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Abstract—Constant optimization in symbolic regression is
an important task addressed by several researchers. It has
been demonstrated that continuous optimization techniques are
adequate to find good values for the constants by minimizing the
prediction error. In this paper, we evaluate several continuous
optimization methods that can be used to perform constant
optimization in symbolic regression. We have selected 14 well-
known benchmark problems and tested the performance of
diverse optimization methods in finding the expected constant
values, assuming that the correct formula has been found. The
results show that Levenberg-Marquardt presented the highest
success rate among the evaluated methods, followed by Powell’s
and Nelder-Mead’s Simplex. However, two benchmark problems
were not solved, and for two other problems the Levenberg-
Marquardt was largely outperformed by Nelder-Mead Simplex
in terms of success rate. We conclude that even though a symbolic
regression technique may find the correct formula, constant
optimization may fail; thus, this may also happen during the
search for a formula and may guide the method towards the
wrong solution. Also, the efficiency of LM in finding high-quality
solutions by using only a few function evaluations could serve
as inspiration for the development of better symbolic regression
methods.

Keywords—Symbolic Regression, Genetic programming, Curve-
fitting, Least-squares, Nonlinear regression

I. INTRODUCTION

Symbolic regression has been one of the main subjects of
research in evolutionary computation for many years, gain-
ing more prominence recently. Techniques such as Kaizen
Programming [1], Genetic Programming [2], Linear Genetic
Programming [3], [4], [5], and Grammatical Evolution [6] have
been studied to solve such task.

For symbolic regression problems, the goal is to find
a symbolic description of a model, for instance, the exact
equation used as benchmark problem. The general approach is
to evolve both structure and the parameters (constant values)
at the same time, in a coupled way. In traditional Evolutionary
Computation (EC) techniques, the parameters of the model
are naïvely adjusted by random modifications (mutation on
the numerical values), ignoring any information that may be
extracted from the model. As a result, these techniques usually
require numerous objective function evaluations. One problem
is that the correct structure with the wrong parameters may be
of worse quality than another model presenting a very distinct
structure. Once the method followed the wrong model, it may
be stuck in a local optimum region.

After identifying this issue with the parameters, researchers
decided to create hybrids by decoupling the symbolic re-
gression problem and doing what was called Constant Op-
timization by local search, i.e., replacing the numerical values
by variables, and running optimization algorithms to perform
least-squares minimization on each trial model. That constant
optimization is, in fact, the well-known regression technique
studied in statistics [7].

It has already been shown that solving the constant opti-
mization problem minimizes the prediction error of the models
found by symbolic regression methods, resulting in better solu-
tions. Attempts were made using hill-climbing, simulated an-
nealing, local gradient search, genetic algorithms, differential
evolution, and particle swarm optimization, among others [8],
[9], [10], [11], [12]. More recently, Levenberg-Marquardt has
been applied with success because it is usually faster than
many other methods for least-squares minimization [13], [14].
By success, one means that the model found by the evolu-
tionary method presents an acceptable error on the test set,
which does not necessarily mean that the original expression
was found. The acceptable error threshold is not a standard,
but mean squared error below 1e-08 and as R2 >= 0.99 have
been employed.

Given that there are many studies in the literature, we
understand that there is no need to run experiments to confirm
the results found by other researchers. On the other hand,
we could not find reports in the literature that tested several
constant optimization techniques on the symbolic regression
benchmarks proposed by the community. Therefore, in this
paper we compare the performance of some methods for
constant optimization that may be used in symbolic regression.

We have selected well-known benchmark problems, and
tested the performance of diverse optimization methods in
finding constants that give low prediction error, assuming that
the correct formula has been found. Therefore, the experiments
were executed as a nonlinear regression task to optimize the
parameters of the model. Thus, with the experiments in this
paper the objective is to answer only the following question:
how good are the constant optimization methods supposing the
correct expression has been found by the symbolic regression
technique? That question is important because if the constant
optimization is not reliable when the model’s structure is
correct, then what can be expected when the model structure
is wrong?
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The paper is structured as follows: In Section 2 we describe
the constant optimization task in more detail, along with the
optimization methods selected for this work. Section 3 has the
experimental analysis. Finally, summary and conclusions are
given in Section 4.

II. CONSTANT OPTIMIZATION

The usual way of solving a symbolic regression problem
via evolutionary computation is to use ERCs (Ephemeral Ran-
dom Constant), which are numbers inserted in the expressions
that cannot be directly manipulated. Values are replaced either
by other ERCs via mutation (new random number) or modified
by functions; for instance, an ERC of value 10 is replaced by a
randomly chosen function such as log(10). Another possibility
is ERC mutation by perturbing it with Gaussian noise [15]
instead of generating an independent new value. Nevertheless,
this perturbation is also random.

