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Abstract—This paper examines various methods of computing
uncertainty and diversity for active learning in genetic program-
ming. We found that the model population in genetic program-
ming can be exploited to select informative training data points by
using a model ensemble combined with an uncertainty metric. We
explored several uncertainty metrics and found that differential
entropy performed the best. We also compared two data diversity
metrics and found that correlation as a diversity metric performs
better than minimum Euclidean distance, although there are
some drawbacks that prevent correlation from being used on all
problems. Finally, we combined uncertainty and diversity using
a Pareto optimization approach to allow both to be considered in
a balanced way to guide the selection of informative and unique
data points for training.

Index Terms—Active learning, genetic programming, symbolic
regression

I. INTRODUCTION

ACTIVE learning (AL) is a method in machine learning
to strategically select training data that will maximally

inform the model development process [1]. This is often done
in an iterative process, alternating between data collection and
model development phases. Active learning can be valuable
in scenarios where either data collection or data labelling is
time-consuming or expensive, thus we want to minimize the
total required data for model training.

Various forms of active learning exist, with three types
dominating: pool-based AL, stream-based AL, and member-
ship query synthesis [2]. Figure 1 shows a simple visual
representation to compare the three methods of active learning.
Pool-based and stream-based methods both have a set of
training samples to choose from, with the goal of selecting
and training on only a small subset of maximally informative
cases. The key difference between pool-based and stream-
based methods is that pool-based methods search over a set
of data points for the ones that are most informative by rank.
Steam-based methods differ by checking each potential train-
ing case in order one-by-one, assigning a binary decision to
each case, and only admit to the training set the ones marked as
”informative”. Membership query synthesis approaches do not
have a set of already existing training samples to choose from,
instead, they search a training space to find and synthesize new
training data points that are expected to maximally inform
the machine learning model. Once synthesized, a new data
point is then labelled by the researcher via experimentation
or expert knowledge. In this work, we focus on membership-
query synthesis to guide the collection of data where it doesn’t
yet exist in the training set.

Active learning is a versatile method with uses ranging
from effective sub-sampling of data from a huge set for

Fig. 1. The three main types of active learning: Stream-based, pool-based,
and membership query synthesis are visually demonstrated. Stream-based
approaches, shown on the left, search through the samples one at a time and
either mark them for labelling or skip them. Green indicates a sample is found
to be informative and is marked for labelling, red indicates a sample is skipped.
Pool-based approaches, shown in the middle, assigns an information score to
each potential training sample and the most informative sample is chosen to
be labelled and added to the training set. Membership query synthesis, shown
on the right, searches a space of potential points not yet collected while
maximizing an information measure and selects a point to be synthesized and
labelled that maximizes the information score. The selected point is indicated
by the green circle, while the y-axis of the curve represents the informativeness
measure and the x-axis is representative of the sample space.

training, sampling of data with specific goals such as to
maximize diversity, to guiding experimentation by suggesting
experiments that will be most informative to the researcher
in the model building process. It can be used to focus on
interesting samples from large sets or to expand small data
sets while minimizing data collection efforts. For example,
AL has recently been used to explore a space of 16 million
potential catalysts to maximize the conversion rate of methane
to methanol, which without active learning would not have
been possible to search effectively within a reasonable time
[3]. Active learning has also been shown to effectively sub-
sample training data for identifying malware-infected PDF
documents [4]. The authors found that when using active
learning they could reduce the training set size to 1/30-th of
the original size, while maintaining the same performance as
models trained on the whole set.

Active learning approaches have been developed for a wide
range of machine learning methods, e.g. for support vector
machines or neural networks. In support vector machines, for
instance, AL has been realized by computing the distance of
all points to the separating hyperplane and selecting the point
nearest the hyperplane to be labelled [5]. For neural networks,
one AL variant has been to select points with the minimum
difference between the two most probable predicted labels [6].
This distribution was defined as M = P (l1|x) − P (l2|x),
where M is the margin between the two most probable labels,
l1 is the most probably label for input x, and l2 is the second
most probable label for input x.

In this contribution, we apply active learning strategies
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to genetic programming for symbolic regression tasks. The
goal is to exploit some of the features of GP to guide data
collection, in particular its reliance on a population of models.
We extend our previous work where we presented preliminary
results exploring only several uncertainty metrics for use in
active learning [7]. Here, we utilize both uncertainty measures
in a model population context and diversity measures in a
data context to accelerate the discovery of models (physics
equations in our study). The idea is to look for disagreement
among high-quality individuals in the population as a guide to
locate informative data points to add to the training set while
also considering data diversity. We further explore how model
uncertainty and data diversity can be used together via a Pareto
optimization.

II. RELATED WORKS

Active learning methods for machine learning have shown
to be very successful in applied settings to improve the method
of labelling and collecting data with various machine learning
types. AL has recently been demonstrated to significantly re-
duce the labelling efforts required for labelling data associated
with identifying heart disease [8]. The authors demonstrated
that they could find more accurate models using fewer data
points when compared to a random point selection strategy.

AL has been applied to genetic programming classification
tasks as well. Using an ensemble of GP models, the models
”vote” on the class of data pairs, and points are only labelled
when the committee of developing models encounters pairs
that can’t be classified [9]. This was found to reduce the total
effort needed to label training points since only a subset had to
be labelled before finding accurate models. Where GP training
sets are large, AL has been successfully applied by selecting
sub-samples to be used for training [10], [11]. In [11] AL
is performed by segmenting the data into smaller blocks and
training the models using one randomly selected block at a
time using uniform probability. As training continues, bias is
introduced into the probability by increasing the tendency to
select blocks that haven’t been seen in a while, as well as
blocks where the models performed poorly during training.
AL for sub-sampling with genetic programming was found
to decrease training times to find better binary classification
models by an order of magnitude [11]. In [10] subsets were
selected by dynamically developing a fitness case topology that
could be used to create minimally related subsets of data. In
this context, the strength of a relationship between two training
cases was indicated by the number of individuals that were
able to solve both training cases. Active learning has also been
applied to the task of discovering regular expressions using
genetic programming [12]. In that work, they used a restricted
query-by-committee (rQbC) strategy that utilized the top 25%
of models in a population to generate ”extraction queries”,
in which the user then indicates whether or not the character
string selected by the ”extraction query” should be extracted
or not by a regular expression.

