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Abstract—The compressive strength of high-performance con-
crete (HPC) can be predicted by a nonlinear function of the
proportions of its components. However, HPC is a complex
material, and finding that nonlinear function is not trivial.
Many distinct techniques such as traditional statistical regression
methods and machine learning methods have been used to solve
this task, reaching considerably different levels of accuracy.
In this paper, we employ the recently proposed Kaizen Pro-
gramming coupled with classical Ordinary Least Squares (OLS)
regression to find high-quality nonlinear combinations of the
original features, resulting in new sets of features. Those new
features are then tested with various regression techniques to
perform prediction. Experimental results show that the features
constructed by our technique provide significantly better results
than the original ones. Moreover, when compared to similar
evolutionary approaches, Kaizen Programming builds only a
small fraction of the number of prediction models, but reaches
similar or better results.

Index Terms—Kaizen Programming, Prediction, Linear regres-
sion, High performance concrete, Compressive strength

I. INTRODUCTION

High-performance concrete (HPC) is a material that has

been widely used in various structural applications such as

bridges, high buildings, and pavement construction. HPC

replaced high-strength concrete [1] in several applications

because it presents good workability, high-strength and low

permeability, which is directly related to long-term durabil-

ity [2].

HPC’s compressive strength is considered its most important

quality, and accurate prediction models are extremely useful in

industry as they can save time and costs. Concrete compressive

strength (CCS) has been predicted by linear or non-linear

regression methods [3], but given its non-linear characteristics,

machine-learning methods - mainly artificial neural networks

- have been investigated [4], [1]. However, artificial neural

networks are known to result in a black-box, meaning that the

derived model is hard to understand. Therefore, evolutionary

algorithms have been employed to generate models easier to

interpret [5], [6], [7], [8].

Two issues regarding those evolutionary algorithms are

the large number of models that must be tested to reach

good results and the size of these solutions, which can make

them uninterpretable. Kaizen Programming (KP) was proposed

in [9] and tested on solving benchmark symbolic regression

problems functions. Here we decided to test their approach to

construct high-level features from the original CCS dataset and

compare with the results using the original features employing

several well-known regression techniques.

The contribution of this paper is two-fold. The first one

is use KP to perform regression on a real-world dataset,

showing its computational efficiency in terms of number of

models evaluated. The second one is to show its efficacy

in finding high-quality features, which are able to improve

prediction quality of many well-known regression techniques

by providing better input to them.

The rest of the paper is organized as follows. Section

II presents related work. Section III introduces the Kaizen

Programming technique developed in this work. Experimental

results are shown in Section IV. Finally, Section V has the

Summary and Conclusions.

II. RELATED WORK

In this section we first present some work related to KP and

then introduce related work from the literature that investigated

feature construction to improve prediction of HPC compres-

sive strength. Most work is based on evolutionary algorithms

such as Genetic Programming (GP, [10]). Unfortunately, the

other authors did not use exactly the same dataset, but some

important characteristics of the methods will be highlighted.

The team-based approach has been investigated in the

literature by several authors [11], [12], [13], but for such

techniques a team means a set of solutions, while in KP a

team is a set of agents that create solutions. Therefore, a team

in those work corresponds to a complete solution in KP.

In a Michigan-style Learning Classifier Systems (LCS, [14])

each individual is a rule generated by a Genetic Algorithm, and

the classifier is composed of various individuals of the popula-

tion. The fitness of each rule is calculated by a reinforcement

learning technique that estimates the reward the system would

receive if the action of that rule was performed. LCS evolves
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rules to group the samples in the dataset. On the other hand,

the partial solutions evolved by KP are taken as inputs to the

method that will actually solve the problem.

In Parisian Genetic Programming [15] a niching mechanism

is employed to maintain diversity and to define the set of

individuals selected for a global solution. The local fitness

of an individual solution is constituted by how much of the

problem it solves, while the global fitness is based on how

much the combined set of individuals solves the problem.

On the other hand, KP may select partial solutions that are

not good at solving the problem by themselves, whereas in

Parisian GP an individual that solves only a small part of the

problem will likely be discarded.

