IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024

1689

A Semantic-Based Hoist Mutation Operator for
Evolutionary Feature Construction in Regression

Hengzhe Zhang™, Member, IEEE, Qi Chen™, Member, IEEE, Bing Xue"™, Senior Member, IEEE,
Wolfgang Banzhat™, Member, IEEE, and Mengjie Zhang ', Fellow, IEEE

Abstract—In recent years, genetic programming (GP) has
achieved impressive results on evolutionary feature construc-
tion tasks. To increase search effectiveness, researchers have
developed many semantic-based crossover and mutation opera-
tors to guide GP searches toward the target semantics. However,
semantics has not yet been explored for the hoist mutation
operator, which is an operator designed for controlling the bloat
effect. Although the hoist mutation operator can significantly
reduce model sizes, the most informative subtree may be
disrupted by the randomness in mutation. To address this issue,
we develop a semantic-based hoist mutation (SHM) operator
in this article to preserve the most informative subtree that
has the largest cosine similarity between its semantics and the
target semantics. Experimental results on 98 regression datasets
from the Penn Machine Learning Benchmark show that using
this operator not only significantly reduces model size but also
improves the test accuracy of features constructed by GP. A
comparison with seven bloat control methods shows that the
proposed operator achieves the best tradeoff between accuracy
and model size. Moreover, an experiment on the state-of-the-art
symbolic regression benchmark shows that GP with the SHM
operator achieves the best test accuracy and competitive model
sizes compared with 22 symbolic regression and machine learning
algorithms.

Index Terms—Bloat control, evolutionary feature construction,
evolutionary machine learning, genetic programming (GP).

I. INTRODUCTION

EATURE construction is an important task in the machine
learning pipeline. For a dataset {X, Y}, feature construc-
tion constructs m high-order features ® = {¢1(X), ..., pu(X)}

Manuscript received 2 April 2023; revised 24 July 2023 and 26 September
2023; accepted 26 October 2023. Date of publication 8 November 2023; date
of current version 3 December 2024. This work was supported in part by
the Marsden Fund of New Zealand Government under Contract VUW1913,
Contract VUW1914, and Contract VUW2016; in part by the Science for
Technological Innovation Challenge (SfTI) Fund under Grant E3603/2903;
in part by the MBIE Data Science SSIF Fund under Contract RTVU1914;
in part by Huayin Medical under Grant E3791/4165; and in part by
the MBIE Endeavor Research Programme under Contract C11X2001 and
Contract UOCX2104. (Corresponding author: Qi Chen.)

Hengzhe Zhang, Qi Chen, Bing Xue, and Mengjie Zhang are with
the Centre for Data Science and Artificial Intelligence and the School
of Engineering and Computer Science, Victoria University of Wellington,
Wellington 6140, New Zealand (e-mail: hengzhe.zhang@ecs.vuw.ac.nz;
qi.chen@ecs.vuw.ac.nz; bing.xue@.vuw.ac.nz; mengjie.zhang @
ecs.vuw.ac.nz).

Wolfgang Banzhaf is with the Department of Computer Science and
Engineering, College of Engineering, and the BEACON Center, Michigan
State University, East Lansing, MI 48824 USA (e-mail: banzhafw @msu.edu).

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TEVC.2023.3331234.

Digital Object Identifier 10.1109/TEVC.2023.3331234

to improve the prediction accuracy of the machine learning
algorithm on unseen data. Genetic programming (GP)-based
feature construction methods have become popular in recent
years and have achieved many impressive results [1], [2]
due to their flexible representation and gradient-free search
mechanism.

GP is an evolutionary algorithm that focuses on evolving
variable-length solutions for solving complex optimization
problems [2]. For evolutionary feature construction tasks, tree-
based GP is a dominant method because the constructed
features can be easily represented as expression trees [1], [2].
During GP evolution, genetic operators randomly cross two
subtrees of two selected GP trees or randomly mutate a subtree
of a selected GP tree to generate new GP trees. With the
fitness value obtained using an evaluation function and the
selection pressure introduced by the selection operator, GP can
iteratively discover expressive features that enhance a specific
machine-learning algorithm on a given dataset.

In tree-based GP, there is a phenomenon known as “bloat,”
where increasing the size of GP trees does not lead to better
fitness values [3]. Bloat may be due to hitchhiking [4], defense
against crossover [5], removal bias [6], or the nature of pro-
gram search space [7]. The hitchhiking hypothesis [3] suggests
that redundant building blocks are accidentally attached to
good individuals and can survive in selection as they do not
worsen fitness. The defense against crossover hypothesis [5]
suggests that larger GP trees are less susceptible to destructive
crossover, hence they have a higher chance to survive. The
removal bias hypothesis [6] suggests that removing large
subtrees is more detrimental than removing small subtrees,
leading to an increase in the average tree size of the population.
The nature of the program search space hypothesis [7] posits
that large and good individuals are more abundant than small
and good individuals, making it easier for GP to find large
and good individuals.