In the discovery of biological networks AL methods have
also been employed successfully [13]. Several different ap-
proaches were explored by the authors for determining which

new data points would be maximally informative for a wide
range of machine learning models, including Boolean net-
works, causal Bayesian networks, differential equation models,
etc. One approach the authors explored was the maximum
difference method in which two best-fit models are chosen and
a new data point is selected where those two best-fit models
have the largest difference in predictions. They also examined
entropy score maximization. In that method, a new data point
is selected that maximizes an entropy score, where entropy can
be thought of as the amount of information to be gained by
gathering that data point. The entropy score He is computed
as follows:

He = −
xe∑
x=1

ex
|M |

log2
ex
|M |

where M is the set of Boolean networks, xe is the number of
network states for a given data point, and e is the set of all
potential data points.

In chemical engineering AL has been applied to expedite
a reaction screening process by only selecting a subset of
maximally informative experiments to complete rather than
by exhaustively performing all possible experiments [14]. This
was done by training neural networks and using them to select
a subset of experiments that maximized the information gain.
Maximal information gain was determined by looking at the
standard deviation of an ensemble of neural networks.

Kotanchek et al. [15] used genetic programming for active
design of experiments, where models developed by a GP
system are used to find optimal conditions in a system of
study. Active design of experiments is an application of active
learning, where it has the goal of designing experiments
that have specific properties or yield maximal information.
The authors proposed to employ ensembles of models from
symbolic regression to find regions of uncertainty in order
to gather new data with high information content. While this
method has been proposed for how an active learning method
using model ensembles could be applied to GP for symbolic
regression, there has yet to be any research showing how
active learning methods affect the performance of GP symbolic
regression tasks or how the method to quantify uncertainty
affects the quality of points selected for inclusion in the
training data. As well, it is yet to be shown that this idea of
selecting an ensemble from a model population and searching
for points of high uncertainty or disagreement among models
is generalizable to any machine learning method where a
population of models is available.

III. METHODS

We compare two classes of active learning: uncertainty and
diversity-based. The implementations are described in detail
below and summarized in Figures 2 and 3. We use two random
sampling methods as a baseline to compare the performance
of the active learning methods. The key features of the GP
system we used, StackGP, are also discussed.

A. Active Learning

Two general types of active learning were implemented
to work with StackGP for the purpose of accelerating the
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Fig. 2. An overview of the iterative uncertainty-based active learning ap-
proach. It begins with an initially randomly selected dataset. It then iteratively
evolves models and selects new training points that maximize uncertainty of
an ensemble of models. By maximizing ensemble uncertainty to select new
training samples, points with relatively high information content are added to
the training set each iteration.

Fig. 3. An overview of the iterative diversity-based active learning approach.
It begins with an initially randomly selected dataset. It then iteratively evolves
models and selects new training points that maximize data diversity. By
maximizing data diversity to select new training samples, points with new
information are added to the training set each iteration.

development of models to fit physics data from the Feynman
Symbolic Regression Dataset [16]. The first type of active
learning explored was uncertainty-based, a model-driven ap-
proach to active learning, where an ensemble of diverse, high-
quality models from a population was used to search for
regions in the search space where there was high uncertainty
or disagreement between the models. The goal of uncertainty-
based AL is to identify new training points where the models
disagree most in the predicted responses/labels given the input
features of those points. The second type of active learning
explored was diversity-based active learning, where new points
are selected that differ maximally from the points already in
the training sample. This second type of active learning is
a data-driven approach rather than a model-driven approach,
unlike traditional active learning approaches. The first type of
active learning, uncertainty-based, is summarized in Figure 2
and the second type, diversity-based, is summarized in Figure
3.

Both types of active learning methods were implemented
to determine how they each impact the success of evolution
in genetic programming symbolic regression tasks. Several

different uncertainty and diversity metrics are implemented to
determine their respective impact on the success of the task.
Success of active learning by maximizing uncertainty would
indicate that the diversity of the population can be utilized to
guide the collection of informative data. Success of diversity
sampling would indicate that GP symbolic regression model
development benefits from improved data sampling.

1) Maximizing Uncertainty: Several different uncertainty
metrics were explored to determine how different measures
impact the success of active learning, and which approach
would generally work best. As an overview, each approach
begins by selecting an ensemble of models using the same
method, then a function that uses the specific uncertainty
metric along with the ensemble and current training set is
created. This function is then fed to an optimizer to search for
regions of relatively high uncertainty. The most uncertain point
found is then returned and selected to be added to the training
set. In total, there were 6 different uncertainty maximization
approaches tested which varied in how they quantified dis-
agreement, whether outlier predictions were considered, and
which optimizer was used. The steps and methods will be
described in greater detail below and the entire process is
depicted in Algorithm 1.

Generating the ensemble is the first step in uncertainty-
based active learning. The goals for generating the ensemble
were to capture diverse, high-quality individuals from the
population while keeping the size of the ensemble relatively
small so that the computational cost of optimizing uncertainty
is reasonable. The diversity goal is essential to the success
of active learning since disagreement between models is a
necessary requirement. The method chosen to capture both
diversity and quality from the model population works by
clustering the training data using the input space and selecting
a model that best fits each cluster, ensuring no model is
selected more than once. If a model is already selected by
another cluster, the next best unselected model is chosen. The
minimum number of clusters is set to 3 and the maximum
is set to 10. Thus, 3-10 models are chosen for inclusion
in an ensemble. Data clustering was chosen with the intent
to capture diversity by focusing on models that have biases
for different regions of the training space. Quality in the
population would be captured since only models with the
best fitness were selected for each cluster. The algorithm to
generate the ensemble is described in detail in Algorithm 2.