As introduced, local search mechanisms tend to improve
symbolic regression methods by optimizing the values of the
constants at some point of the process, i.e., the best individual
of the population is optimized every ten generations. Assuming
a tree-like structure to represent a trial solution (an individual
in GP, for instance), one may have the original individual (with
constants, see Figure 1a) transformed into an expression to be
optimized (see Figure 1b), where the parameters are C1 and
C2, and x is an input data.
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Figure 1. Transformation of an expression tree in a nonlinear function for
constant optimization.

The transformed tree can then be treated as a multiple
nonlinear optimization problem and solved by least-squares
minimization:

min ‖f(C, x)−y‖
2
= min

n∑

i=1

(f(C, xi)− yi)
2,

where i is the index for the n regression instances, f is the
nonlinear function (GP solution), C is the set of parameters
that are being optimized, for instance, C1 and C2, and yi are
the observed output data points. Consequently, the objective is
to find the values for the constants that minimize the error of
all predictions. One expects to reduce the risk of discarding
good models due to wrong parameters by performing nonlinear
regression on the trial solutions in a symbolic regression task.

Below we briefly describe the unconstrained minimization
methods evaluated in this paper. The Nelder-Mead method,
Powell’s method, and Simulated Annealing do not rely on

gradient evaluations. As such, they are useful to minimize
functions whose derivatives cannot be calculated, although
other methods that may exploit gradient evaluations will likely
be faster. The other optimization methods used in this work re-
quire first-order gradients, which were numerically calculated
through finite difference.

A. Simulated Annealing (SA)

Simulated annealing is an optimization method that in-
volves evaluating function values on random points and keep-
ing those that pass steadily increasing evaluation criteria. It
is probable to move to points that perform worse in the
earlier iterations, in order to search a wider space, but the
probability of accepting worse performing points decreases
with the number of iterations. This is analogous to the process
of metallurgical annealing, where a metal is heated and slowly
cooled to reduce defects that occur by cooling too quickly [16].

B. Broyden–Fletcher–Goldfarb–Shanno (BFGS)

The Broyden-Fletcher-Goldfarb-Shanno method is an op-
timization method that approximates second-order derivatives
using gradient evaluations, which is used to generate a search
direction. This generates a new point, closer to the opti-
mum [17].

C. Conjugated Gradient (CG)

The conjugate gradient method is an optimization method
that forgoes using local gradients, instead relying on conjugate
directions. It works faster than other methods when the shape
of the search space is a narrow valley [18].

D. Levenberg-Marquadt (LM)

The Levenberg-Marquardt method is an optimization
method that relies on minimizing the sum of squares of
nonlinear functions. The LM method searches in a direction
determined by the partial derivatives of those functions. It
adaptively varies how its search parameter updates between
gradient descent and the Gauss-Newton method [19].

E. Nelder-Mead Simplex (NM)

The Nelder-Mead method (also known as the downhill sim-
plex method) is an optimization method that compares function
values at the vertices of a simplex, which gradually contracts
the simplex as better values are found, continuing until some
bound is obtained, or a particular number of iterations have
been completed [20]. A simplex is a generalized tetrahedron,
which in the Nelder-Mead method, has n+1 vertices, where n
is the number of variables. The function value of each vertex
are evaluated and compared, which indicate what new points
to evaluate, and how to modify the simplex.

F. Powell (P)

Powell’s method is an optimization method that uses n
search vectors to identify which new points to evaluate. The
search vectors then optimize the result for each variable. The
best performing search vector is replaced with a new one
indicating the difference between the new best point and the
previous best point [21].
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III. EXPERIMENTAL ANALYSIS

This section presents the experimental analysis performed
to evaluate the methods and the discussion of results.

A. Benchmark functions

The symbolic regression problems tested here (see Table I)
were taken from [22], where it is suggested that the input
variables xi, i = 1, ..., 5 should be renamed to x, y, z,
v, w, respectively. Some benchmark problems intentionally
omit variables from the function. For the training set, every
variable is sampled from U(−50, 50, n), where n is the
number of uniform random samples drawn from −50 to
50, inclusive. There is no test set, only a training set with
the same type of distribution for all problems because we
are using the ground truth as the problem to be optimized.
In order to do that, for each benchmark function we re-
place the numerical constants with symbols to be optimized.

For instance, f1(
−→
C , x, y, z, v, w) = 1.57 + 24.3v becomes

f1(
−→
C , x, y, z, v, w) = C1+C2v. On the other hand, exponents

were not changed because power functions are assumed to be

multiplications: f11(
−→
C , x, y, z, v, w) = 6.87 + 11cos(7.23x3)

becomes f11(
−→
C , x, y, z, v, w) = C1 +C2cos(C3x

3). Function
korns9 is missing in the benchmark set because it does not
have numerical constants.