Regarding HPC compressive strength prediction, Bayka-

soğlu et al. [5] applied Gene Expression Programming (GEP)

to construct a single feature of a dataset with 104 instances and

six input variables. There is no indication of separation into

folds nor into training and test sets. GEP was configured with

a population size of 100 solutions and ran for an uncertain

number of generations between 3,000 and 20,000, evaluating

at least 300,000 prediction models. They reported a Mean

Squared Error (MSE) of 4.

Tsai and Lin [8] studied a GP in which every term is

weighted by a Genetic Algorithm. The authors used the same

dataset as [5], taking 84 examples as training set and 20 as test

set. The reported statistics for the test set were R2 = 0.957
and RMSE = 1.86, reached after testing 1,000,000 models

(5,000 generations and 200 individuals).

Chen and Wang [7] modeled the strength of HPC using

Grammatical Evolution combined with a Genetic Algorithm

(GEGA). They reported a dataset with 1140 concrete samples

with nine input variables, split into 760 examples for training

and 380 for testing. GEGA was run for 1,000 generations

with a population of 200 solutions, giving a total of 200,000

models. They reported a test RMSE of 9.949.

Castelli et. al [6] used Genetic Programming with geometric

semantic genetic operators (GS-GP). Their dataset contains

1028 instances and eight variables, with a split of 70%/30%

for training and testing respectively. GS-GP was executed for

2,000 generations with 200 individuals, resulting in approx-

imately 400,000 models. No maximum tree depth limit was

imposed during the evolution, meaning that the best solution

could be a huge tree. For the test set the authors reported a

median RMSE = 5.926 over 50 runs.

III. KAIZEN PROGRAMMING

Kaizen Programming is a recent tool based on the concepts

of the Kaizen methodology. KP is a computational implemen-

tation of a Kaizen event with Plan-Do-Check-Act (PDCA [16])

methodology to guide the continuous improvement process. As

KP is not linked to particular techniques to solve problems, it

may also be seen as a methodology or framework.

In PDCA, modifications in a business process are planned,

executed, checked, and new actions are taken based on the

results. The cycle is repeated until a mission, such as cost

reduction, is complete. As every action can be evaluated

according to its effectiveness in helping solving the issue, at

each cycle the team acquires more knowledge on the problem,

meaning more information to avoid bad actions and guide the

search towards a better solution.

Three basic modules are necessary to solve problems using

KP. For solving regression, KP performs 1) Feature Construc-

tion to expand the current feature set; 2) Feature Selection;

and 3) Model generation.

The first module contains the experts, which are the agents

(data structure + procedures) responsible for proposing the

ideas to solve the problem using, for instance, recombination

and variation of the current best solution (the standard, which

contains various partial solutions). In [9] and in this work, the

experts could use only traditional evolutionary procedures, but

non-evolutionary methods such as dynamic programming may

be employed in a different implementation of KP.

The second module executes the ideas and joins these

new partial solutions with those from the current standard

into a single set. Then it calculates the importance of each

partial solution. The importance measure must consider that

the partial solutions are not complete, independent solutions.

The importance of a partial solution is not how well it solves

the problem but, for example, the probability of increasing

the quality of the complete solution when a particular partial

solution is included into the complete solution.

Finally, the third module is responsible for calculating the

quality of the complete solution. A single complete solution

is created after selecting the most important partial solutions

from the set, based on their importance. Then, the problem is

solved and a scoring function returns the solution quality. Once

again, the procedure or technique used to solve the problem

must be able to use all partial solutions at once, but it will

automatically choose how to do that.

To improve efficiency, it is advised that the second and third

modules are linked, for example, the method used to solve

the problem is also employed to calculate the importances

of the partial solutions. This way, the experts will provide

better ideas that make sense to that method because it is

the importance measurements that are used for guiding the

search, not the quality of the complete solution. On the other

hand, if those two modules are independent, then the ideas are

important to the procedure employed in the second module,

but not to the method that solves the problem. Moreover, KP

implementations are encouraged to be hybrid, employing high-

quality and high-efficiency statistical and machine learning

methods.

KP is a collaborative problem-solving approach where the

experts have to contribute by providing better ideas at each

cycle. When compared to GP, such property produces less

bloat and requires smaller population sizes and lower number

of function evaluations because it is simpler to evolve several

smaller partial solutions than a single big one.

