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AN ENERGY FUNCTION FOR SPECIALIZATION 

W. BANZHAF 1 and H. HAKEN 
[nstitut J~r Theoretische Physik und Synergetik, Universitiit Stuttgart, Pfaffenwaldring 57/IV, 
D-7000 Stuttgart 80, Fed. Rep. Germany 

We present a model of unsupervised learning based on the minimization of an energy function. The minima of the energy 
function are related to the degree of specialization of a certain class of artificial neuronal cells- grandmother cel ls- in  the 
neural network model proposed by Haken. The self-organizing properties of the system are demonstrated by feeding input 
into a network of such cells with originally randomized synaptic connections. The relation of this learning algorithm to other 
learning schemes, like e.g. Kohonen's feature maps, is outlined. 

I. Introduction 

In recent years dynamical systems have been 
used with considerable success for purposes of 
information processing. Especially in the field of 
pattern recognition they have proven to be useful. 
Processes modeled by differential or difference 
equations underlie all natural phenomena and are 
therefore candidates for successful implementa- 
tions of natural information processing capabili- 
ties into computers of future generations. 

In order to constrain the arbitrariness of dy- 
namical processes, researchers are looking for dy- 
namical laws which stand out in some sense, for 
instance those which are related to certain ex- 
tremal or optimization principles. Thus, the 
derivation of a certain information processing dy- 
namics from the maximization or (in physics) min- 
imization of a particular scalar function increases 
its plausibility and gives a serious motivation to 
study this law in more detail. This may be one of 
the reasons for the recent success of the Hopfield 
model for associative memory [1]. 

Whereas the search for optimization principles 
has been successful in the case of a dissipative 
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dynamics to recognize or classify patterns (see e.g. 
Haken [2]), the question of self-organized pattern 
learning has resisted such an approach for a long 
time. Again, a process observed in na tu re -  adap- 
tation of living organisms to their envi ronment-  
provided a starting point to introduce different 
dynamical laws. Moreover, in the restricted case 
of "supervised learning" a particular scalar func- 
tion, the error function, was a natural choice. In 
the more interesting case of unsupervised or self- 
organized learning, however, the formulation of an 
optimization principle is not so obvious. In the 
recent work of Linsker [3] we see one of the 
promising general approaches to this problem. 

In the following, we shall propose another opti- 
mization principle for unsupervised learning, 
which may turn out to be equivalent if formulated 
sufficiently generally. For the moment, we shall 
restrict ourselves to a particular network architec- 
ture and study the consequences in that context in 
more detail. More specifically, we shall report here 
on recent progress made with the neural network 
architecture proposed in 1987 by Haken [2, 4]. In 
particular we use a local Hebb-like learning rule 
derived from what may be called a principle of 
cell specialization. This will be formulated in de- 
tail below. 

To state the principle rather generally, a cell in 
the network competes with all the other cells to 
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represent the patterns offered. The competition 
eventually settles when minimal overlap between 
patterns represented by different cells has been 
reached which accounts for a maximal specializa- 
tion of the cells in the network. Thus the assump- 
tion is that a sort of "effectiveness" criterion is 
imposed on the cells due to the fact that it is 
costly to establish and supply any cell in a net- 
work. Though such a principle may not have a real 
justification in artificial systems, in natural sys- 
tems at least it is reasonable. From this principle a 
dynamical law of connection modification is de- 
rived which will be demonstrated in the para- 
graphs to follow. 

We only claim here that a principle of cell 
specialization can be applied to many neural net- 
work models and may lead to reasonable learning 
dynamics. 

communicate with the environment: 

qi ~ [ - 1 ,  + l l .  

The processing units (layer II) receive their inputs 
from these units via synaptic connections Ak~, the 
sum of which prepares the initial conditions of 
their internal activity dynamics dk(t), k =  1, 
. . . , g :  

N 

dk(O ) = ~_, Akiqi. 
i=l 

The internal units are connected so as to imple- 
ment a winner-take-all network by coupling every 
unit to a global field D, 

K 
D(t )  = ~_, d2(t) ,  

k = l  

2. The network architecture and a competitive dynamics described by 

A few words are in order to give an overview of 
the system. The network consists of at least two 
layers of units (cf. fig. 1), the input layer (I) and 
the processing layer (II). Optional is a third layer 
(for output) or even more intermediate processing 
layers. 

The input units, whose activity values qi, i = 
1 , . . . ,  N vary continuously between - 1 and + 1, 

i l  I1$$ I l i  
L a y e ~  I 

L a y e r  Ii 

a y e r  III 

dk(t  ) = dk(t)[1 - 2 D ( t )  + d~( t ) ] .  (1) 

After relaxing the dynamics, one cell (let us call it 
k') wins the competition (d k, = 1). The dynamics 
is constructed such that this will be the cell that 
had the maximal absolute activity value from the 
beginning. 