Regardless of why bloat occurs, it is widely recognized
that bloat can trap GP in local optima and impact the
interpretability of the final model [8], [9], [10]. Many methods
have been proposed to address this issue, including parsimony
pressure [11], [12], dynamic depth limit [13], prune and plant
(PAP) [14], multiobjective method [15], [16], and program
simplification [17]. These methods have successfully reduced
the size of GP trees. Among these methods, the PAP method
has been shown to be effective for symbolic regression [9] as it
actively prunes GP trees to reduce their size. PAP is a variant
of the hoist mutation method [5], which is a bloat control

1089-778X (© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2254-8304
https://orcid.org/0000-0001-9367-4757
https://orcid.org/0000-0002-4865-8026
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0003-4463-9538

1690

method that randomly chooses a subtree from an individual
and replaces it with a smaller subtree from within itself. PAP
takes this further by hoisting a subtree to the root node as a
new individual and randomly replacing the hoisted subtree in
the original individual with a terminal variable. For both PAP
and the hoist mutation operator, selecting the subtree to hoist
is the most critical step. The quality and size of the selected
subtree determine the changes in fitness values, as well as
changes in individual sizes. However, the traditional hoist
mutation operator, including the PAP variant, selects a subtree
randomly from a GP tree. It may disrupt the informative
components in a GP tree and generate many less informative
trees in the population that are not beneficial to evolution.

To overcome the limitations of the current hoist mutation
operator, we propose a semantic-based hoist mutation (SHM)
operator in this article. In recent years, semantic GP has
become popular in the GP domain [18], [19], [20], [21]. The
general idea of semantic GP is to use the output values of
GP trees to guide the search process in addition to the fitness
value [18]. In an evolutionary feature construction scenario, for
a given dataset {X, Y}, the semantics of a GP tree ¢ is ¢ (X) =
{6 (X1), ..., 9(X,)}. Semantic GP optimizes GP based on both
behavior and objective spaces [22], resulting in better search
performance [18] and population diversity [22].

The general idea of our new hoist mutation operator, SHM,
in this work is to hoist the subtree with the largest semantic
similarity to the target semantics to form a new GP tree.!
By preserving the most informative part of the tree, SHM
can significantly reducing tree size while improving fitness
values. However, in multitree GP, we observed that some
important subtrees frequently appear in different GP trees of
a single individual, and hoisting only the most informative
subtree resulted in the same tree appearing multiple times in
a GP individual. To overcome this issue, we embed a hash-
based checking strategy in the SHM operator to skip identical
subtrees and maintain diversity in GP individuals. In summary,
the key objectives of this article are as follows.

1) Develop an SHM operator. The new mutation operator
aims to hoist the most informative subtree, thus control-
ling the bloat effect and improving the fitness values of
GP models.

2) Design a hash-based checking strategy to avoid hoisting
identical subtrees. This strategy assists GP in maintain-
ing diverse features within each GP individual.

3) Provide a theoretical analysis of the generalization
bound for the evolved GP models. This analysis aims
to demonstrate the rationale behind using the proposed
SHM operator.

The remainder of this article is organized as follows.
Section II reviews related work on semantic GP and bloat
control methods. Section III presents details of the proposed
hoist mutation operator. Experimental settings and results are
given in Sections IV and V, respectively. Section VI shows
additional analysis, including ablation studies and model
visualization. Finally, Section VII provides conclusions and
future directions. The key notations used in this article are
listed in Table 1.

ISource code: https://tinyurl.com/SHM-GP.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024

TABLE I
NOTATIONS USED IN THIS ARTICLE

Symbol Description
P GP Individual
GP Tree
o(X) Constructed Feature
n Population Size

m Number of Trees in Each Individual
X Original Feature

Y Target Label

N Number of Training instances

II. RELATED WORK
A. Bloat Control

In GP, bloat refers to the tendency of solutions to become
more complex over time without improving the fitness
value [5]. Several hypotheses have been proposed to explain
the reason for bloat, including hitchhiking [4], defense against
crossover [5], removal bias [6], and the nature of the program
search space [7]. While the explanations for bloat remain
an ongoing subject of research, the benefits of bloat con-
trol in GP have been widely recognized [8], [10], [13]. For
evolutionary feature construction tasks, controlling the size
of GP-constructed features can make the final features more
interpretable, improve search effectiveness, and mitigating
overfitting [10]. Although researchers in machine learning
have developed numerous regularization techniques to reduce
functional complexity and prevent overfitting, it is important
to note that bloat control techniques differ from overfitting
control techniques, as bloat control techniques primarily aim
to reduce structural complexity for searching interpretable
models. Thus, researchers have developed many bloat control
methods for GP.

In GP, bloat control methods can be applied in differ-
ent stages: evaluation, selection, and variation. During the
evaluation stage, the parsimonious pressure method penalizes
model complexity within the fitness function to avoid evolving
oversized models [23]. However, it is hard to determine
the weight of the model complexity term [12]. To address
this, multiobjective techniques have been widely used to
balance fitness with complexity automatically [16], [24], [25].
Regrettably, the standard multiobjective GP (MOGP) approach
may spend many resources on searching for trivial individuals.
For example, a recent study on symbolic regression shows
that more than 30% of GP trees in the final population in
standard MOGP have only one node, which hinders GP from
discovering good solutions [26]. To address this limitation,
the adaptive a-dominance strategy [27] and some improved
variants of NSGA-II [26] have been developed to encourage
multiobjective techniques to discover more good solutions.
Rather than considering fitness and complexity as a tradeoff,
the Tarpeian method directly assigns extremely poor fitness
values to a portion of larger-than-average individuals [28]. By
doing so, larger individuals have a smaller chance to survive,
thereby curbing bloat.

For the bloat control methods used in the selection stage,
a representative example is lexicographic parsimony pres-
sure [11]. This operator selects two individuals and takes the
fitness value as the first objective to select the best parent,

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SHM OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

meanwhile considering the individual size as the second
objective in case of tied fitness. Other representative bloat
control methods in the parent selection stage include propor-
tional tournament selection and double tournament selection
(DTS) methods [8]. One comparative study shows that the
DTS method achieves superior performance among several
selection-based bloat control methods on multiplexer and
symbolic regression problems [8]. In addition to modifying
the tournament selection operator, other selection operators,
like the lexicase selection operator, can also be used to control
the bloat effect [29]. Finally, several techniques in GP can
automatically control the depth limit based on the fitness
distribution [13], [30]. The dynamically controlled depth limit
is used to determine which individuals to preserve, and thus
can also be categorized as a bloat control method used in the
selection stage.

