c).

By conducting a post-run validation of the obtained patches on the original test
suite we confirm that if a patch can pass the reduced test suite, it can also pass the
original one, without any exception.

26.6 Conclusion

In this chapter we have examined a new program repair approach for Java, ARJA-p.
It combines very recent techniques from template based and EC based repair ap-
proaches to enhance performance of PAR. Our technique is compared with almost
all the existing techniques (11 tools) that have ever been evaluated on Defects4J
dataset. The empirical results on 224 real bugs in Defects4J show that ARJA-p can
generate test-adequate patches for 84 bugs and correct patches for 37 bugs outper-
forming state-of-the-art approaches with a considerable margin. ARJA-p can cor-
rectly fix several multi-location bugs that cannot be handled by almost any existing
repair approaches. We have also found that there exists good The complementarity
in performance shown between ARJA-p and other state-of-the-art techniques like
ACS and ARJA imply that a combination of principles of existing approaches is a
promising avenue to further improve repair effectiveness of evolutionary program
repair methods.
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