Algorithm 1 AL Process Using Model Uncertainty
TrainingData← 3StartingPoints ▷ Generate initial random training data
Models← RandomModels ▷ Generate initial random models
Models← Evolve(TrainingData,Models) ▷ Train models on starting data
while BestModelError ̸= 0 do ▷ While perfect model not found

Ensemble← EnsembleSelect(Models). ▷ Select ensemble of models
NewPoint←MaxUncertainty(Ensemble) ▷ Find point of max

uncertainty
if NewPoint ⊂ TrainingData then ▷ If point already selected

NewPoint←MaxUncertainty(SubSpace(Ensemble)) ▷ Search
a subspace

end if
TrainingData← Append(TrainingData,NewPoint) ▷ Add new

point
Models← Evolve(TrainingData,Models) ▷ Evolve new models with

new data using best models to seed evolution
end while
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Algorithm 2 Ensemble generation process to select diverse
high-quality models.

procedure ENSEMBLESELECT(models,trainingData,responseData)
selectedModels← [] ▷ Initialize ensemble
nClusters← min(len(trainingData), 10) ▷ Determine number of

clusters
clusters← KMeans(nClusters).fit predict(trainingData)
for i = 0;i + +; i < nClusters do ▷ Loop over data clusters

modelErrors← computeError(models, clusters[i])
sortedModels← sortBy(models,modelErrors)
j = 0
while sortedModels[j] in selectedModels do ▷ Find best unselected

model
j + +

end while
selectedModels = join(selectedModels, sortedModels[j] ▷ Add

to ensemble
end for
return selectedModels ▷ Return ensemble

end procedure

The second step of this method is to utilize the specified
uncertainty function with both the current training data and the
selected ensemble. The function is then given to the optimizer
with the search space boundaries to find a point of relatively
high uncertainty. In the case that an already selected point is
re-selected, a new search is initiated within a random sub-
region until a unique point is added. This ensures that new
information is added in each iteration to the training set.

The two methods used for optimization were Scipy Opti-
mize’s minimize and differential evolution [17], [18].

In total 5 different uncertainty metrics were used, shown by
Equations 1 to 5, where Equation 5 is used twice, once with
Scipy’s minimize function for optimization, and a second time
with Scipy’s differential evolution function for optimization.

∆ =
Std(EnsembleResponses)

Mean(Abs(EnsembleResponses))
(1)

∆ =
TrimmedStd(EnsembleResponses, 0.3)

TrimmedMean(Abs(EnsembleResponses), 0.3)
(2)

∆ =
Std(EnsembleResponses)

TrimmedMean(Abs(EnsembleResponses), 0.3)
(3)

∆ = Std(EnsembleResponses) (4)

∆ = DifferentialEntropy(EnsembleResponses) (5)

2) Point Diversity: A data-driven active learning approach
was also explored, aiming to maximize data diversity rather
than maximize ensemble uncertainty. This approach is de-
scribed in Algorithm 4. The goal was to determine if GP
evolution for symbolic regression tasks would benefit signifi-
cantly from improved sampling of the data for training. Two
different metrics were used to quantify diversity: point distance
and point correlation. Point distance was implemented by
measuring both the minimum and average Euclidean distance
to all points in the training set. Minimum distance indicates
the distance to the nearest point in the training set. Mean
distance indicates the average distance to all points currently
in the training set. Point correlation was defined as the average

correlation to all points in the training set. When selecting a
new point, the goal was to either maximize the distance metric
(minimum or mean) or minimize the correlation to the current
training set.

To minimize the correlation when selecting a new point,
Pearson’s R2 was computed between each point and the
potential new point. The equation for computing Pearson’s
R is shown in Equation 6. Here y represents the new training
point, ŷ represents a point already in the set, and each instance
d represents the value in the dth dimension of the point with
total dimensionality of D. The overall method for computing
the joint correlation of a new point to the training set is
summarized in Algorithm 3.

R =

∑D
d=1(yd − ȳ)(ŷd − ¯̂y)√∑D

d=1(yd − ȳ)2 ×
∑D

d=1(ŷd − ¯̂y)2
(6)

Algorithm 3 Method to Compute Correlation to Training Data
1: procedure JOINTCORRELATION(trainingSet,newPoint)
2: r2V alues ← [PearsonR(trainPt, newPoint)2 for trainPt in

trainingSet] ▷ R2 vals
3: avgCorr ← mean(r2V alues) ▷ Compute average correlation
4: Return avgCorr
5: end procedure

Algorithm 4 AL Process Using Data Diversity
TrainingData← 3StartingPoints ▷ Generate initial random training data
Models← RandomModels ▷ Generate initial random models
Models← Evolve(TrainingData,Models) ▷ Train models on starting data
while BestModelError ̸= 0 do ▷ While perfect model not found

NewPoint←MaxDiversity(TrainingData) ▷ Find point of max
uncertainty

if NewPoint ⊂ TrainingData then ▷ If point already selected
NewPoint←MaxUncertainty(SubSpace(TrainingData)) ▷

Search a subspace
end if
TrainingData← Append(TrainingData,NewPoint) ▷ Add new

point
Models← Evolve(TrainingData,Models) ▷ Evolve new models with

new data using best models to seed evolution
end while

3) Benchmark Testing: Each active learning approach was
compared on a benchmark set of 35 of the 100 equations
from the Feynman Symbolic Regression Dataset [19]. These
particular 35 problems were selected since they were thought
to be most appropriate for a study in active learning. In a
previous study, 37 other of the 100 equations were consistently
found to need just 3 data points to be solved when using
StackGP [20]. This would render active learning useless in
such cases. The remaining 28 equations generally required all
the data points up to 1000 (as we tested) to reach moderate
results, so it did not seem that this type of active learning,
adding one point at a time, would be appropriate for those
problems.

B. StackGP

StackGP is a stack-based genetic programming implemen-
tation in Python [20] and is available here ( [21]).
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1) Model Structure: Similar to PushGP [22], StackGP
models use multiple stacks, where the model evaluation is
driven by an operator stack while variables, constants, and
other data types are stored on separate stacks. For symbolic
regression tasks, we have a total of 2 stacks, the operator stack
and the variables/constants stack.

2) Correlation Fitness Function: Unlike many symbolic
regression implementations that use (R)MSE as the fitness
function, we employ correlation as the fitness function, to-
gether with a linear scaling post-processing step. This was
shown to perform better than (R)MSE in earlier work [23].
The fitness is optimized during search by first maximizing
R2, which is computed using Equation 7, where N is the
number of data points i, yi is the target output, and ŷi the
output calculated by the model.