Both bloat control methods in the evaluation and selec-
tion stages passively control bloat. In contrast, bloat control
methods based on variation operators, e.g., crossover and
mutation operators, actively control bloat [3], [9], [20], [31].
For example, the size fair crossover operator [3] first randomly
selects a subtree a from the first parent with a size of s,
then it limits the size of the second subtree, sp, to less than
Sq¢ * 2 4 1, thereby controlling bloat. The hoist mutation
operator [31] was proposed to explicitly reduce the model
size by replacing a randomly chosen subtree with a subtree
in itself. Based on the idea of the hoist mutation operator,
Alfaro-Cid et al. [14] proposed the PAP operator to plant the
pruned subtree to the population as a new individual instead
of replacing the original individual. This operator avoids the
loss of genetic material and achieves impressive results in a
comparison of several bloat control methods [9]. However,
existing variation-based bloat control methods rarely consider
semantic information, and important genetic material may be
disrupted after pruning. Thus, these algorithms still have a lot
of room for improvement in terms of search effectiveness.

In addition to incorporating bloat control techniques in
genetic operators, there is another kind of variation-operator-
based bloat control method named program simplification [32].
Different from traditional bloat control methods,
simplification-based methods require the simplified GP tree
to have exactly or approximately equal semantics with the
original GP tree. For the exact program simplification tech-
niques, they simplify GP trees by removing inactive code [33]
or using mathematical rules [34]. These methods ensure the
semantics of the simplified GP tree is the same as that of the
original GP tree, but designing these methods requires rich
domain knowledge. Also, requiring exactly the same semantics
could bring difficulties in finding smaller individuals, like
simplifying x + 10710 to x. Thus, many approximate program
simplification techniques are proposed to simplify GP
trees. These methods include replacing parent nodes with
semantically similar child nodes [35] and replacing a subtree
with a randomly generated tree with similar semantics [20].

B. Semantic Genetic Programming

In the GP domain, semantics refers to the outputs or
behavior of a GP individual [36]. Semantic GP refers to

1691

GP algorithms that use the semantics of GP individuals to
guide evolution. Many semantic-based crossover and muta-
tion operators have been proposed in [37]. A representative
example is geometric semantic crossover (GSX) [38]. It
guarantees the effectiveness of GP search by generating
offspring with desired semantics. However, GSX faces the
problem of exponential growth in model size, leading to
expensive evaluations and uninterpretable models [39]. To
address this, semantic approximation techniques have been
developed. Some researchers [18], [40] developed semantic
genetic operators that search for a subtree in an external library
to make offspring approximate the target semantics without
suffering from exponential growth.

As for selection operators, lexicase selection [41] is a
representative example that uses semantics instead of fitness
values to select parents. The key idea of the lexicase selection
operator is to iteratively filter out less fit GP individuals
in the current population P by a filter min,epLi(P) + €,
where k € [1,n] is a random index within the n training
instances/cases, min,cp Ly (P) represents the minimum fitness
value of the population P on fitness case k and €; indicates
the mean absolute deviation of fitness values on case k. The
filtering process is repeated until only one individual remains,
or all cases are traversed. By examining different cases in each
iteration, lexicase selection significantly enhances population
diversity compared to fitness-based selection operators, which
ultimately improves the quality of final results. Inspired by
lexicase selection, several other semantic-based operators, like
GPED [21] and MAP-Elites [42], have also been proposed to
increase population diversity and search efficiency. Although
both semantic-based variation and selection operators have
gained wide attention, SHM operators remain underexplored.
Given that hoist mutation is a powerful technique to control
code bloat, it is worthwhile to investigate how to design an
effective SHM operator.

C. Genetic Programming for Feature Construction

Evolutionary feature construction is a key technique
in machine learning and has received wide atten-
tion [2], [16], [43]. Among these methods, GP-based feature
construction methods have achieved superior performance to
tackle regression [44], classification [1], [45], and clustering
tasks [46]. Depending on the evaluation methods used for GP-
constructed features, GP-based feature construction methods
can be categorized as filter-based, wrapper-based, or embedded
methods. Filter-based methods do not use any machine
learning algorithm to evaluate the quality of constructed
features. Instead, they use information gain [47], Pearson
correlation [48], or other information-theoretic measures [45]
to evolve expressive features to enhance arbitrary machine
learning algorithms. However, since filter-based feature
construction methods do not rely on a specific machine
learning algorithm, they may not be able to discover features
that work best for a particular algorithm. In comparison,
wrapper-based feature construction methods evaluate features
on a specific machine learning algorithm and thus can often
have better performance than filter-based methods [44]. For
instance, features can be evaluated using a decision tree (DT),

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

1692

Population Initialization
Solution Evaluation
Hoist Mutation

No
Offspring Generation

— Termination?
Yes
End

Workflow of SHM-GP.

Fig. 1.

a linear regression (LR), a support vector machine (SVM), and
an extreme gradient boosting (XGBoost) algorithm [2], [44].
Embedded feature construction methods refer to a kind of
method that constructs features during the model learning
process [49]. In general, the predictive performance and
time cost of embedded methods lie between filter-based and
wrapper-based methods. They are faster than wrapper-based
methods because they only need to train the learning algorithm
once. However, performing feature construction and model
fitting simultaneously might be too difficult for GP, especially
given that GP is not good at fitting coefficients [50].

