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We present a new dynamical method to solve problems of combinatorial optimization. The basis units (artificial neurons) of a
network generate a competitive dynamics by their two-dimensional 1nteracnons Based on that specific dynamics the system uses
much the same information as human beings to reduce the solutlon space of the problem. The method is applied to the TSP and

compared to conventional approathes.

1. Introduction

Recently, a couple of physical methods were found
to solve optimization problems. These include sim-
ulated annealing [1], evolutionary search strategies
[2-4] and neural network algorithms {5 ]. The neural
network approach is of special interest, since it si-
multaneously has the potential to be realized in cheap
hardware.

Our own work on this problem was triggered by a
paper of Wilson and Pawley [6] who reported on
considerable difficulties in applying the neural net
algorithm of Hopfield and Tank [5] on the travel-
ling salesman problem. Although this algorithm may
suffer from serious deficiencies, its authors never-
theless pointed to one decisive issue in the game,
namely the usage of a dynamical system to solve op-
timization probléms.

In the following Letter we want to follow this gen-
eral intention. We use, however, another dynamical
system which was proposed recently in the context
of pattern recognition and associative memory [7].

By introducing a clear separation between coding
the problem and the dynamics “solving” it we avoid
some of the sources of trouble one encounters in the
algorithm of Hopfield and Tank. As in ref. [5], the
dynamics is driven by minimization of a potential or
energy function. In ref. [6], the authors have shown
- at least in our interpretation - that an additive
mixture of “energies” coming from the problem do-

v

main, i.e. distances between cities, and energies
coming from. the intrinsic dynamics domain, i.e.
constraints necessary. for the system to -converge to
one of the desired states, is problematic.

Moreover, one may ask quite generally, whether a
gradient method as that of Hopfield and Tank is, will
ever give good results, if the only. choice one has at
hand is that of initial conditions (of uncertainty).
Presumably, there should exist numerous local min-
ima in the energy landscape complicating the search
considerably. The standard argument is that at the
beginning of the dynamical process to solve the TSP
no path is selected definitively. Starting from a fuzzy
state, the system chooses under the influence of “dis-
tance energies” one-of the more favourable tours. As
is reported in ref. [6], however, in a large portion of
cases no tour at all results from the dynamics under
consideration. This precisely reflects the fact of “an-
tagonistic™ forces being present due to distance ener-
gies on the one hand and constraint violation ener-
gies on the other.

Besides this potential non-convergence of the al-
gorithm there remains another serious problem:
Loading connections (the synaptic matrix ) with cor-
responding data into the neural net is very time con-.
suming (of the order O(N*)) if it has to be done for
every city configuration separately [8]. . :

Here, we take another point of view in clearly sep-
arating dynamics and problem conditions. We map
the travelling salesman problem onto a two-dimen-
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sional grid of units performing a competitive dy-
namics in two dimensions. As order parameters
which will allow us to encode the problem appro-
priately we use something like inverse distances be-
tween cities. These inverse distances will determine
the initial state of a dynamical system which then
relaxes to its equilibrium state. The consequence of
this relaxation is that the dynamical system extracts
short paths or neighborhood relations between cities.

After relaxation, the problem conditions or con-
straints are checked. If the proposed solution is not
feasible, i.e. no unique tour results, a new run of the
dynamics is prepared in such a way as to approach
the constraints successively. A recursive application
of this algorithm will finally lead to a feasible solu-
tion, The decoding of the result will give us in gen-
eral a good solution to the TSP problem.

Thus, the overall structure of the problem to be
solved is mapped onto appropriate interactions be-
tween components of a dynamical system - in this
case to amplify certain quantities — whereas the spe-
cifically posed problem is used as initial condition for
the time development of that system. This is a gen-
eral method which can be applied to several optim-
ization problems given an appropriate coding.

The proposed procedure is suitable for parallel
computers as well as for special hardware. Our sim-
ulations, however, were obtained on a serial ma-
chine with a discretized version of the algorithm.

The paper is organized as follows: In section 2, a
brief sketch of the one-dimensional competitive sys-
tem is followed by the two-dimensional generaliza-
tion. Section 3 discusses the precautions to be taken
if the system is applied to the travelling salesman
problem. In section 4 we report on simulations of
100-city-problems. Section 5 compares the results to
other methods and comments on it.