In order to solve a regression task, KP searches for a set

of partial solutions that consider the current "knowledge" and

improve on it. Given that the initial knowledge is the original

set of features of the dataset, a partial solution is an arbitrary
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expression using one or more original features, resulting in

a new combined feature. The final solution generated by

KP is therefore a set of new features, that are non-linear

recombinations of the original ones.
Here, the experts employ evolutionary operators of a Ge-

netic Programming algorithm to generate their ideas, and

Multiple Linear Regression via Ordinary Least Squares (OLS)

to build a complete solution (regression model), to generate the

predictions, and to calculate the importances. An expert uses

recombination, recombination and variation, or only variation.

Algorithm 1 presents a high-level version of the KP algorithm

used in this work, and the following subsections explain more

details.

Algorithm 1 High-level algorithm of KP with OLS.
• Generate st initial random ideas as CurrentStandard

• Evaluate CurrentStandard

• BestStandard ← CurrentStandard

• Loop while target is not achieved

– PLAN: Construct new Features from the ones in the CurrentStandard

through evolutionary operators. Even the worst idea from CurrentStandard

might have offspring
– DO: Execute the ideas and join them with the CurrentStandard

– CHECK:

∗ Build a model (OLS) considering CurrentStandard and the new features,
and calculate the importance of each feature (p-values)

∗ Select the st most important features
∗ Perform cross-validation to build models using the selected features

– ACT:

∗ Update CurrentStandard if the new model is better
∗ Update BestStandard if the new model is better

• Return BestStandard, BestStandardQuality

A. PLAN

At the beginning, a set of partial solutions is randomly

created and taken as the standard that will be improved in the

next cycles. Then, the team of experts propose ideas based on

the current standard to be tested.
In regression terms, regressors (independent variables) are

used to predict the response (the dependent variable). An idea

is then an arbitrary expression that must be calculated into a

new regressor. As every expert must provide at least one idea,

we linked the number of experts (size of the team, st) to the

number of ideas that will be in the standard. As an example,

for one regressor (x) and three experts one may have three

ideas I1 = −log(x); I2 = sin(
√
x); I3 = −3 + 1/x.

B. DO

Here the ideas are converted into the regressors to create the

matrix TRIALn,w, where n is the number of observations in

the sample dataset used for training, and w is the number of

proposed regressors, which must be a multiple of st as each

expert may propose more than one idea. The new regressors

are appended to the current standard STDn,st and all of them

are used at the same time to build a new model, allowing the

identification of the important ones in a single iteration. Below

is an example of the new features matrix Fn,(st+w).

F =

⎡
⎢⎢⎣

STD1,1 . . . STD1,st

.

.

. . . .
.
.
.

STDn,1 . . . STDn,st

TRIAL1,1 . . . TRIAL1,w

.

.

. . . .
.
.
.

TRIALn,1 . . . TRIALn,w

⎤
⎥⎥⎦.

C. CHECK

To identify the important partial solutions, in this work KP

uses the well-known Ordinary Least Squares (OLS) to build a

multiple linear model using F and the set of expected outputs

for the problem (y). Using the previous example with F1, F2,

and F3, the model is created in the form:

ŷi = β̂0 + β̂1Fi,1 + β̂2Fi,2 + β̂3Fi,3, (1)

where ŷi, i = 1, ..., n is the calculated output for a specific

input and β̂1, β̂2, and β̂3 are the coefficients estimated by

OLS. The coefficients are not included in the solution during

the search, only in the final solution. The final model (final

solution) includes all the estimated parameters and formulas.

For instance:

ŷi = −1.93 + 2e-3(−log(x)) + 982.13(sin(
√
x)− 57.12(−3 + 1/x). (2)

All models generated by KP are linear in the parameters

(β̂i). However, as the features are non-linear combinations of

the original regressors, models generated from F are supposed

to approximate any non-linear function. After building the

model, the traditional p-value of each regressor is used to

calculate the importance as

contribution(Fj) = 1.0−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.0, if p-value(Fj ) = NA

1.0, if p-value(Fj ) > α

1.0, if ˆ|βj| < θ

p-value(Fj), otherwise

. (3)

Significant p-values tend to zero, but one wants to maxi-

mize contribution. Here, only the significant solutions, limited

by st, are then selected to build a reduced model to be

evaluated against the current standard, avoiding exponential

growth of the number of regressors. Reducing the number of

regressors was not explored in this work, but it is a possibility.