Previous studies have successfully applied GP-based feature
construction algorithms in various domains [44], [46], [51].
However, the issue of bloat in GP increases the program
size, thus reducing search effectiveness and impairing the
interpretability of discovered features. This article seeks to
alleviate such a problem.

III. NEW ALGORITHM

In this section, a new SHM operator for GP-based feature
construction is proposed and described in detail. We first
introduce the overall algorithm of GP with the SHM operator
(SHM-GP). Then, a semantic similarity calculation method,
a hoist mutation operator, and some additional strategies are
presented. Finally, we provide a generalization bound based
on the Vapnik—Chervonenkis (VC) dimension to show the
rationale for using the proposed SHM operator in GP.

A. Overall Framework

The SHM operator is proposed to reduce the size of GP
trees in GP-based feature construction methods. Like many
existing evolutionary feature construction methods [2], the
proposed algorithm is based on a tree-based GP framework.
As presented in Fig. 1, the overall algorithm consists of five
steps: 1) population initialization; 2) solution evaluation; 3)
hoist mutation; 4) parent selection; and 5) offspring generation.
A brief introduction to these five steps is as follows.

1) Population Initialization: In SHM-GP, each GP indi-
vidual has a multitree representation that consists of m
trees to represent m constructed features. Thus, during
the initialization stage, we randomly generate n * m
GP trees with the ramped half-and-half method to fill a
population with n individuals.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024

Linear Model
D @ D 3]

Fig. 2. Example of GP individual in SHM-GP.

2) Solution Evaluation: During the evaluation stage, we
first transform the training data from the original features
X to the constructed features {¢1(X), ..., ¢n(X)} using
the m GP trees in a GP individual. Then, a linear
model is trained on the constructed features to make
predictions. As shown in Fig. 2, in this example, a linear
model is trained on three features {¢(X), ¢2(X), ¢3(X)}
constructed using the three GP trees {¢1, ¢, ¢3}. The
linear model is chosen because it is an effective and
efficient machine learning model and is also easy to ana-
lyze with theoretical tools. To ensure that the constructed
features can generalize well, the coefficients of the linear
model are learned by a ridge regression method with
the leave-one-out cross-validation algorithm. The leave-
one-out errors on each data instance {1,2,...,N} —
{1 — yD)2, ..., O — yn)?} are recorded to form a
fitness vector of individual ®, which is used for lexicase
selection. We use leave-one-out errors instead of training
errors to form the fitness vector because we aim to
discover features that can generalize well on unseen
data. When determining the final model for predicting
unseen data, the model with the minimum mean squared
error is chosen because it is hard to choose the best
model based on a fitness vector.

3) Hoist Mutation: After evaluation, the semantic hoist
mutation operator is applied to each tree ¢ € @ to
extract the most informative subtree Vet and replace
the original tree ¢ with the subtree pesi. The criterion
for determining the most informative subtree Yrpeg iS
introduced in Section III-B1.

4) Parent Selection: In order to fully exploit semantic
information, SHM-GP utilizes the lexicase selection
operator [41] to select parents. Unlike tournament selec-
tion that compares individuals based on the mean error
on all cases, lexicase selection compares individuals
case by case. By considering fitness values case-by-case,
lexicase selection can select specialists that perform
exceptionally well in a few cases, regardless of their
overall fitness value. The lexicase selection operator is
described in detail in Section II-B.

5) Offspring Generation: SHM-GP modifies two parents
using random subtree crossover and random subtree
mutation to generate two offspring. Unlike the traditional
random mutation operator that randomly generates a new
subtree, SHM-GP generates a subtree using a guided
subtree generation (GSG) operator [43]. The general
idea is to sample terminal variables according to the
frequency of each terminal variable in good individuals,
weighted by the importance value of each GP tree.
Details of the GSG operator are introduced in Section A
of the supplementary material. Since SHM-GP uses an
m-tree representation, we perform m rounds of random-
index crossover and random-index mutation on each

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al..: SHM OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

Semantic
| Similarity

.
o OO

¢ 17 =XaxXq

= J

¢ 1=XixX1/ X2

Fig. 3. Example of the SHM operator.

pair of parents to encourage exploration. In each round,
all trees have an equal probability of being chosen for
crossover and mutation.

B. Semantic-Based Hoist Mutation

1) Cosine Semantic Similarity: First, we need to define an
indicator to measure the quality of each subtree to determine
which subtree to hoist to the root. Since we train an LR
model on the GP-constructed features {¢(x), ..., ¢n(x)}, the
magnitude of each feature ¢(X) is not important because
the LR algorithm can automatically determine the optimal
coefficient of each constructed feature. Therefore, using square
error (Y — ¢(X))? to measure the semantic similarity between
a feature ¢ (X) and the target semantics Y is not ideal because
it does not consider the effect of LR. Instead, using cosine
similarity

>oimg $(Xi) - i
VI o v
as the semantic similarity score is a better choice as it reflects
the real quality of a feature with the LR technique. In SHM-
GP, we use the absolute value of the cosine similarity since the
sign issue can be addressed by LR later. It is worth noting that
the cosine similarity score is sensitive to the shift. However,
when using LR as the learning algorithm, it is desirable to let
¢ (X) and ¢ (X) + ¢ have the same importance value since the
shift term ¢ can be automatically canceled out by adding a
bias term in LR. In order to eliminate the impact of shift, we
subtract the mean value ¢ (X) from ¢ (X) before calculating the
similarity score, i.e., ¢(X) < ¢(X) — ¢ (X). In SHM-GP, we
calculate the cosine semantic similarity of each subtree ¥ in
a GP tree ¢ during the fitness evaluation phase, which can be
computed during feature construction. Thus, it only increases
the fitness evaluation time linearly.