Table I. KORNS BENCHMARK FUNCTIONS AND NUMBER OF

CONSTANTS.

Function D

f1 = 1.57 + 24.3v 2
f2 = 0.23 + 14.2(v + y)/3w 3
f3 = −5.41 + 4.9(v − x+ y/w)/3w 3
f4 = −2.3 + 0.13sin(z) 2
f5 = 3 + 2.13ln(w) 2
f6 = 1.3 + 0.13sqrt(x) 2

f7 = 213.809408(1− e−0.547237x) 3
f8 = 6.87 + 11sqrt(7.23xvw) 3

f10 = 0.81 + 24.3 2y+3z2

4v3+5w4
6

f11 = 6.87 + 11cos(7.23x3) 3
f12 = 2− 2.1cos(9.8x)sin(1.3w) 4

f13 = 32− 3
tan(x)
tan(y)

tan(z)
tan(v)

2

f14 = 22− 4.2(cos(x)− tan(y))
tan(z)
sin(v)

2

f15 = 12− 6
tan(x)

ey
(ln(z)-tan(v)) 2

B. Implementation and configuration of the methods

Our code was implemented in Python 2.7.6, using the
optimization methods from SciPy 0.14.0 on a system using
Arch Linux kernel 3.18.6-1, an Intel i7-920 CPU, and 6Gb
DDR3 RAM. All methods were executed using the default
configuration, except for the parameters in Table II. We are
aware that the configuration is an important part of the process,
but we are considering the recommended settings.

Tolerances were set as the value-to-reach, i.e., the desired
accuracy in terms of the scoring function. The Mean Absolute
Error is given by:

MAE =

∑
n

i=1
|yi − f(C, xi)|

n
, (1)

where n is the number of samples= D∗100, yi is the expected
result for the ith sample, and f(C, xi) is the calculated result
for the ith sample using the parameters in C.

Table II. CONFIGURATION OF THE OPTIMIZATION METHODS.

Parameter Value

scoring function Mean Absolute Error

maxev D ∗ 1000

maxit 1000

VTR 1e−08

xtol 1e−16

ftol 1e−16

maxRuns 100

Algorithm 1 Algorithm to perform the experiment.

For each method
For each problem

Set D = amount of CONST in the problem
Set MaxEvaluations and tolerances
For run = 1 to maxRuns

Generate the training Dataset
Optimize using a random start point sampled from U(-1e5, 1e5, D)

Save results

Because the methods may stop for another criterion, we
keep track of all function evaluations to store MAE and the
current number of function evaluations.

The algorithm employed to perform our experiments is
shown in Algorithm 1. As explained before, there is no need
to have a test dataset. One may notice that for each run a new
dataset is created, and a new starting point is used. This is
done to take stochastic effects into account.

C. Performance comparison

The comparison of the methods is done using the following
measures and visual presentation.

1) Success rate: One considers a run successful when the
result of the optimization is MAE < 1e−08. The success rate
is simply

SR =
number of successful runs

maxRuns
. (2)

where maxRuns is the total number of runs. Average and
Median were also calculated for each method considering all
benchmark functions.

2) Success performance: described in [23], the success per-
formance is the estimated mean number of function evaluations
required to achieve a successful run. This measure allows a
comparison among methods that perform a distinct number of
function evaluations. The equation is:

SP =
mean number of evaluations × maxRuns

number of successful runs
, (3)

where the mean number of evaluations is calculated only
considering the successful runs.

3) Accumulated count: The final results of each method,
for each benchmark function, are grouped into several bins of
error precision level (MAE). The frequencies are accumulated
for subsequent precision levels and then plotted (CUSUM,
cumulative sum chart). In the case evaluated in this work,
the chart presents only positive variation because frequencies
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can only be greater than or equal to zero. The primary
interpretation of this chart is related to the slope; the steeper,
the greater the variation.

4) Error distribution : Error distributions are presented in
log-scale violin plots, along with dot plots. Those plots, which
are rotated kernel density plot on each side, are preferred over
regular boxplots whenever the data present multi-modality or
very irregular shapes.

D. Results and Discussion

The results and analysis of the experiment are presented
next. In the success rates shown in Table III one can see that
the best average was achieved by the Nelder-Mead Simplex
method (NM), followed by the Levenberg-Marquardt method
(LM) and the Powell’s method (P). Simulated Annealing did
not reach the desired precision in any run for any problem.
Considering the median value, NM improved 24% over its
average, P improved 31%, and LM showed 100%. On the other
hand, Both BFGS and CG had median values lower than their
average values, meaning that more than 50% of the benchmark
problems were not solved.

Table III. SUCCESS RATES OVER 100 RUNS.