However, it was observed that the contribution of all regressors

increase over the cycles, meaning that all of them will likely be

significant. As the final solution is a linear regression model,

the user may easily perform either feature selection or any

other applicable procedure.

The solution quality of the reduced model is given by a

goodness of fit measure by evaluating prediction error. In

this work, the scoring function is the Root Mean Squared

Error (RMSE). A model is built on the training set and

RMSE is calculated on the validation set, which contains only

instances not present in the training set.

D. Act

Action is taken to update the standard if it has been

improved. Therefore, in this work it is simply the selection step

to update the solution in a hill-climbing approach, meaning

that worse standards are not accepted.

IV. EXPERIMENTAL RESULTS

This section presents experimental results of Kaizen Pro-

gramming coupled with Ordinary Least Squares to perform

feature construction for regression.
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A. The dataset

Here we investigate the technique on the HPC data available

from the UCI machine learning repository, first presented by

Yeh [1]. A description of the dataset is shown in Table I. The

dataset contains eight numerical attributes and 1030 examples.

There is no indication of missing values.

Table I
CONCRETE STRENGTH DATASET DESCRIPTION.

Attribute Unit Minimum Maximum Average

Cement kg/m3 102 540 276.5
Blast-furnace slag kg/m3 0 359.4 74.27

Fly ash kg/m3 0 260 62.81
Water kg/m3 121.8 247 182.98

Super-plasticizer kg/m3 0 32.2 6.42
Coarse aggregate kg/m3 708 1145 964.83
Fine aggregate kg/m3 594 992.6 770.49
Age of testing Day 1 365 44.06

Concrete compressive strength Mpa 2.3 82.6 35.84

B. Implementation and configuration of the algorithms

KP was implemented in Python 2.7.6 using DEAP (Dis-

tributed Evolutionary Algorithms in Python, [17]), an evo-

lutionary computation framework for rapid prototyping and

testing of ideas. DEAP provides the evolutionary operators

and data structure required by KP. The statistical parts of KP

(the OLS method, p-values, among others) used the lm (linear

model) function in R programming language. Rpy2 Python

package was used to connect R and Python. All issues related

to the model building (multicollinearity, singularity, overflow,

etc) are simply caught as exceptions and treated as poor quality

models/features. KP configuration is shown in Table II.

The experiments were run on a system using Arch Linux

kernel 3.18.6-1 as operating system, an Intel i7-920 CPU,

and 6Gb DDR3 RAM. A comparison with other techniques

was performed on Weka machine learning tool [18] 3.6.11

running on Java OpenJDK Runtime Environment (IcedTea

2.4.7) (ArchLinux build 7.u55_2.4.7-1-x86_64).

C. Evaluation

A descriptive analysis of the results is presented with the

best, median, worst, mean, and standard-deviation using the

following measures: R2, RMSE, MAE, and computation time.

The measurements are performed on 30 independent trials (10-

fold cross-validation). For R2, the highest values are the best,

while for other measures the lowest values are the best.

We also investigate whether the features constructed by KP

could be useful to other regression techniques. To do that, re-

gression methods from Weka were executed with their default

configuration to generate models for comparison (except for

IBk that was configured with k=3 instead of k=1). Also, the

Linear Regression in Weka is not the traditional one, thus the

results are different from those obtained by KP.

To perform a hypothesis test and verify whether the new fea-

tures improve prediction quality, we selected the best dataset

out of 30 (lowest RMSE) generated by each KP configuration

(each distinct number of features). Each method from Weka

was tested in 10 independent runs of 10-fold cross-validation

Table II
RUN AND EVOLUTIONARY PARAMETERS.

Parameter Value

Ideas (# of new features) 1, 2, 3, 5, 10
Initial ideas generator Ramped half-and-half

Iterations 100
Recombination probability (RP ) U(0, 1)

Recombination operator One-point crossover
Variation probability 1− RP

Variation operator 10% Uniform Sub-tree Mutation
50% Random Node Replacement

10% Random Node Insertion
15% Random Leaf Shrink

15% ERC Mutation (all constants)
Initial tree depth 2

Maximum tree depth 5
Non-terminals (functions) +, ×, −, /(safe), sin,

cos, exp, log(safe),
1.0

x
, −x, |x|, √x(protected),
max(x, y), min(x, y),
less(x, y), greater(x, y)

Terminals x, Constants (ERC) are random
values from N(μ = 0, σ = 5).