2) Semantic Hoist Mutation Operator: Once the cosine
similarity of each subtree ¢ € ¢ is obtained, SHM-GP
enumerates all possible trees to get the optimal tree to be
hoisted. Fig. 3 presents an example of the semantic hoist
mutation operator. In this figure, a subtree xj xx; is hoisted to
be a new tree as it has the highest cosine semantic similarity
among all subtrees in xj * x1/x2, where the cosine semantic
similarity is indicated by the percentage of the green bar.
The pseudocode of the hoist mutation operator is presented
in Algorithm 1. In this pseudocode, Opest records the best
similarity score in the traversal, and Ypes; Stores the optimal
subtree with the best similarity score. After traversing all
subtrees, SHM-GP adds vpest to be the new individual &'

0 =cos(¢p(X),Y) = (1)

1693

Algorithm 1 Hoist Mutation

Input: A GP Individual ® = {¢y,...¢,}, Training Data
{X, Y}, Semantic Similarity of Each Node {0y |} € ¢}

Output: Mutated GP Individual {¢}, ..., ¢}

. ®={} > Mutated GP Individual
2: while |®'| < |®| do

3 Success < false

4 for ¢ € @ do

5: Opest < 0 > Current best semantic similarity
6 Ybest < @ > The optimal subtree
7 for € ¢ do > Enumerate all subtrees
8 if 0y > Opeg; and Y ¢ @' then

9: Obest < Oy
10: Ybest < ¥
11: if Opesr > O then
12: P «— P'U {wbest}

13: Success < true
14: if |®'| == |®| then
15: break
16: if !Success then

17: break

18: return @’

Semantic

I Similarity
I
-
A7 A ' Hoist
00 *
] " l}
D ' =XexX D ,=XexXe+Sin(X,) & ,'=Sin(X,)

Fig. 4. Example of the semantic check.

After processing all trees ¢ € @, the pruned individual @’ is
returned for generating offspring.

In SHM-GP, diversity may be significantly reduced with
the proposed hoist mutation operator because an identical
informative subtree ¢’ may appear in several trees of an
individual ®. Then, after applying the hoist mutation operator,
¢’ may appear multiple times in an individual ®. This
is a serious problem for evolutionary feature construction
since redundant features produce no additional benefits but
waste computational resources. For example, in Fig. 4, it is
unreasonable to hoist the subtree x1 * x2 to be the second
tree since it is the same as the first tree. To solve this
issue, we propose a hash-based checking strategy in the hoist
mutation operator. As shown in lines 4—17 of Algorithm 1, we
sequentially evaluate all GP trees ¢ in an individual ®. For
each proposed optimal subtree v, we check whether 1 already
exists in the individual ®’. Each individual maintains a hash
table, and thus the time complexity of redundancy checking is
O(1). If the subtree v does not exist in @', the best candidate
tree ¢ can be replaced by the best subtree ¥. After iterating
through all subtrees, if there is a subtree ¢peg that satisfies
Opest > 0, then Ppe; is added to the individual ®’. The check
and hoist process will execute repeatedly until enough trees
are hoisted or there is no subtree that can be hoisted, which is

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

1694

shown in lines 14 and 16 of Algorithm 1. In Fig. 4, the best
subtree apart from x; * x is sin(xp), which is hoisted to be
the second tree because it is the best tree that can be hoisted
without incurring redundancy.

3) Additional Strategies: Also, to further reduce model
sizes and improve feature diversity and search effectiveness,
we apply two strategies that accompany the SHM operator.

1) Equivalent Node Prune [52]: If a subtree ¢ has iden-

tical semantics to its upper-level subtree ¢’, it indicates
that the upper-level subtree has redundant parts, and thus
the upper-level subtree ¢” is replaced with ¢'.

2) Constant Node Prune [37]: If the semantics of a subtree

is equal to a constant value, then the subtree is replaced
by this constant value.

C. Learning Guarantees

In this section, we focus on proving the rationale of
developing the above SHM operator with the LR model.

Theorem 1: Consider a GP-constructed feature ¢ which has
been standardized with zero mean and unit variance before
training a linear model. Let 6 be the cosine similarity between
feature ¢ (x) and target variable y with # indicating the number
of instances. Define & as the VC dimension [53] of a learning
model with a GP tree ¢ and a linear model, that measures the
complexity of functions that can be discovered by a GP tree ¢
with a linear model. Abbreviate h/n as p. The generalization
loss of the constructed model can be bounded by

-1
1
—+

with the probability of at least 1 — ¢.”

Proof: Since the data are standardized to zero
mean and unit variance, y = 0 and ¢(x;) = 0,
([0 (@00 — 6D /m) = 1 and (XL, 0 —)1/n)
= 1 are true. It means Y\, (¢(x;))> = n and Y} 1, (n:)?
= n, and cosine similarity can be simplified as 6 =
(1/n) Y"1, yi¢(x;). Given that the coefficient of a feature

in the linear model is determined by the equation
a = (XL 0i =MN@0) — NI/ 2 6 — 1))

(\/ Z;l:l(qﬁ (x) — ¢ (x)))]) [19], the relationship between the
sum squared error and 6 can be established

D i —ap(x)?

i=1

B S 2
_ Z . l(y, y)(¢(XJ_— ¢2(X)) 50
Yo (@) —d)
_ , lyl¢(X;))
Z(AT A

= Z(yz - —¢(x,)2

2x+ = max(x, 0) represents the rectifier function.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024

n

=3 (57 - 2000 (x) + 676 (%)
n
i=1
n

= Zylz —no? =
i=1

—2n6?% +6%n

n(1 - 92).