R =

∑N
i=1(yi − ȳ)(ŷi − ¯̂y)√∑N

i=1(yi − ȳ)2 ×
∑N

i=1(ŷi − ¯̂y)2
(7)

The search is then completed using a post-processing step,
which aligns the resulting models via a simple linear regres-
sion step (eq. 8), minimizing

argmin
a0,a1

N∑
i=1

(|yi − (a1ŷi + a0)|) (8)

3) Algorithm: An overview of the algorithm is shown in
Algorithm 5. The parameters used to run the algorithm are
shown in Table I. Note that crossover and mutation calls in
the algorithm are simplified and actually represent applying
crossover and mutation to the correct fractions of models as
shown in the parameters.

Crossover is performed using a 2-point crossover operator
where two points are selected in the operator stack of each
parent and the operators, along with the associated variables
and constants between the points, are swapped between the
parents. Mutation has several different forms, each occurring
with equal probability: random replacement of a variable,
random replacement of an operator, pushing a random operator
to the top of the operator stack and pushing variables/constants
to the second stack when arity is greater than 1, popping a
random number of operators off the operator stack and the
correct number of variables/constants off the second stack,
inserting a single operator at a random position in the stack, 2-
point crossover with a random model, and appending a random
operator to the bottom of the operator stack. There is then a
repair mechanism that will push variables and constants to
the top of the second stack if - after mutation - there are not
enough items in the variable/constant stack for the operators.

The tournament selection method used was Pareto tourna-
ment selection, where correlation and complexity were the two
objectives. Complexity was measured as the combined stack
lengths. This implementation of Pareto tournament selection
follows [24], where from each tournament the set of all
non-dominated individuals across the specified objectives are
returned as winners.

TABLE I
STACKGP & ACTIVE LEARNING PARAMETER SETTINGS

Parameter Setting
Mutation Rate 79
Crossover Rate 11
Spawn Rate 10
Elitism Rate 10
Crossover Method 2 Pt.
Tournament Size 5
Population Size 300
Selection Rate 20
Parallel Runs 4
Generations 1000

Algorithm 5 StackGP Search Algorithm
1: procedure EVOLVE(trainingData,models)
2: for generations 1 to 100 do
3: models← setModelQuality(models, trainingData)
4: newPop← ElitismSelection(models, 20%)
5: models← tournamentSelection(models)
6: newPop← newPop+ crossover(models)+mutation(models)
7: newPop← newPop + randomNewModels
8: newPop← deleteDuplicates(newPop)
9: models← newPop

10: end for
11: alignedModels← alignment(models, trainingData)
12: Return alignedModels
13: end procedure

C. Random Sampling

As a baseline, we used random sampling of data points
from uniform and normal distributions to determine if an
active learning method improves learning progress over a naive
sampling of training data. Uniform random sampling was
chosen since it is a commonly used distribution and would
likely be a first choice for naively sampling data. A normal
distribution was selected since according to the central limit
theorem, normal distributions tend to arise in nature, so a data
set sampled from natural processes would likely be a normal
distribution.

To create a fair comparison against the active learning
methods, a simple substitution was made where instead of
using active learning to maximize uncertainty or diversity,
a random point was added in each iteration, sampled from
the specific distribution (uniform or normal). Beyond that
substitution, the algorithm remains the same.

The normal distribution for each variable was defined using
the midpoint between the sampling bounds as the mean and
1/6 of the difference between the upper and lower bounds as
the standard deviation. This places 99.8% of the distribution
between the upper and lower bounds of each variable. If a
point is sampled beyond a boundary it is adjusted to be on the
boundary instead, although this is unlikely to occur frequently.

IV. RESULTS & DISCUSSION

Several different approaches for computing uncertainty and
diversity were compared using the Feynman Symbolic Re-
gression Dataset. We then combine diversity and uncertainty
using a Pareto optimization approach and compare that multi-
objective method to using both uncertainty and diversity
alone. The Pareto approach is then tested on two additional
benchmark problems from the SRBench benchmark set.
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A. Active Learning Uncertainty Sampling

The results of comparing the different uncertainty-based
active learning methods are shown in Figures 4 and 5 and the
full table is in the Appendix as Table IV. Figure 4 uses uniform
random sampling as the baseline for comparison, shown as the
blue line in the figure. We also include normally distributed
random sampling for comparison as the red distribution. The
results show that the relative uncertainty measures, where we
divide by the mean or trimmed mean, do not consistently per-
form better than uniform random sampling. The non-relative
uncertainty measures performed well more consistently with
the methods that use differential entropy performing best.
The fact that standard deviation alone as an uncertainty
metric performs consistently well is appealing since it is very
cheap and easy to implement relative to some of the others.
Differential entropy when using differential evolution as the
optimizer performed best. The fact that differential evolution
as the optimizer worked best with differential entropy likely
indicates that the surface is highly non-convex, so differential
evolution was better able to search the uncertainty space.

Fig. 4. Comparing Relative Performance of Uncertainty Methods Using
Uniform Random Selection as Baseline. Shown here are the performance
differences of AL uncertainty methods compared to uniform random selection
as the baseline (blue line) and normally distributed random selection (red
distribution). We see that using the relative uncertainty measures where we
divided by the mean we get inconsistent performance, sometimes performing
much better than random but sometimes performing much worse. The non-
relative approaches all consistently perform better than random selection with
the methods that use differential entropy performing best. Using differential
entropy with differential evolution (brown) we observe the best performance.
The distributions represent the median performances of 100 independent runs
across all test problems. For completeness, there is one point not shown for
the std/tr. mean approach that is around -200.

Figure 5 compares the performance of each method against
uniform random sampling for each problem and displays the
number of times each method outperforms or underperforms
random sampling. If a method outperforms random sampling
that means that the method required fewer points to solve
a problem. If a method underperforms random sampling
that means that the method required more points to solve a
problem. The results show that the methods using differential
entropy work best, outperforming in the most number of cases
and underperforming in the fewest number of cases. The
differential entropy method that used differential evolution as
the optimizer worked better than just using differential entropy

Fig. 5. Comparing Performance of Uncertainty Methods Against Uniform
Random Selection. Each method is compared to uniform random sampling
and the number of times that the method outperforms and underperforms is
reported. The number of times each method outperforms is shown on the left
and the number of times each method underperforms is shown on the right.
Outperforming means that a method used fewer points than uniform random
sampling. Underperforming means that it required more points. Ties are not
counted but can be easily determined by taking the difference of 35 and the
two values reported. The results show that the methods that use differential
entropy work well most consistently, outperforming more frequently and
underperforming infrequently. We can also see that the relative uncertainty
measures were very inconsistent in their performance.

with SciPy Optimize’s minimize function. This indicates that
differential evolution was able to search the uncertainty sur-
face more effectively. The results also show that the relative
uncertainty methods that divided the mean or trimmed mean
were not consistent in their performance, frequently having a
similar number of cases where the methods outperformed and
underperformed.