Solution quality average RMSE on 10-fold
cross-validation

Independent trials 30
α (for KP Check) 0.05
θ (for KP Check) Skipped, not used

with the original dataset, and then with only those best

feature sets. A paired t-test with correction (Weka’s default)

was subsequently executed to detect statistically significant

differences among the means, taking the original dataset as

control. It is important to notice that the new features were not

used in addition to the original features in the same dataset.

D. Results and Discussion

Table III presents the results of running KP to evolve better

features for the concrete dataset investigated in this paper.

As one may notice, prediction quality increases with the

number of features. As expected, the computation time also

increases considerably. This is the biggest drawback of our

current implementation. However, it is important to remember

that Python is not a high-performance programming language

and that this is a proof-of-concept implementation only, not

production ready.

Considering the linear regression model, R2 is supposed

to increase with the number of features as overfitting gets

stronger. However, the results are averages from the test sets on

10-fold cross-validation. For the three remaining measures, the

lower the value the better. As occurred to R2, more complex

models resulted in lower prediction error (RMSE and MAE).

Therefore, it is noticeable that the model’s generalization

ability was directly proportional to its complexity, and no over-

fitting was detected.

Due to page limit restrictions, below we present only the

best three-idea set, so one may reproduce the dataset and

run experiments. We omitted the estimated parameters so the

other regression techniques may search for them. safeLog(x)
is { if (x == 0) return 0; else return log(abs(x)); } and

safeDiv(a, b) is { if (b == 0) return 0; else return a/b; }.

ARG from 0 to 7 are the original features.
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Table III
RESULTS OF KP ON 10-FOLD CROSS-VALIDATION AVERAGED ON 30

INDEPENDENT RUNS (DESCRIPTIVE ANALYSIS). BEST VALUES ARE IN

BOLD FACE.

# of new features Statistic R2 RMSE MAE Time (s)

Best 0.5176 11.5977 9.4637 7.7576
Median 0.3064 13.9059 11.1409 8.7677

1 Worst 0.0520 16.2581 13.1369 18.6947
Mean 0.3126 13.8126 11.1309 9.4999

Std.-dev. 0.0928 0.9413 0.8449 2.3255
Best 0.7013 9.1261 7.1530 11.9507

Median 0.5554 11.1334 8.8511 13.8315
2 Worst 0.1551 15.3484 12.0688 26.3916

Mean 0.5267 11.3942 9.1127 14.5601
Std.-dev. 0.1264 1.4843 1.2276 3.0127

Best 0.7858 7.7275 6.0728 15.6247
Median 0.6777 9.4790 7.4367 17.2392

3 Worst 0.4802 12.0386 9.6203 42.9885
Mean 0.6713 9.5193 7.4948 18.2586

Std.-dev. 0.0723 1.0325 0.8457 4.8962
Best 0.8383 6.7151 5.2468 23.6944

Median 0.8068 7.3391 5.6371 28.8253
5 Worst 0.7585 8.2053 6.6106 34.9846

Mean 0.8074 7.3189 5.7383 28.8273
Std.-dev. 0.0203 0.3804 0.3550 3.0339

Best 0.8582 6.2870 4.9153 48.0683
Median 0.8479 6.5129 5.1299 54.9636

10 Worst 0.8252 6.9811 5.4621 77.3004
Mean 0.8464 6.5440 5.1278 57.4262

Std.-dev. 0.0064 0.1349 0.1185 7.9236

I1: safeLog((min(ARG1,ARG6)))
I2: safeLog((safeDiv(ARG3,ARG0)))
I3: safeLog((safeDiv(ARG3,

(safeDiv((min(ARG3, ARG7)), ARG0)))))

The next tables compare the performance of various Weka

regression techniques using the best feature set evolved for

each experiment. The results shown in Table IV correspond

to the Correlation Coefficient, where 1.0 means a perfect

fit. The techniques are organized into Traditional Statistical

Methods (from Linear Regression to Gaussian Processes),

Lazy Learning (IBk), Machine Learning (from Support Vector

Regression to RBF neural network), Trees (the remaining).