Then, the following inequality holds [54]:

—1
l & Inn
Lexp(¢) = — > i —a¢(xl~))2<l —y/p—plnp+ E)
i=1 i
-1
1 5 Inn
—;<n—n9><1— p—plnp—i—E)Jr
I —1
—(1-0\1-./,— mn
- (1 0)(1 p—plnp+ 2n>+.

Theorem 1 shows that the generalization bound is negatively
correlated with 62. Therefore, it is reasonable to use 62 as a
criterion to select the hoist point to ensure that the semantic
similarity of the new tree Ypes 1S no less than that of the old
tree ¢, ie., 1 — (efmml) < 1 — (6;). Additionally, since the
hoisted subtree Ypest 1S a part of the tree ¢, the VC-dimension
of Ypest is not larger than the VC-dimension of ¢, i.e., hy,,,
< hg. Thus, the generalization bound of the hoisted subtree
Ypest 18 not larger than that of the original feature ¢, which
means that the hoisted subtree Ypes generalizes at least as
well as the original tree ¢, showing an advantage of using the
SHM operator for machine learning tasks.

It is worth noting that this generalization bound only applies
to a single-tree GP. For a multitree GP, feature interaction
will make the above analysis more complicated, and the
generalization bound will be more complex. Nonetheless, the
generalization bound on the single-tree GP shows that hoist
mutation has a solid theoretical foundation for a special case of
multitree GP, and experimental results in Section V show that
the SHM operator can have good generalization performance
for a multitree GP.

A

IV. EXPERIMENTAL SETTINGS
A. Datasets

In this article, experiments are conducted on regres-
sion datasets from Penn Machine Learning Benchmark
(PMLB) [55], which is a curated list of datasets based on the
OpenML repository. Due to limited computational resources,
experiments are conducted on 98 datasets with fewer than 2000
instances. Detailed information about these datasets can be
found in the supplementary material. In the section comparing
SHM-GP with other SR and ML algorithms, all 120 datasets
in PMLB are used to be consistent with the state-of-the-art
symbolic regression benchmark (SRBench) [56]. The number
of instances for these datasets ranges from 47 to 1000 000,
while the number of features varies between 2 and 124.

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SHM OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

TABLE 11
PARAMETER SETTINGS FOR SHM-GP

Parameter Value
Population Size 1000
Maximal Number of Generations 100
Crossover and Mutation Rates 0.9 and 0.1
Maximum Tree Depth 10
Maximum Initial Tree Depth 6
Number of Trees in One Individual 10
Elitism (Number of Individuals) 10
. Add, Sub, Mul, AQ, Sin, Cos,
Functions

Abs, Max, Min, Neg

B. Evaluation Protocol

This article follows the conventional evaluation protocol
of evolutionary machine learning. Specifically, each dataset
is divided into a training set and a test set at a ratio of
80:20. In order to eliminate the influence of different scales of
datasets, all datasets are standardized before training [57]. To
remove the influence of scale on target labels, test scores are
reported using the R? score metric, which has a range of [0, 1].
Formally, R? is defined as 1 — ([3_;(vi — 90*1/[2; i — 9D,
where J; represents the prediction value on data item i,
and y indicates the average of ground truth values y. To
get a reliable conclusion, each algorithm is tested on each
dataset with 30 independent runs with different random seeds,
where each dataset is randomly shuffled at the beginning of
each independent run to ensure randomness of the training
data. After finishing all experiments, a Wilcoxon signed-rank
test with a significance level of 0.05 is applied to verify
the significance of the performance difference between the
proposed method and baseline methods.

C. Baseline Methods

In this article, we implement seven GP approaches with

bloat control methods as a baseline for comparison.

1) Standard GP With Depth Limit: The depth limiting
method sets a depth limit for each GP tree. Most
existing GP approaches for feature construction adopt
this method to control bloat and improve generalization
performance.

2) DTS [8]: The DTS method was proposed by Luke
and Panait [8]. It first selects two individuals using
tournament selection based on fitness values. Then, it
selects the smaller individual as a parent with a higher
probability.

3) Tarpeian [28]: The general idea of Tarpeian is to directly
assign poor fitness values to a fraction of individuals
that exceed the average tree size.

4) PAP [14]: The PAP operator prunes a subtree from the
population by replacing it with a random node, and
plants the pruned subtree in the population as a new tree.

5) «-MOGP [27]: «-MOGP designs an o adaptation
scheme to automatically balance fitness and complexity
under the NSGA-II framework [58]. Such a strategy is
proposed to avoid MOGP spending a lot of resources on
exploiting trivial solutions.

1695

TABLE III
PARAMETER SETTINGS FOR BLOAT CONTROL
IN DIFFERENT ALGORITHMS

Algorithm Parameter Settings
DTS [8] Tournament size = 7, Parsimony size = 1.4
Tarpeian [8] Reduced fraction = 0.3
PAP [9] Pruning Probability = 0.5
aMOGP [27] Initial alpha value = 0, Step size = 90
TS-S [59] Tournament size = 7

6) Tournament Selection With Size (TS-S) [59]: Statistics
TS-S was proposed by Chu et al. [59]. The key idea of
TS-S is to keep the smaller solution when the semantics
of the two GP individuals are not significantly different
in the tournament selection process. If the semantics
of the two individuals are significantly different, TS-S
keeps the solution with the better fitness value.
7) Dynamic Subtree Approximation DSA [20]: DSA is a
bloat control method based on the mutation operator.
For every GP tree larger than the average tree size, DSA
randomly replaces a subtree with a randomly generated
smaller subtree. A linear scaling technique is used to
approximate the semantics of the original subtree with
the semantics of the generated subtree.
For a fair comparison, all these bloat control methods are
applied in the same GP-based feature construction framework
as SHM-GP.