We see that the relative measures sometimes perform
well and sometimes perform poorly, but on average they
are centered around the baseline performance. The original
assumption was that the relative uncertainty measures would
be appealing since it was thought that they would reduce a bias
towards selecting points where the predicted response is larger
and thus naturally leads to wider distributions of the ensemble.
This may have been the case occasionally where those methods
did perform much better than uniform random sampling, but
they were not consistent. Looking at their formulations there
is a risk of selecting points where the mean is near 0 which
results in asymptotic behavior of the uncertainty function.

Considering the results, we also see that of the two ran-
dom sampling methods, normally distributed random sampling
seems to perform a bit better than uniform sampling. This
indicates that if a researcher does not want to use active
learning to guide their data collection, they would typically
be better off using a normal distribution than a uniform
distribution for their samples.

B. Active Learning Diversity Sampling

The different metrics for determining point diversity were
compared to determine if there are clear differences in what
they are measuring and also to ensure there aren’t any obvious
flaws with any of the metrics. When comparing minimum
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distance and average distance an initial randomly generated
training set with 3 data points in 3 dimensions was gen-
erated. Figure 6 shows the comparison where new points
were selected iteratively to add to the training set using the
minimum distance metric for selection. We can see visually
that the correlation, R2, is weak between the two, indicating
they are providing different measures. As well, we recorded
the Spearman Rho, rank-correlation, since that indicates if
the methods are ranking points similarly or not. If methods
rank points similarly, then they would likely not provide
unique information if used as a diversity metric. It was found
that the Spearman Rho was 0.44, which means that the two
methods are ranking points differently and could provide
unique information.

Fig. 6. Comparing minimum Euclidean distance against mean Euclidean
distance as a diversity metric. Here minimum distance is used to select the
next point in the set and both metrics of those points are displayed. We can see
that there is little correlation between the two metrics indicating they provide
different information. The R2 between these two metrics on these points is
just 0.37. The Spearman Rho, rank-correlation, is also low at 0.44.

Fig. 7. Comparing minimum Euclidean distance against mean Euclidean
distance as a diversity metric. Here mean distance is used to select the next
point in the set and both metrics of those points are displayed. We can see
that when mean distance is used to select new points, we get many points
with a minimum distance of 0. This indicates that we are very frequently
reselecting points already in the set. This shows that minimum distance is a
better metric than mean distance.

Fig. 8. Comparing minimum Euclidean distance against mean point corre-
lation as a diversity metric. Here minimizing mean correlation is used to
select the next point in the set and both metrics of those points are displayed.
We can see that there appears to be a weak positive correlation between the
two, indicating that they provide some of the same information but are not the
same, so may have different advantages. It is also promising that the minimum
distance shows that we are not reselecting points already in the training set.
Comparing the metrics for these points we get an R2 of 0.35 and a Spearman
Rho of 0.33.

To further compare the minimum and mean distance met-
rics, the analysis was flipped, such that mean distance was
used to select new points and both metrics were recorded
on the selected points. These results are shown in Figure 7.
Here it becomes obvious that mean distance is not a good
metric since the minimum distance metric indicates that we
are repeatedly selecting points already in the set. This is shown
by the consistent minimum distance value of 0 after around
10 iterations. This result led to mean distance being thrown
out as a potential choice of metric.

Minimum distance and correlation were also compared to
determine if they provide unique measures of diversity. The
results are shown in Figure 8. For this analysis, lack of
correlation to the training set was used to select new points
and both metrics were recorded. This analysis was slightly
different than the previous ones since for this problem the
points were embedded in a 10 dimensional space instead of
just 3. The results show that the two metrics do provide
unique information since an R2 value of 0.35 and a Spearman
Rho value of 0.33 were recorded, which are both low. Since
these metrics were determined to provide unique information
without any clear flaws both were included to be explored,
with the one limitation that correlation as a diversity metric
could not be used on problems of less than 3 dimensions.

Fig. 9. Comparing Relative Performance of Diversity Methods Using
Uniform Random Selection as Baseline. Shown here are the performance
differences of both the AL diversity methods compared to uniform random
selection as the baseline (blue line) and normally distributed random selection
(red distribution). We see that using minimum distance (black distribution)
performs consistently better than the baseline and correlation (green distribu-
tion) works best as a diversity metric. The drawback with using correlation
as the diversity metric though is that it requires problems with more than
two dimensions, so the problems with two dimensions are ignored when
using correlation. The distributions represent the median performances of 100
independent runs across all test problems.

The results of comparing the different data diversity-based
active learning methods are summarized in Figures 9 and 10
and the full results are shown in Table V in the Appendix.
Figure 9 uses uniform random sampling as the baseline
for comparison, shown as the blue line. We again include
normally distributed random sampling for comparison as the
red distribution. We can see that both diversity metrics have
better performance than uniform random sampling, on average
requiring fewer training points to find a solution. We also
see that correlation as a diversity metric performs best, often
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requiring the least number of training data points to find a
solution. Correlation does have the disadvantage, though, of
not working on the problems with just two dimensions. Those
two problems are not represented in the correlation bar in the
chart since they are not applicable.

Figure 10 shows the number of cases where each method
either outperformed or underperformed when compared to uni-
form random sampling. We see again that correlation has the
best performance. This indicates that not only does correlation
lead to requiring fewer training points on average, but also
indicates that it most consistently requires fewer points. We
see that distance as a metric requires fewer points than uniform
random and normal random sampling, but is not as consistent
as correlation.

Fig. 10. Comparing Performance of Diversity Methods Against Uniform
Random Selection. Each method is compared to uniform random sampling
and the number of times that the method outperforms and underperforms is
reported. The number of times each method outperforms is shown on the left
and the number of times each method underperforms is shown on the right.
Outperforms means that a method used fewer points than uniform random
sampling. Underperforms means it required more points. Ties are not counted
but can be easily determined by taking the difference of 35 and the two values
reported. The results show that correlation performed best, underperforming
the fewest times and outperforming the most.