2. The algorithm

We first recall the one-dimensional case. The
problem is to find the greatest component of a vector
x, k=1,.., N. We use the vector c; as initial condi-
tions 4,(0) of a dynamical system described by a
vector d,(t), k=1,., N. For definiteness, let
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0<a, di(t)<1. A dynamical system which ampli-
fies the greatest d;(0), d,..(0) =max{d,(0),k=1,...,
N} until it saturates at d,_, (f»o0)=1 and sup-
presses all others (di.(t—00)=0, k#kna) (cf. fig.
l1a) was formulated in ref. [7]. The interaction be-
tween different d;’s is competitive and a single d,#0
will survive in the long run. Laws of this kind are
very common in nature [9]. Recently, they were ap-
plied to pattern recognition tasks with considerable
success [7,10].

A natural extension to competition in two dimen-
sions is written in the following way,

d0=d) (125 2,00
25 dt,(0-di0)
=d; (1) (l—igid%,j(t)—izd%J(t)
-3 0= Td W+ )

+3d,3J(t)) . | (1)
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Fig. 1. (a) Behavior of a one-dimensional system amplifying the
greatest component of a vector. (b) Schematical sketch of a two-
dimensional system. The resulting matrix of states has a single
“1” in every row and column.
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Equilibrium is reached for
(a) d;;=0,
(b) d,"j= ]., d,'"j=d,-,jf =O Vl' ?éi,j’ #j.
Eq. (1) follows as a gradient dynamics from the
potential
Vidip=-1ydi,+} ¥ didi,;
[N ‘Wf

L,
+4 Y didl -3 ) di,
g o]

0<d;;(1)<1. - (2)

Here, we had to introduce two different indices for
rows and columns, since competition has to take
place only in the corresponding row and column.
Thus, the competitive dynamical system performs
operations on a grid of the d;,’s and changes their
values depending on other 4;;’s.

The dynamics ensures that in every row and col-
umn only one element dominates suppressing the
others (cf. fig. 1b). It has a similar function as the
neuron dynamics in Hopfield and Tank’s solution to
the task assignment problem [12]. Not in all cases
the greatest initial value survives because all cells are
mutually connected and inhibit each other. Accord-
ingly, a change in one cell’s state has consequences
for all others. Fig. 2 shows a typical example of the
process.

—

15.0 20.0 25.0
iterotions

Fig. 2. Typical behavior of the dynamics (only 3 rows shown):
In each row and column one component gets amplified. Due to
interactions sometimes a smaller component dominates,
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3. Application to the TSP

The N-dimensional travelling salesman problem
consists of finding the shortest path through N cities
visiting each city once and returning to the starting
point. The two-dimensional competitive dynamics
introduced above will serve us now to reduce the so-
lution space of the N-dimensional TSP drastically.
Note first that a NX N matrix 4 (the adjacency ma-
trix) is able to represent the N! possible tours of a
travelling salesman visiting N cities {11]. We could
use the dynamical system to generate an adjacency
matrix if an appropriate coding could be found. To
this end, we consider the heuristic search procedure
humans are applying if confronted with the same
problem. Roughly, then we perform the following
operations '

(i) Connect cities with small distances,

(ii) fulfil the constraint of a closed tour,

(iii) minimize tour length by trial-and-error.

We shall follow this heuristic closely. Fig. 3 shows
the overall system composed of a coding layer, the
central dynamic layer and a decoding layer. We start
with the city-coordinates. The coding layer trans-
forms this information in two steps into initial states
of a two-dimensional competitive dynamical system
with N rows and N columns.

First, a table of distances between all cities is gen-
erated. Since only a relative measure is needed, the
distances are normalized by dividing through the
minimal distance in the whole problem,

Jxi=x)2+ (i =)?
min;. ;. '\/(xi' —Xj Y+ - )? '

Secondly, a transformation to the inverse normal-
ized distances is performed,

e,'J'=

(3)

=——, ife, ;#0
ij ei,j- + ¢ > ij )
=0, else, 4)
ity ity
Coding Dynanical De-
—>  |Loyer oding —-
Lager wer
Coerdistes Towr

Fig. 3. The overall system. City coordinates are transformed by a
coding layer into initial conditions of a dynamical layer. After
relaxation, a decoding of the stationary state results in a city tour.
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which will be given as the starting state d; ;(0) to our
dynamical system. ¢ is a cut-off parameter regulating
the maximally allowed value *' of d, ;(0).

The inverse distances 4, ; quantify the proximity of
cities to each other. Indeed, they are used by human
problem solvers to largely reduce alternative choices
among tours. By 4, , in principle, every city is con-
nected to every other one, thus we can interpret them
as possibly realized (fuzzy) paths in a solution to the
TSP at hand and allow its time development. The
dynamical system is constructed to isolate and “‘am-
plify” small distances among cities.