For the original dataset (baseline), one may observe that

the first group did present fitting quality below 0.9, what

may be considered poor fitting, but that actually depends on

the dataset being investigated. On the other hand, MLP and

the two regression tree methods reached R2 >= 0.9. The

RBF network showed a very poor quality fit on the default

configuration. We detected that it considers only two clusters

and that increasing such value improves quality. However, one

wants to investigate whether a better set of features may be

useful even with the default configuration.

The original dataset has eight features. With a single feature

generated by KP the significance test shows improvement

for the Isotonic Regression and RBF network, but the other

methods had a significant drop in prediction quality. For the

latter, the improvement was large as it builds two clusters using

a single feature. The correlation coefficient tends to increase

with the number of features. Nonetheless, the regression tree

methods did not benefit from the new features; in fact, their

performance was equal or worse. A possible explanation is

that the importance of the new features was not calculated by

a regression tree, thus they are not necessarily important to

such methods.

Most methods reached higher R2 with the new features.

For some of them, the more features the higher R2, whereas

for others there was oscillation (see Isotonic Regression),

and for some others (tree methods) few features were simply

inadequate.

Results of RMSE in Table V are directly related to pre-

diction error where smaller numbers are better, and the con-

clusions are similar to those drawn for R2. Large reductions

in prediction error may be obtained for methods of different

categories (see Linear Regression, Gaussian Processes, IBk,

SMOreg) while equal or worse performance for others (MLP

and trees). Finally, one may notice that the Linear Regression

method with five features generated by KP shows lower predic-

tion error than using the original dataset with more advanced

methods such as Gaussian Processes, SVM (SMOreg), MLP,

RBF, or REPTree.

V. SUMMARY AND CONCLUSIONS

Kaizen Programming (KP) is a hybrid algorithm that uses

a collaborative problem solving approach in which partial

solutions are put together to result in a complete solution. It

employs concepts of agent-based algorithms, evolutionary al-

gorithms, statistics, and machine learning. The partial solutions

are created by the experts (agents), that generate ideas based

on knowledge obtained in the iterative improvement process.

As the ideas have their contribution to the problem measured

when a complete solution is evaluated, one may have more

confidence in which ideas are useful for the next improvement

cycle.

KP was coupled with Ordinary Least Squares to generate

better features from the original ones in the concrete compres-

sive strength dataset, aiming to improve the prediction perfor-

mance of distinct regression techniques. It was shown that

most regression techniques investigated here may reach lower

prediction error when a better feature set is employed, and that

simpler techniques may even outperform more complex ones.

Another important aspect is that those complex techniques,

such as neural networks, result in black-box models, whereas

the simpler techniques may be seen as grey-box models

because they can be easier to interpret. On the other hand,

it was observed that regression tree methods did not make

proper use of the new features as they operate in a different

way.

It was not possible to directly compare with related work

from the literature as the dataset is not the exactly same.

However, some of them are almost the same, with a small

number of different instances. Results using KP are similar to

those of other methods from the literature, but requiring just

a fraction of the number of models, i.e., 100 by KP versus

hundreds of thousands by the other methods.

As future work we intend to improve the computational

performance of our code, but trying to preserve both simplicity

and flexibility. Also, KP will be tested on other datasets

employed in the literature.
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Table IV
COMPARISON OF R2 (MEAN ± STANDARD-DEVIATION) WITH METHODS IN WEKA.

Method / Dataset Original 1 new feature 2 new features 3 new features 5 new features 10 new features

Linear Regression 0.78 ± 0.04 0.69 ± 0.05 • 0.84 ± 0.02 ◦ 0.89 ± 0.02 ◦ 0.91 ± 0.02 ◦ 0.92 ± 0.01 ◦
Least Median Squares 0.67 ± 0.08 0.69 ± 0.05 0.84 ± 0.02 ◦ 0.89 ± 0.02 ◦ 0.91 ± 0.02 ◦ 0.91 ± 0.02 ◦

Isotonic Regression 0.59 ± 0.05 0.71 ± 0.05 ◦ 0.69 ± 0.04 ◦ 0.58 ± 0.07 0.59 ± 0.05 0.65 ± 0.05 ◦
Pace Regression 0.78 ± 0.04 0.69 ± 0.05 • 0.84 ± 0.02 ◦ 0.89 ± 0.02 ◦ 0.91 ± 0.02 ◦ 0.92 ± 0.01 ◦