C. Comparing Diversity, Uncertainty, and Pareto Optimiza-
tion of Both

Next we explore how the performance compares when using
uncertainty and diversity together to see if there are benefits to
considering both for selecting training data with AL compared
to just uncertainty or diversity alone. For this comparison, we
selected one diversity metric and one uncertainty metric. For
the uncertainty metric, we chose differential entropy since it
was shown to be the best performing metric in Figure 4. For
the diversity metric, we chose minimum distance. Although it
didn’t perform best, it is most versatile since it isn’t restricted
to problems with more than 2 dimensions. For the combination
method, we used a Pareto optimization to find the points with
the best trade-off of both the uncertainty and diversity metrics
from 10,000 randomly generated points each iteration. From
the Pareto front of points that are non-dominated in those
two objectives, we ordered them based on their uncertainty
score and selected the median point. Note that sorting based

on uncertainty is just the reverse order of a sort by diversity,
so which objective you choose to sort by shouldn’t have a
significant impact. The only impact would be on cases where
an even number of points are on the front so the point you
select isn’t the true median but rather one of the points near the
median. When this occurs, we round down to select the median
point, which would give a slight bias toward uncertainty. By
selecting the median point we are attempting to choose a point
that has a relatively good balance between the two objectives.

The results of this comparison are shown in Figures 11 and
12 with the results from each problem shown in the Appendix
in Table VI. Again in Figure 11, we use uniform random
sampling as the baseline (blue line) and include normally
distributed random sampling for comparison. The results show
that all three methods work better than the baseline and
normally distributed random sampling. Using the uncertainty
metric, differential entropy, works slightly better than using
the distance metric, minimum distance. We also see that there
is a benefit to combining both metrics using the Pareto opti-
mization since we see an improvement in the upper quartile
of performance. It is also interesting to note, as can be seen in
Figure 12, that the diversity metric alone performed worse than
uniform random sampling in 8 of the 35 cases, whereas the
uncertainty approach and the Pareto approach only performed
worse in 4 of the cases, demonstrating that the uncertainty and
Pareto approaches offer more consistent improvements. This
indicates that it is important to consider the current models to
help guide the AL process. This makes sense since the goal is
to select training points that will best inform the current model
population, using only diversity doesn’t consider the current
state of models, so it is less likely that the training points
selected will most inform those models. Statistical significance
tests were also performed and the number of cases determined
to be statistically significant are shown in the darker regions
in the figure. The Mann-Whitney test was used to test for
significance and a threshold of 0.05 was used. The Pareto
approach was found to be statistically significant in 18 of
the 20 cases where the Pareto approach outperformed. The
p-values for the Pareto approach on each problem are shown
in the Appendix in Table III.

Looking at the results, there are two instances where the
Pareto approach performed considerably worse than the un-
certainty and diversity approaches. Those are equations 9 and
71. Table VI in the Appendix shows that the combined method
performs worse than focusing alone on either diversity or
uncertainty for those two problems. This is likely a result
of equations 9 and 71 being higher dimensional problems
with 6 and 5 dimensions, respectively, so the 10,000 randomly
generated points don’t sufficiently fill the search space to find
points with high values for both uncertainty and diversity.

Equation 71 was further explored to see if sampling ad-
ditional points improved the performance when using the
combined diversity uncertainty approach and to verify that
sparse sampling was at least part of the issue as suspected.
Equation 71 was retested using 100,000 randomly sampled
points to search for the best trade-off between diversity and
uncertainty. When using 100,000 points the median number
of points required to solve the problem decreased to 42
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Fig. 11. Comparing Relative Performance of Diversity, Uncertainty, and
Pareto Optimization Using Uniform Random Selection as Baseline. Shown
here are the performance differences of AL diversity, uncertainty and Pareto
methods compared to uniform random selection as the baseline (blue line)
and normally distributed random selection (red distribution). We see that
using the diversity metric, minimum distance (black distribution), performs
consistently better than the baseline and the uncertainty metric, DE (pink
distribution), performs a bit better than the diversity method. When using
a Pareto optimization of both diversity and uncertainty we get even better
performance. The distributions represent the median performances of 100
independent runs across all test problems. For completeness, there is a single
point around -150 for the Pareto approach.

Fig. 12. Comparing Performance of Diversity, Uncertainty, and Pareto
Optimization Against Uniform Random Selection. Each method is com-
pared to uniform random sampling and the number of times that the method
outperforms and underperforms is reported. The number of cases where the
differences are statistically significant is shown in the darker regions. The
number of times each method outperforms is shown on the left and the number
of times each method underperforms is shown on the right. Outperforms
means that a method used fewer points than uniform random sampling.
Underperforms means it required more points. Ties are not counted but can be
easily determined by taking the difference of 35 and the two values reported.
The results show that DE, the uncertainty method works best. The Pareto
approach ties for the least number of underperforming cases, matching DE,
and outperforms between DE and Min. Distance. Statistical significance was
determined using the threshold of 0.05 with the Mann-Whitney test.

points from 50.5, confirming that better sampling of the space
improves the performance in this higher dimensional problem.
The median performance of 42 points is still worse than either
of the uncertainty or diversity approaches, so more points
could be used, but increasing the number of points beyond
100,000 begins to make that search rather expensive. Rather
than randomly sampling the points then selecting the Pareto

front from those points, an alternative optimization method,
such as NSGA II [25], could be used in future studies which
might be cheaper and likely more effective.