This particular dynamics can be found in other 
natural systems, e.g. lasers [5], and it is therefore a 
good candidate for an implementation of winner- 
take-all networks. Moreover, the dynamics is 
derivable from a scalar (energy) function V(dk) of 
the cell activities: 

1 4 
V ( d , )  = - + 2 - ( 2 )  

k 

by applying the gradient 

dk(t  ) = -- VdV. 

Fig. 1. Design of the overall system. Information flow is com- 
ing in through input cells qi in layer I and is processed by layer 
II cells k with activity d~. Output layer III is optional for 
generating patterns to implement associative recall. 

As was shown elsewhere [2, 4, 6], this network 
has pattern recognition abilities if the synaptic 
couplings are suitably determined. The network 
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and its dynamics were tested in detail in ref. [7] on 
a face recognition problem. A short review, how- 
ever, will be given here to set the stage for the 
following discussion. For details, the interested 
reader may refer to refs. [2, 4, 6]. 

Suppose we have normalized prototype patterns 
v t, 1 = 1 . . . . .  L, that are to be recognized by the 
network. Then we use K = L grandmother cells 
and either store pattern v t in the respective synap- 
tic filter A k of the corresponding cell k (in the 
special case of orthogonal patterns) or we store 
the adjoint pattern vt + in A k (in the general case 
of non-orthogonal patterns). The adjoint vectors 
are defined as 

v~ + = Y'. Ct, rVr (3) 
/ '  

with Ct, r being the inverse correlation matrix be- 
tween patterns: 

- 1  

CI, I" = E UliOl'i 
i = 1  

(4) 

3. A specialization parameter 

The purpose of this section is to identify a 
parameter which allows us to measure the degree 
of specialization of a certain cell k. Learning will 
then be derived from a maximization principle for 
such parameters. 

Given M patterns to be learned by K cells with 
activities dk, k = 1 . . . . .  K,  every cell may try to 
specialize on at least one of the patterns. The term 
specialization m e a n s - i n  the context of this net- 
work - the ability of a cell k to win a competition 
against the other K - 1  cells. On the basis of a 
pattern q this is provided for cell k by the follow- 
ing two criteria: 

(a) an advantageous initial preparation dk(0 ) = 
A k ' q ;  

(b) a good position during the competition dy- 
namics, as measured by 

m k = ( d k ( t ) )  ~ (5) 

over transient times ~-. Consequently, we claim 
that 

The synaptic connections now act as filters de- 
composing arbitrary input patterns q which gen- 
erally consist of superpositions of the known 
patterns v t plus some noise n 

q = ~ c t t v  t + n 

They achieve this by translating the strength of 
any known pattern at into activities dk(O ) of the 
corresponding grandmother cells k. Note that the 
noise n lies in a space orthogonal to all known 
patterns v t. The highest activity dk,, i.e. that of the 
cell k '  responsible for the pattern with largest 
contribution at, is then amplified according to the 
network dynamics of eq. (1). If the network is 
equipped with the optional output layer connected 
to grandmother cells by another filter Bki the 
patterns vt can be stored in these filters. In this 
way, the network allows for associative recall ob- 
served at the output layer. 

sklq = mkdk(O)Iq (6) 

measures the specialization of cell k on pattern q. 
A general measure for the specialization state of 

a cell k (independent of the pattern q) is given by 
the ensemble average 

whereas 

(1 / 
k / q  

averages the specialization over all the K cells. 
Measuring the specialization by this method is 

only one way of doing it in the context of this 
network. Alternative measures can be found and 
we do not state that there exists a unique method. 
We want to emphasize, however, that a learning 
rule based on a specialization measure is very 
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effective and is probably realized even in natural 
systems. 

4. An energy functional and the learning dynamics 

We now consider how to maximize the special- 
ization of cells under the constraint that the length 
of vectors A k should be equal to 1 or at least tend 
to 1. This constraint is necessary in order to 
implement a competitive learning rule which gives 
any cell equal opportunities. The maximization 
may be achieved by defining a specialization func- 
tional and deriving the learning dynamics as the 
gradient descent from it. We propose the follow- 
ing scalar functional: 

k 

= _ ½ Em~d~(O)(1 - ½11A,II2), 
k 

(7) 

where l 2 was introduced for the dynamics to tend 
to normalized A k vectors. 