Due to the symmetric character of the matrix
(D), ;=d,; two cities must agree in choosing each
other as of shortest distance. Beginning with d; ;(0),
at the end of the so-called phase I of the dynamics
every city is then connected to its nearest neighbor
if this was not inhibited by another cell. But we want
each city to be connected to two neighbors. Conse-
quently, we have to go through the dynamical stage
twice. In a second phase, one starts again with the
original initial values of inverse distances where,
however, the nearest connections resulting from
phase I are destroyed. This ensures that after run-
ning dynamics a second time in phase II each city is
connected to the next nearest neighbor, too, if this
was not inhibited by other cells.

In the decoding layer results of phases I and II are
considered simultaneously. Now, every city is con-
nected to two other cities whereby one or more closed
paths are generated. The latter constitutes a diffi-
culty since more than one closed path (i.e. appear-
ance of loops) is not a feasible solution to the trav-
elling salesman problem. Although the solution in
terms of overall length is quite good, it is only fea-
sible for the assignment problem.

A closer look at the criteria for non-feasible so-
lutions gives the following picture:

To result in more than one closed loop two con-
ditions must be fulfilled:

(i) The number of participating cities in each loop
N, i=1,..., Ao, must be even and greater than 2,
ie. 4N, <N Vi

(ii) Each city may participate only in one loop,

*! This valueis d, ;= 1/(1+c).

48

PHYSICS LETTERS A

20 March 1989

MLoop

Y N,=N.
i=1

An unfavourable city-distribution will then lead in
the second dynamical phase to two or more loops.
A method to cure this problem is to disconnect in
every closed loop the largest connection between cit-
ies, to retoad the d; ;(0) left for another run and to
allow all but the disconnected paths. Applying this
procedure recursively one finally ends up with a fea-
sible tour. Together with a subsequent local im-
provement of the solution, we call this postprocessing.

4. Simulation results

The simulations presented here are done on 100-
city TSPs. The cities were distributed randomly on
a unit square. Data were accumulated with 100 dif-
ferent city-configurations. To solve eq. (1) time was
discretized and a Newton approximation was applied.

Fig. 4 sketches a selection of typical results for two
configurations. After obtaining the unfeasible solu-
tions (fig. 4a), a recursive application of the algo-
rithm generates a feasible tour with obvious short-
comings (fig. 4b). The postprocessing by a local
search strategy (2-opt), however, eliminates these
flaws rather effectively (fig. 4¢).

Table 1 shows the outcome of the dynamical phases
I and II in terms of resulting loops, added for all con-
figurations. Fig. 5 displays all runs compared to a
purely local search by 2-opt and a simple greedy al-
gorithm starting with an arbitrary city. Table 2 sum-

‘marizes these results and compares them to the the-

oretical limit of =7.49 [13]. It turns out that the
algorithm converges in general to a tour slightly
longer than the two simpler algorithms. The local part
of the postprocessing, however, improves the results
considerably. The latter might be identified with the
trial-and-error phase of a human problem solver. We
expect the postprocessing to be necessary in nearly
all cases due to the local nature of the dynamics
applied.

An interesting aspect is the saturation behavior of
variables d; ;(¢). If one plots the number of variables
not saturated over the number of iterations a phase
transition seems to be visible. It may be said that the
system undergoes a phase transition from its unde-



Volume 136, number 1,2

o

v
i

Fig. 4. Two samples of the results. (a) After phases I and 11. (b)
After application of the recursive algorithm. (c) After an addi-
tional local search by 2-opt.

Table 1
Loops of N, cities appearing in 100 100-city-TSPs.
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N; n ’ N; n
4 323 20 3
6 89 22 4
8 45 24 6
10 19 26 4

12 14 28 1

14 12 30 2

16 9 34 2

18 ) 42 1
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Fig. 5. Resulting tour length for 100 100-city-TSPs. (a) Two-di-
mensional competitive dynamics including postprocessing. (b)
2-opt. (¢) Greedy algorithm.

cided state (no variable saturated) to its decided state
(all variables saturated). Fig. 6 exemplifies this be-
havior using a sample of 100 random 10-city con-
figurations. The earlier competition sets in, the faster
the problem is solved. It follows that one can accel-
erate the process by starting the system near the on-
set of competition.
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Table 2
Comparison of 100 runs with identical city configurations.