D. Additional Benchmark Problems

To further test the Pareto AL approach, we selected two
problems from a more recent benchmark set, SRBench [26].
One that is on the easier side for StackGP and one that is a
bit more challenging. The easier problem selected was the van
der Pol oscillator problem, referred to as ”strogatz vdp1” in
SRBench. The equation for the van der Pol oscillator problem
that we are trying to rediscover is x′ = 10 ∗ (y − (1)/(3) ∗
(x3−x)). The more challenging problem was the bar magnet
problem, referred to as ”strogatz barmag1” in SRBench and
the equation for the bar magnet problem that we are trying
to rediscover is x′ = 0.5 ∗ sin(x − y) − sin(x). As with
the previous problems, we performed each experiment 100
times and computed the median number of points to find the
solution. The results of those experiments are shown in Table
II. We can see that the Pareto approach performs significantly
better than randomly sampling from a normal distribution
and performs about 27.8% better than randomly sampling
from a uniform distribution on the bar magnet problem. The
performance gains over the normal and uniform distributed
samplings are statistically significant considering a threshold
of 0.05 using the Mann-Whitney test. We computed a p-value
of 3.490∗10−11 when comparing to the normal distribution
and 6.481∗10−6 when comparing to the uniform sampling.
We also see better performance on the van der Pol oscillator,
although since it was an easy problem there isn’t as much
opportunity for improvement, so we only see a reduction
of a few points. The performance gains over the normal
and uniform distributions are again statistically significant
with a p-value of 2.51∗10−7 when compared with the results
from using normally distributed sampling and a p-value of
4.008∗10−13 when compared with the results from using
uniform random sampling.

TABLE II
SHOWN ARE THE MEDIAN NUMBERS OF POINTS NEEDED TO SOLVE EACH

EQUATION. A TOTAL OF 100 INDEPENDENT TRIALS WERE PERFORMED
FOR EACH EQUATION. WE COMPARE THE ACTIVE LEARNING METHOD
THAT USES BOTH DIVERSITY AND UNCERTAINTY AND COMPARE THE

PERFORMANCE AGAINST RANDOM SAMPLING ON TWO PROBLEMS FROM
THE SRBENCH.

SRBench N. Ran U. Ran Pareto AL
Problem Data Pts. Data Pts. Data Pts.

Bar Magnet #1 51 18 13
Van der Pol Osc. #1 10 9 7

V. CONCLUSION

Both uncertainty and diversity metrics for active learning
were explored to see how each metric impacts the success
of active learning in genetic programming. As well, a Pareto
approach was defined that allows both diversity and uncer-
tainty to be considered for active learning. Of the uncertainty
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approaches, it was observed that differential entropy performed
best. It was also observed that relative uncertainty functions
did not perform well. When using differential entropy it was
found that performance could be boosted by using differential
evolution as the optimizer over Scipy Optimize’s minimize
function. This indicates that the search space is not convex
and requires a good optimizer to find solutions with high
uncertainty.

When comparing the data diversity methods, it was found
that correlation performed better than minimum Euclidean
distance. Although correlation worked better, it does not work
on cases with 2 dimensions or less. Thus, minimum Euclidean
distance was selected for the Pareto approach. Future imple-
mentations may default to using minimum Euclidean distance
for all cases with 1 or 2 dimensions and using correlation for
higher dimensional problems. Mean distance was considered,
but determined to be uninformative due to its frequency of
identifying repeat points.

When comparing the Pareto approach which used both
differential entropy and minimum Euclidean distance to differ-
ential entropy, minimum Euclidean distance, uniform random
selection, and normally distributed random selection, it was
found that differential entropy worked best, with the Pareto ap-
proach performing between differential entropy and minimum
Euclidean distance. Looking at individual problems, there were
a few cases where the Pareto approach actually worked better
than both differential entropy and minimum Euclidean distance
on their own, indicating potential benefits of combining the
two approaches. For the cases where the Pareto approach did
not work as well, it was identified that the multi-objective
optimization strategy may have been at fault since it relies on
randomly generating N points and selecting the median value
in the Pareto front. Better methods such as NSGA-II could
be explored in future studies to see if improved optimization
methods leads to better active learning performance.

Overall, it was found that active learning can be efficiently
utilized with genetic programming to reduce training data
requirements. In practice, this would be useful to apply in
scenarios where collecting data or labelling data is expensive,
and model training is relatively cheap. In these scenarios,
active learning could be used to guide data collection and
labelling so that good models can be arrived at using as few
data points as possible. This application has the potential to
accelerate data-driven research, since it could lead to finding
solutions with fewer resources in less time.
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VI. APPENDIX

The statistical significance results for the Pareto approach
across all of the Feynman problems used in the paper are
shown in Table III. The median number of training points
required to solve each problem across all uncertainty methods
is shown in Table IV. The median number of training points
required to solve each problem with the data diversity active

learning approaches is shown in Table V. Table VI shows how
the Pareto approach compares to using either just data diversity
or model uncertainty.

TABLE III
STATISTICAL SIGNIFICANCE OF PARETO AL APPROACH VS. UNIFORM

RANDOM SAMPLING. WE ARE USING A THRESHOLD OF 0.05 TO TEST FOR
SIGNIFICANCE. THE MANN-WHITNEY TEST WAS USED TO TEST FOR

SIGNIFICANCE.

EQ p-value Significant
Num

2 9.18∗10−4 Yes
3 1.40∗10−11 Yes
4 6.13∗10−1 No
7 9.61∗10−6 Yes
9 1.79∗10−2 Yes

10 3.40∗10−5 Yes
13 2.38∗10−5 Yes
14 7.46∗10−4 Yes
23 3.32∗10−6 Yes
24 8.65∗10−5 Yes
27 3.55∗10−2 Yes
32 1.30∗10−3 Yes
35 2.90∗10−3 Yes
39 7.62∗10−3 Yes
41 5.87∗10−7 Yes
43 3.38∗10−3 Yes
47 1.90∗10−4 Yes
48 1.78∗10−5 Yes
52 4.33∗10−1 No
55 1.98∗10−4 Yes
57 2.52∗10−5 Yes
60 6.84∗10−3 Yes
61 1.40∗10−3 Yes
62 2.69∗10−20 Yes
63 3.99∗10−2 Yes
66 1.56∗10−3 Yes
67 2.45∗10−1 No
71 3.92∗10−1 No
83 9.36∗10−10 Yes
85 1.06∗10−12 Yes
89 1.41∗10−1 No
93 1.55∗10−5 Yes
95 3.46∗10−2 Yes
98 2.98∗10−3 Yes
99 5.64∗10−3 Yes

Significance Count 30/35
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TABLE IV
SHOWN ARE THE MEDIAN NUMBER OF POINTS NEEDED TO SOLVE EACH EQUATION. A TOTAL OF 100 INDEPENDENT TRIALS WERE PERFORMED FOR
EACH EQUATION. THE LAST ROW INDICATES THE NUMBER OF CASES WHERE EACH OF THE ACTIVE LEARNING METHODS MATCHED OR PERFORMED

BETTER THAN UNIFORM RANDOM SAMPLING OF TRAINING DATA. WHERE INFORMATIVE, THE MINIMUM NUMBER IS BOLDED.