Note  that the functional depends on q and thus 
results in different "landscapes" E for different q. 
The idea behind this is that a changing environ- 
ment is able to modify the learning dynamics, at 
least its detailed trajectory. The system becomes 
history-dependent a n d -  at the same t ime -  adap- 
tive. 

The learning dynamics derives from this special- 
ization functional as the gradient 

Ak, O E ( A , q )  

OAki 
- mksk[l~q i -- ½dk(O)Ak/]. 

(8) 

Under  a given input q, the dynamics (8) for the 
synaptic connections Ak~ tends to minimize E. 
One can easily verify that (8) tends to filters of 
equal length 1. Similar learning rules are studied 
in many models under the heading Hebbian rules, 
since the positive term proportional to q~ only 
needs local information about the cell's state as 
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Fig. 2. The two-dimensional arrangement of cells in a sensory 
surface q,/ and a processing layer d k. 

well as the forgetting (or stabilizing) term propor- 
tional to Aki. The global factor inks k modulates 
the learning velocity of individual cells according 
to their specialization state. 

As mentioned before, changing q will result in 
another dynamics Ak~ due to changes in the en- 
ergy landscape. Different cells will specialize on 
different patterns and the average energy (E)q  

stabilizes only if a suitable adaption of cells to the 
probability density of inputs P(q)  is achieved. 
This feature is particularly useful if more patterns 
than cells are present, a case we shall study in our 
simulations below. In that case, the system orga- 
nizes itself to classify the presented patterns into 
(best-match) classes. 

5. Simulations 

For simulation purposes we have chosen a typi- 
cal classification situation (see fig. 2): An arrange- 
ment of two-dimensional sensory cells (input units) 
with N = 100 sensors qij are connected to the 
processing layer of K = 20,16, 8, 4, 2 grandmother 
cells k by initially randomized connections. There 
was no local constraint and the filters of every cell 
k covered at the beginning the entire input space. 
Fig. 3a displays the initial state of the filters for 
K = 20 grandmother cells. 

A pattern is provided by a high stimulation qij 
at site i, j ,  together with lower stimulations in its 
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Fig. 3. Deve lopment  of synaptlc connections Ak, of grandmother  cells k = 1 . . . . .  20. Synaptic strength propor t ional  to the radius of 
black circles. (a) Before learning: All cells cover the whole surface. (b) After r = 1000 training steps. (c) After r = 2000 training steps. 
(d) After  r = 4000 training steps. Cell 6 was not  able to adapt  to any pattern. 
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Fig. 4. Result ing connections in different runs with (a) K = 16, 
(b) K =  8, (c) K =  4, (d) K =  2 cells. The sensory surface is 
divided in nearly equal portions. 

local neighborhood q~,j,, i '  = i + l, j '  = j  + 1, l = 

1, 2 . . . . .  In other words, the patterns are chosen to 
be slightly correlated so as to allow a global order- 
ing into neighborhoods. Here, the number of pat- 
terns, M, is 100 and we have many more patterns 
than ceils for any of the cases studied. 

Figs. 3b-3d  show the synaptic filters (case K = 
20) after r =  1000,2000,4000 training stimula- 
tions, respectively. The cells generally develop lo- 
cal sensitivities and respond after training to only 
a few patterns. One cell remained in its original 
state, a result which is not surprising since the 
gradient descent does not guarantee convergence 
to the global optimum. Quite evidently, after 
training the network, the cells are able to classify 
input patterns into different classes, the (maximal) 
number of which is given a priori by the number 
of grandmother cells participating in the competi- 
tion. 

Figs. 4a -4d  show the results of runs with smaller 
numbers of grandmother cells. Clearly, the cells 
have to cover more and more sensory surface 
each. 

A result of these simulations may be seen in the 
following. 

(i) The system is able to classify patterns and 
thus to learn from noisy input data. Although no 
pattern of the kind seen in figs. 4a-4d  was pre- 
sented to the system, it nevertheless was able to 
develop a reasonable solution. The system reaches 
a stable state characterized by small fluctuations 
in the redistributed synaptic strength. 

(ii) There is no built-in guarantee that the learn- 
ing process will end up in the optimal solution, i.e. 
maximal specialization of all cells. Rather, the 
general result will be a nearly optimal solution. 

(iii) A diffusion-like interaction in sensory cells 
is sufficient to generate local receptive fields, if a 
suitable competition between cells is implemented. 
The diffusion is able to correlate patterns which 
enables the cells in this case to generate neighbor- 
hood relations between patterns. The competition 
provides for learning of superpositions of pre- 
sented patterns. After relaxation of the system, 
learning and competition may be turned off. 
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These sorts of patterns are by no means re- 
stricted to the simple point-like stimulations 
trained here. Those were merely chosen for pur- 
poses of demonstration. In another series of simu- 
lations we have shown what happens in cases 
M = K a n d  M < K  [8]. 