D. Parameter Settings

In the following experiments, all GP with bloat control
methods are tested using the same parameter settings. Table II
presents the parameter settings of GP. These parameter settings
are common in the GP field [21]. The number of GP trees is
set to 10, as it has shown good performance on evolutionary
feature construction tasks [2]. In this article, we use the
analytical quotient (AQ) [60] instead of the division operator
to avoid zero division error. To avoid generating over-complex
features, the depth limit of GP trees is set to 10. All bloat
control parameters are set according to the existing literature,
as shown in Table III. Hyperparameters for SR and ML
methods in SRBench are tuned using the successive-halving
grid search method according to the parameter grid defined in
SRBench [56]. In the comparison experiments of bloat control
methods, the SHM operator does not include the GSG strategy
to examine if the improvement is made by the hoist mutation
operator. In the comparison experiments with other SR and ML
methods, SHM-GP uses the GSG strategy to enhance search
efficiency.

V. EXPERIMENTAL RESULTS

This section presents and compares the experimental results
of the SHM operator on 98 datasets with seven benchmark
methods, including training accuracy, test accuracy, and model
size, showing the effectiveness of the proposed method. A
comparison between GP with the SHM operator and the
state-of-the-art regression methods is also shown. This article
primarily focuses on regression problems, but experiments

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

1696 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024
TABLE IV
STATISTICAL COMPARISON OF TEST R2 SCORE FOR DIFFERENT BLOAT CONTROL METHODS. (“+,” “~.” AND “—" INDICATE
USING THE METHOD IN A ROW IS BETTER THAN, SIMILAR TO, OR WORSE THAN USING THE METHOD IN A COLUMN)
aMOGP Tarpeian DTS PAP TS-S DSA DepthLimiting
SHM 29(+)/68(~)/1(-) 13(+)/81(~)/4(-) 35(+)/57(~)I6(-) 46(+)/49(~)/13(-) 27(+)/I65(~)/6(-) 19(+)/74(~)I5(-) 13(+)/80(~)/5(-)
aMOGP — 2(H)/78(~N8(-) 1L(HNTI~)8(-) 40(+)MA8(~)10(-) 5(+/T6(~)1T(-) LH/B6(~1L(-) 3(+)/T5(~)20(-)
Tarpeian — — 22(+)/73(~)/3(-) 44(+)/152(~)12(-) 11(+)/80(~)/7(-) T(+)/89(~)/2(-) 4(+)/91(~)/3(-)
DTS — — — 32(060(~)6(-) ABT(~T(-) L(HNTA(~)24(-) 6(+)/64(~)I28(-)
PAP — — — — 2(+)/57(~)39(-) 1(+)/58(~)/39(-) 4(+)/51(~)/43(-)
TS-S — — — — — 6(+)/85(~)I17(-) 12(+)/62(~)/24(-)
DSA — — — — — — 8(+)/81(~)/9(-)
OpenML_586 OpenML_608 OpenML_586 OpenML_608
o 0.975 ° ° - -
so RERgoRLE o ¥ * £ o0
& 0.950 N N
@« o o 0.6
Q r O D R KO R YO
OO ‘Zf\,g\ ¥ <& 06 @\\Q 2N OOQ%‘g\ X Oq’ Aé‘\\\‘(\ Generation Generation
S & B &
OQ’Q OQ’Q OpenML_628 OpenML_646
OpenML_628 OpenML_646 2 ' 209
o 0.9 o
0.98 * 0.98 %) » 0.8
o o = o ~
n n 0.8
~ ~ 0.96
o 0.96 < 0 50 100 0 50 100
Generation Generation
N <2 Y O NI)
£ OO& S & 2 Oo@@,g\ LS \@"‘Q — SHM e Tarpeian - PAP DSA
S & S & aMOGP -+ DTS oo TS-S oo DepthLimiting
o o
Fig. 5. Boxplots of test R2 score for different bloat control methods. Fig. 6. Evolutionary plots of test R“ score for different bloat control methods.

on classification also demonstrate the effectiveness of the
proposed method. These results are presented in the supple-
mentary material.

A. Comparisons on Predictive Performance

First, we present the test losses of different bloat control
methods. Table IV presents the statistical comparison of test
losses for different algorithms. Generally speaking, among
the eight bloat control methods, the SHM operator is the
best in terms of R* scores. Specifically, experimental results
in Table IV show that the SHM operator significantly out-
performs the second-best method, Tarpeian, on 13 datasets.
Meanwhile, the SHM operator has a similar performance to
the Tarpeian method on 81 datasets. Compared to the depth
limiting method, the SHM operator has similar advantages,
as it also outperforms the depth limiting method on 13
datasets. The DSA and TS-S are fourth and fifth-rank methods,
and they have worse performance than SHM on 19 and
27 datasets, respectively. There is a large gap between the
performance of SHM and that of «MOGP, DTS, and PAP,
where SHM outperforms these three methods on 29, 35, and
46 datasets, respectively. Based on these results, it is clear
that the SHM operator is the best bloat control method in
terms of predictive performance, validating the effectiveness
of using semantic information for bloat control. Fig. 5 shows
the distribution of test R” scores from 30 independent runs on
4 exemplar datasets. The results further confirm that the SHM
operator keeps comparable performance to the depth limiting

method and has superior performance over other bloat control
methods.