EQ U. Ran N. Ran Std/Mean TrStd/TrMean Std/TrMean Std DE DE (DE)
Num Data Data Data Data Data Data Data Data

2 54.5 97.5 50 39 47 53 82.5 47
3 > 1000 > 1000 876 692 741 > 1000 > 1000 724.5
4 30 21.5 21.5 20 23 20 28 19.5
7 88.5 82 23 21 22.5 39 52.5 35
9 120.5 155.5 150.5 73.5 359.5 100.5 153 160
10 6 6 6 11 6 7 6 6
13 13 14.5 15 15 14 14 12 12
14 30.5 33 28 24 31 23.5 24 22.5
23 8 8 7 8 7 8 7.5 7
24 49 58 39 29.5 31 26 22 28
27 30 17 20 13 19.5 18 14 15
32 17 16 20 18 21 16 18 12
35 19 17 17 6 21 18 13.5 12.5
39 10 10 10 12 11 10 9 9
41 7 7 7 8 7 8 7 7
43 453 82 876 218 202.5 144 326 192.5
47 13 12 14 12 13 13 12 12
48 15.5 14 18 17 17.5 14 13 12.5
52 9.5 9 10 10 9.5 10 9 9
55 10 10 11 12 10 11 10 9
57 30.5 31.5 25.5 27 24 17 23 21
60 7 7 7 7 7 7 7 7
61 18.5 20 20 19 18 18 16 17
62 34.5 56.5 37.5 34.5 33 34 30 28.5
63 14 13 15 16 15.5 14 13 13
66 11 9 15 14 14 15 10 9
67 10.5 11 11 10 10 10 11 11
71 51.5 47 34 58 38.5 31 30 35
83 5 5 5 5 5 5 5 5
85 4 4 4 4 4 4 4 4
89 5 5 4 5 4 4.5 5 5
93 8 8 8 8 8 7 8 8
95 11 9 12 11.5 11 12 10 11
98 8 7 9 9 9 9 7 7.5
99 30 20 31 35.5 35 25 24 21
Vs.

U. Sampl. - - 19 20 24 27 31 33
Vs.

N. Sampl. - - 22 20 20 22 29 30
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TABLE V
SHOWN ARE THE MEDIAN NUMBER OF POINTS NEEDED TO SOLVE EACH
EQUATION. A TOTAL OF 100 INDEPENDENT TRIALS WERE PERFORMED

FOR EACH EQUATION. THERE ARE 2 EQUATIONS THAT HAVE A DASH
INSTEAD OF A NUMBER AND THAT IS BECAUSE THEY HAVE ONLY TWO
DIMENSIONS, SO SELECTING POINTS WITH MINIMAL CORRELATION TO

THE REST OF THE TRAINING SET IS NOT POSSIBLE. THE APPROACH USING
UNIFORMLY RANDOM DATA POINTS WAS INCLUDED IN THE FIRST

COLUMN REPRESENTED AS A BASELINE. THE LAST ROW INDICATES THE
NUMBER OF CASES WHERE EACH OF THE POINT DIVERSITY METHODS

MATCHED OR PERFORMED BETTER THAN THE RANDOM APPROACH.

EQ U. Rand Pt. Dist Pt. Corr
Num Data Pts. Data Pts. Data Pts.

2 54.5 44 -
3 > 1000 > 1000 > 1000
4 30 19 29.5
7 88.5 35.5 60
9 120.5 210.5 102.5
10 6 6 5
13 13 12 14
14 30.5 24 22
23 8 7 8
24 49 23 26.5
27 30 13.5 11.5
32 17 15.5 14
35 19 13.5 15
39 10 11 9
41 7 8 6
43 453 533.5 136.5
47 13 14.5 16
48 15.5 13 13
52 9.5 10 9
55 10 10 10
57 30.5 28 29.5
60 7 7 7
61 18.5 17.5 17.5
62 34.5 29.5 36.5
63 14 14 12
66 11 12 10
67 10.5 11 15
71 51.5 29 30.5
83 5 5 5
85 4 4 -
89 5 5 5
93 8 7.5 7
95 11 10 8
98 8 8 7
99 30 25 20.5

Perf. Count - 27/35 29/33
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TABLE VI
SHOWN ARE THE MEDIAN NUMBER OF POINTS NEEDED TO SOLVE EACH
EQUATION. A TOTAL OF 100 INDEPENDENT TRIALS WERE PERFORMED

FOR EACH EQUATION. HERE THE TRADE-OFF BETWEEN DIVERSITY AND
UNCERTAINTY IS EXPLORED. THE SECOND TO LAST ROW INDICATES THE

NUMBER OF TIMES EACH APPROACH WAS THE WORST OF THE THREE
APPROACHES. THE LAST ROW INDICATES THE NUMBER OF CASES WHERE

EACH APPROACH WAS THE BEST OR TIED FOR THE BEST OF THE THREE
APPROACHES. MINIMUM POINT DISTANCE WAS USED FOR THE DIVERSITY

METRIC AND DIFFERENTIAL ENTROPY WAS USED AS THE UNCERTAINTY
METRIC.

EQ Pt. Dist Pareto Pt. Unc.
Num Data Pts. Data Pts. Data Pts.

2 44 36.5 82.5
3 > 1000 501 > 1000
4 19 29 28
7 35.5 48.5 52.5
9 210.5 304 153

10 6 6 6
13 12 12 12
14 24 22 24
23 7 8 7.5
24 23 27 22
27 13.5 19 14
32 15.5 14 18
35 13.5 14 13.5
39 11 10 9
41 8 7 7
43 533.5 314.5 326
47 14.5 12 12
48 13 13 13
52 10 10 9
55 10 9 10
57 28 24 23
60 7 7 7
61 17.5 15 16
62 29.5 21.5 30
63 14 14 13
66 12 10 10
67 11 11 11
71 29 50.5 30
83 5 5 5
85 4 4 4
89 5 5 5
93 7.5 8 8
95 10 13 10
98 8 8 7
99 25 25.5 24

Worst Count 13 11 8
Best Count 16 19 21
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