6. Discussion 

This learning scheme has many similarities to 
Kohonen's  learning algorithm and what he calls 
the formation of feature maps [9, 10]. Both learn- 
ing algorithms could be termed non-equilibrium 
learning since the competitive systems are unre- 
laxed during learning. The adaptive abilities of 
both systems are comparable. We have hints on 
bound effects and on a shift in representation 
space towards regions with smaller probability 
density in our system, too. 

The following differences from Kohonen's 
method are evident: 

(i) The lateral inhibition between cells is uni- 
form in our network. Neither time dependence of 
inhibition strength nor topological dependence of 
signals based on some notion of neighborhood in 
the network is introduced. The sharpening of sig- 
nals during learning is due to an increase in spe- 
cialization of cells; the topological mapping of 
signals is completely missing. Turning off competi- 
tion results in a scattered map of input patterns, 
which is certainly useful for some applications. 

(ii) The learning process automatically acceler- 
ates when specialization of cells proceeds. As a 
secondary effect of specialization and the forget- 
ting term in eq. (8), the amount of redistributed 
synaptic strength decreases during training until it 
reaches minimal values if the optimal adaption of 
cells to the stationary probability distribution of 
inputs is reached. 

(iii) The parameters which control the overall 
behavior are the three time constants: competitive 
activity dynamics, competitive learning dynamics 
and the training frequency. 

In general, a multilayer system of cells is rea- 
sonable, as in the case of Linsker's network [11]. 
Accordingly, we should differentiate between a 
learning and a maturation state of the network, 
the latter without time-dependent connections and 
activity values in a layer. In this way, one layer 
after the other could process information and 
adapt to relevant signals in a self-organized man- 
ner. Our proposed learning dynamics leads to 
arbitrary synaptic strengths (with the constraint of 
being normalized for a cell), in contrast to Linker's 
connections, which saturate in extremal states. 
Carpenter and Grossberg [12] and Rumelhart's 
[13] competitive learning systems differ in the way 
they stabilize the network after learning. 

Since the plasticity of the proposed algorithm is 
still present after the system has learned to classify 
input, and since it can readapt anew if the proba- 
bility distribution of the input changes, experi- 
mental evidence [14, 15] concerning adaptive 
properties of living beings is at least not contra- 
dictory to the learning scheme presented here. 

Acknowledgement 

We wish to thank the "Stiftung Volkswagen- 
werk" for financial support. 

References 

[1] J.J. Hopfield, Proc. Natl. Acad. Sci. US 79 (1982) 2554. 
[2] H. Haken, in: Computational Systems, Natural and Arti- 

ficial, Proceedings of the Elmau International Symposion 
on Synergetics 1987, ed. H. Haken (Springer, Berlin, 1987). 

[3] R. Linsker, IEEE Computer (March 1988) 105; presented 
at the Ninth Annual CNLS Conference on Emergent 
Computation, Los Alamos, 22-26 May 1989. 

[4] H. Haken, Z. Phys. B 70 (1988) 121. 
[5] H. Haken, Synergetics, An Introduction, 3rd Ed. (Springer, 

Berlin, 1983). 
[6] H. Haken, in: Neural and Synergetic Computers, Proceed- 

ings of the Elmau International Symposion on Synergetics 
1988, ed. H. Haken (Springer, Berlin, 1988), 

[7] A. Fuchs and H. Haken, Biol. Cybern. 60 (1988) 17, 107. 
[8] W. Banzhaf and H. Haken, Neural Networks, in press. 



264 W, Banzhaf and H. Haken / Energy function for specialization 

[9] T. Kohonen, Biol. Cybern. 43 (1982) 59. 
[10] T. Kohonen, Selforganization and Associative Memory, 

2nd. Ed. (Springer, Berlin, 1987). 
[11] R. Linsker, Proc. Natl. Acad. Sci. US 83 (1986) 7508, 

8390, 8779. 
[12] G.A. Carpenter and S. Grossberg, Appl. Opt. 26 (1987) 

4919. 
[13] D.E. Rumelhart and D. Zipser, in: Parallel Distributed 

Processing, Vol. 1, eds. D.E. Rumelhart and J.L. 
McClelland (MIT Press, Cambridge, MA, 1986). 

[14] M. Merzenich, presented at the Ninth Annual CNLS 
Conference on Emergent Computation, Los Alamos, 
22-26 May 1989. 

[15] W. Levy, Presented at the Ninth Annual CNLS Confer- 
ence on Emergent Computation, Los Alamos, 22-26 May 
1989. 