Fun SA BFGS CG LM NM P

f1 0.00 0.04 0.00 1.00 1.00 0.90
f2 0.00 0.28 0.00 1.00 0.60 1.00
f3 0.00 0.36 0.00 1.00 0.66 1.00
f4 0.00 0.96 0.39 1.00 1.00 1.00
f5 0.00 0.16 0.00 1.00 1.00 0.89
f6 0.00 0.10 0.00 1.00 1.00 0.84
f7 0.00 0.00 0.00 0.09 0.76 0.01
f8 0.00 0.00 0.00 1.00 0.89 0.13
f10 0.00 0.00 0.00 0.09 0.00 0.04
f11 0.00 0.00 0.00 0.00 0.00 0.00
f12 0.00 0.00 0.00 0.00 0.00 0.00
f13 0.00 0.01 0.00 1.00 1.00 0.97
f14 0.00 0.03 0.00 1.00 1.00 0.99
f15 0.00 0.00 0.00 0.01 1.00 0.05

Avg 0.00 0.14 0.03 0.66 0.71 0.56
Median 0.00 0.02 0.00 1.00 0.95 0.87

One may notice that some functions were solved to the
desired precision for the large majority of runs (see f1 − f6,
f8, and f13 − f15, around 70% of the problems), using either
LM, NM, or P methods. On the other hand, two functions
could not be solved at all (see f11 and f12).

There is no clear winner between NM and LM when
average and median success rates are evaluated over the 14
benchmark problems. However, individual comparisons show
that LM was substantially superior to NM for problems f2,
f3, and f10, while NM was superior for problems f7 and f15.
Therefore, one may suppose that LM and NM should be used
together to increase the chance of finding adequate constant
values.

Instead of looking at only the desired precision, one can
count the final results at distinct precision levels shown in
Figure 2. In that plot, the counts are accumulated from left
to right to achieve 100 runs. For instance, the amount of runs
where the precision was MAE < 1e−05 is shown in position
1e-05. Naturally, the faster the method reaches the top of the
plot the better.

As previously discussed, approximately 70% of the bench-
mark functions were easily solved by some of the tested opti-
mization methods. In Figure 2, one may notice some relevant
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Figure 2. Accumulated counts versus precision.

characteristics when analyzing the slopes. A small variation
in the slope means that the accumulated count changed just a
little. This is a good indication for methods LM, P and NM in
functions f4-f6 because most runs resulted in high-precision
solutions. However, the flat line in f10 shows that LM found
low error solutions in 9 runs, but the remaining solutions had
much worse precision, increasing the count after MAE > 1.0.

Another visible characteristic is the linear or quasi-linear
increasing slope, as happened with CG (see f1, f5, and f6) and
BFGS (see f3). This kind of slope may be an indication that the
method found the region containing the global optimum, but
was not able to improve the solution to the desired precision.
Modifications in the method’s configuration could help the
performance, but it is not the focus of this work.

An additional analysis of this chart is the vertical cut on
the x axis, that gives the amount of solutions (in our case can
also be seen as percentage since we performed 100 runs) that
had that particular precision where the cut was performed. For
instance, a cut on 1e−06 on function f7 gives that NM is worse
than LM in terms of final solutions (76 vs. 88). A step to the
left (1e−07) shows that NM was much more accurate than LM
(76 vs. 30). However, moving to the right (1e−05) shows that
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proposed by the symbolic regression community. The objective
of this paper was then to check whether the optimization
methods were reliable, finding constants that could result in
small prediction error, without considering the computational
complexity of the methods. The methods were executed using
the default parameters of the optimization library. The main
conclusions of this paper are:

1) There was no clear winner method in terms of success
rate, but LM was the most efficient in terms of
success performance. However, some problems were
not solved correctly, and on two other problems LM
was outperformed (in terms of success rate) by NM;

2) Because LM can fail, as should be expected since
no method is perfect, more than one constant opti-
mization trial should be done, using distinct initial
guesses. However, even though NM was better than
LM for problems f7 and f15, several LM trials would
be cheaper;

3) The efficiency of LM serves as a lesson to us sym-
bolic regression practitioners: a regression problem
should not be solved as an unknown black-box prob-
lem. This leads to the conclusion that, at least for
the examined benchmark problems, the use of any
black-box optimizer such as metaheuristics should be
avoided since they will likely be much less efficient.
If a researcher wants to test a global optimizer, such
as CMA-ES, PSO, DE, or GA on those problems, we
suggest that LM be considered as the control method.

4) Although LM is considered a local search method,
we believe that more efforts should be made to
develop gradient-like information for GP and similar
techniques. That kind of information will certainly
have a substantial positive impact on the optimization
process, reducing the randomness of the search and
leading to large speedups.

In the future we intend to investigate more difficult symbolic
regression problems that may require global optimization tech-
niques to find adequate constant values. The next step is to add
this procedure to improve Kaizen Programming performance.
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