PHYSICS LETTERS A

Comp. dyn. 2-opt Greedy

Configuration 1 7.98 8.71 9.44
Configuration 2 & 8.27 8.80 9.26
Average ®’ 8.32 8.59 9.71
Better solutions ©’ 84 16 0

*) Cf.fig. 5. ° Over 100 configurations.
) Compared to the other two methods.

100.0 W
90.0} 1
80.0+ —
70.0+ —J
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50.0 ¢ 1

400+ B
30.0} 4

average number of eqations

20.0 B
10.0f 4

0'%.0 5:0 10.0 15.0 20.0 25.0 30.0 350 400

iterations

Fig. 6. Saturation behavior in random city configurations. The
sharp transition in the number of equations iterated ( =unsatu-
rated variables) indicates a phase transition.

5. Discussion

Other dynamical laws are likewise reasonable. One
particular candidate would be

di(t)=d;;(t) [a(l—_z d} (1) - ,,Z_d?,,-l(t))

+p(1- a0 )0(1-sa0)]. ©

2|~

A=

2 di (), (6)

p=y=1-2 3 d, (). M

Parameters «, f, y are varying dependent on the
global field which is a measure of the overall deci-
sion state of the system. Towards the end of the re-
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laxation process this forces the system more and more
to the desired state.

The comparison with other algorithms shows an
average upgrade in solution quality of at least 3 per-
cent. This result should be seen in the context of the
natural parallelizability of the dynamics considered.
A special purpose hardware could lead to decision
times of the order of milliseconds having most of the
processing time saved for postprocessing and read-
out. The computational resources of N2 processing
units could be limited (to say 104 simple processors)
by processing local regions of the total problem se-
rially. Besides these modifications, a single dynam-
ical run may be useful to solve graph matching prob-
lems, and the dynamics as a whole, though without
postprocessing, may be used to solve assignment
problems (cf. ref. [11]).

Thus, the algorithm demonstrated is not a general
solution to the TSP problem. Rather it is another dy-
namical system capable of collective computation.
The difference to other systems used for optimiza-
tion is that only the general structure of the problem
is mapped onto interactions between collective vari-
ables whereas the concrete problem itself is pre-
sented as initial condition to the network.

This procedure resembles in some aspects the “in-
telligence amplifier” designed by Ashby in the fifties
[14]. Indeed, a system is constructed which has the
potential to give a nearly infinite amount of solu-
tions. The overwhelming majority of possible solu-
tions is destabilized under influence of the initial
conditions by the particular interaction chosen. In
this interpretation, an enormous range of models may
be candidates for a solution of various optimization
problems.

Acknowledgement

The author is very grateful to Professor H. Haken
for his valuable suggestions and for creating in his
institute the research atmosphere without which this
work would never have been completed.

References

[1] 8. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Science 220
(1983) 671.



Volume 136, number 1,2

[2]T. Boseniuk, W. Ebeling and A. Engel, Phys. Lett. A 125
(1987) 307.°

[3]1R.M. Brady, Nature 317 (1985) 804.

[4]1H. Miihienbein, M. Gorges-Schleuter and O. Kréimer,
Parallel Computing 7 (1985) 65.

[511.J. Hopfield and D.W. Tank, Biol. Cyb. 52 (1985) 141.

[6] G.V. Wilson and G.S. Pawiey, Biol. Cyb. 58 (1988) 63.

[71H. Haken, in: Computational systems - Natural and
artificial, Proc. Elmau Int, Symp. on Synergetics, 1987, ed.
H. Haken,

[8]1 M. Takeda and J.W. Goodman, Appl. Opt., 25 (1986) 3033.

PHYSICS LETTERS A

20 March 1989

[9]1 H. Haken, Synergetics, an introduction, 3rd Ed. (Springer,
Berlin, 1983).

[10] H. Haken, in: Neural and synergetic computers, Proc. Eimau
Int. Workshop on Synergetics, 1988, ed. H. Haken (Springer,
Berlin, 1988).

[H1]E. Lawler, Combinatorial optimization, networks and
matroids, (Holt, Rinehart and Winston, New York, 1976).

[12]1J.J. Hopfield and D.W. Tank, Sci. Am. 266 (Dec. 1987) 62.

[13] E. Bonomi and J. Lutton, SIAM Rev. 26 (1984) 551,

[14] R.W. Ashby, in: Automata studies, eds. C.E. Shannon and
J.McCarthy (Princeton Univ. Press, Princeton, 1956).

51