Gaussian Processes 0.88 ± 0.02 0.70 ± 0.05 • 0.84 ± 0.02 • 0.89 ± 0.02 0.93 ± 0.01 ◦ 0.93 ± 0.01 ◦
IBk (k=3) 0.85 ± 0.03 0.73 ± 0.05 • 0.86 ± 0.03 0.90 ± 0.02 ◦ 0.93 ± 0.02 ◦ 0.93 ± 0.01 ◦

SMOreg 0.77 ± 0.04 0.69 ± 0.05 • 0.84 ± 0.02 ◦ 0.89 ± 0.02 ◦ 0.91 ± 0.02 ◦ 0.92 ± 0.02 ◦
MultilayerPerceptron 0.91 ± 0.02 0.70 ± 0.05 • 0.84 ± 0.03 • 0.89 ± 0.02 • 0.92 ± 0.02 ◦ 0.93 ± 0.01 ◦

RBFNetwork 0.10 ± 0.10 0.64 ± 0.05 ◦ 0.49 ± 0.06 ◦ 0.21 ± 0.09 ◦ 0.28 ± 0.07 ◦ 0.05 ± 0.11

REPTree 0.90 ± 0.02 0.73 ± 0.05 • 0.84 ± 0.03 • 0.90 ± 0.02 0.90 ± 0.02 0.89 ± 0.02

M5P 0.92 ± 0.03 0.71 ± 0.05 • 0.85 ± 0.02 • 0.90 ± 0.02 • 0.93 ± 0.02 0.92 ± 0.02

◦ statistically significant improvement, • statistically significant degradation

Table V
COMPARISON OF RMSE (MEAN ± STANDARD-DEVIATION) WITH METHODS IN WEKA.

Method / Dataset Original 1 new feature 2 new features 3 new features 5 new features 10 new features

Linear Regression 10.46 ± 0.73 12.07 ± 0.78 • 9.13 ± 0.60 ◦ 7.74 ± 0.57 ◦ 6.74 ± 0.56 ◦ 6.67 ± 0.54 ◦
Least Median Squares 16.47 ± 4.05 12.09 ± 0.81 ◦ 9.17 ± 0.63 ◦ 7.77 ± 0.58 ◦ 6.81 ± 0.58 ◦ 7.01 ± 0.61 ◦

Isotonic Regression 13.50 ± 0.89 11.68 ± 0.76 ◦ 12.12 ± 0.85 ◦ 13.62 ± 0.72 13.50 ± 0.89 12.74 ± 0.91 ◦
Pace Regression 10.47 ± 0.73 12.07 ± 0.78 • 9.13 ± 0.60 ◦ 7.74 ± 0.57 ◦ 6.74 ± 0.56 ◦ 6.36 ± 0.48 ◦

Gaussian Processes 7.88 ± 0.62 11.93 ± 0.77 • 9.00 ± 0.59 • 7.53 ± 0.54 ◦ 6.31 ± 0.54 ◦ 5.98 ± 0.54 ◦
IBk (k=3) 8.91 ± 0.78 11.39 ± 0.92 • 8.68 ± 0.78 7.21 ± 0.66 ◦ 6.06 ± 0.60 ◦ 6.03 ± 0.60 ◦

SMOreg 10.90 ± 1.08 12.13 ± 0.82 • 9.18 ± 0.64 ◦ 7.75 ± 0.58 ◦ 6.77 ± 0.57 ◦ 6.73 ± 0.57 ◦
MultilayerPerceptron 7.91 ± 1.54 13.72 ± 2.40 • 10.24 ± 1.48 • 8.78 ± 1.28 7.33 ± 1.24 6.76 ± 1.09 ◦

RBFNetwork 16.59 ± 0.98 12.86 ± 0.79 ◦ 14.51 ± 0.92 ◦ 16.34 ± 0.97 16.05 ± 0.90 ◦ 16.62 ± 1.00

REPTree 7.27 ± 0.78 11.43 ± 0.83 • 8.97 ± 0.75 • 7.31 ± 0.69 7.35 ± 0.71 7.45 ± 0.71

M5P 6.35 ± 0.96 11.77 ± 0.75 • 8.75 ± 0.61 • 7.30 ± 0.62 • 6.29 ± 0.62 6.54 ± 0.61

◦ statistically significant improvement, • statistically significant degradation
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