In order to fully understand the behavior difference of
different bloat control methods, we plot the convergence
curve of median test R> scores over the 30 independent runs
in Fig. 6. The figure shows that GP with SHM achieves
very good performance in early generations, which is not
seen in other bloat control methods. This is because the
most informative subtree, like i, may be submerged in the
complex nonlinear transformation of GP, like %> — v, and
become an uninformative GP tree. If we use traditional genetic
operators, we may need several generations to pull up the most
informative feature ¥ to the root, which hinders GP to perform
well in early generations. In contrast, the SHM operator can
directly identify the most important subtree at the end of
each generation, and modify the GP tree with a guarantee
that the generalization upper bound will not become worse,
thereby significantly improving the predictive performance in
early generations. Moreover, from the perspective of long-
term change of the convergence curve, Fig. 6 shows that
SHM advantages can last throughout evolution, thus further
verifying the effectiveness of the SHM operator.

B. Comparisons of Tree Size

The main objective of the SHM operator is to control bloat.
Thus, this section compares the final number of nodes obtained
with different bloat control methods. For evolutionary feature

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al..: SHM OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

1697

TABLE V
STATISTICAL COMPARISON OF Tree Size FOR DIFFERENT BLOAT CONTROL METHODS. (“4,” “~,” AND “—” INDICATE USING
THE METHOD IN A ROW IS BETTER THAN, SIMILAR TO, OR WORSE THAN USING THE METHOD IN A COLUMN)

PAP TS-S DSA DepthLimiting

aMOGP Tarpeian DTS

SHM 98(+H)/0(~)/0(-) 98(+)/0(~)/0(-) 61(+)/37(~)/0(-)
aMOGP — O(#)/5(~)93(-) O(+)/0(~)/98(-)
Tarpeian — — 0(+)/20(~)/78(-)

DTS — — —

PAP — — —

TS-S — — _

DSA — — —

55(+)/40(~)/3(-)
0(+)/2(~)196(-)
0(+)/38(~)/60(-)

32(+)/32(~)/34(-)

58(+)/35(~)/5(-)
O(H)/1(~)97(-)
0(+)/34(~)/64(-)
29(+)/37(~)/32(-)
— 25(+)/44(~)129(-)

94(+)/4(~)/0(-)

0(+)/0(~)/98(-)
S5(+)/45(~)148(-)
4T(+)AT(~)I4(-)
49(H)/27(~)122(-) 98(+)/0(~)/0(-)
60(+)/30(~)/8(-) 98(+)/0(~)/0(-)
— 98(+)/0(~)/0(-)

98(+)/0(~)/0(-)
39(+)/51(~)/8(-)
98(+)/0(~)/0(-)
98(+)/0(~)/0(-)

OpenML_586 OpenML_608
010 T T =1 o L | | ™
N oL | g N 10
»n
[0)
o 5
=
0 25 50 75 100 0 25 50 75 100
Generation Generation
OpenML_628 OpenML_646
o o 10
N N
o 10 ®
8 8
£ 5 e 5
0 25 50 75 100 0 25 50 75 100
Generation Generation
—— SHM e Tarpeian ~ «-eoe PAP DSA
aMOGP - DTS e TS-§ «oree DepthLimiting
Fig. 7. Evolutionary plots of average tree sizes for different bloat control

methods (“OpenML_X" represents the dataset with the id of X in OpenML).

construction tasks, each GP individual contains ten trees. For
simplicity, the tree size of each individual in this section is
defined as the average tree size of all trees in an individual.
Experimental results in Table V show that the SHM operator
can significantly reduce tree size on all 98 datasets compared
to using the depth limiting method. Compared to Tarpeian,
which is only slightly worse than the SHM operator on test R?
scores, the SHM operator finds significantly smaller solutions
on all datasets. In comparison with TS-S and DSA, which
are fourth-ranked and fifth-ranked in terms of test R> scores,
the SHM operator outperforms them on 58 and 94 datasets,
respectively, while being worse on no more than five datasets.
The aMOGP and PAP are effective bloat control methods, as
they significantly reduce model size on 39 and 98 datasets
compared to the depth limiting method. However, the model
size produced by these methods is significantly worse than
the model size produced by the SHM operator on 98 and 55
datasets. In general, all advanced bloat control methods can
reduce the tree size better than the depth-limiting method.
However, these methods have a relatively limited effect on
bloat control compared to the SHM method.

Fig. 7 shows average tree size as evolution progresses. The
results indicate that the average tree size decreases at the
beginning for all methods and then gradually grows. Among
the eight methods, the SHM operators can reduce tree size in
early generations more than other bloat control methods. As
iterations increase, the bloat control strategy based on DSA
and DTS can maintain average tree size at a stable level. In

TABLE VI
FRIEDMAN’S RANK OF R? TEST SCORES AND AVERAGE TREE SIZES
ON ALL DATASETS FOR DIFFERENT BLOAT CONTROL METHODS.
(THE RELATIVE RANKS ARE PRESENTED IN PARENTHESES)

Algorithm R2 Rank P-Value Size Rank P-Value
SHM 3.05 (1) - 1.48 (1) -
Tarpeian 3.88 (2) 1.9e-02 5.42 (6) 0.0e+00
DepthLimiting 3.96 (3) 1.9e-02 7.83 (8) 0.0e+00
DSA 4.07 4) 1.1e-02 448 (5) 0.0e+00
TS-S 4.55 (5) 7.3e-05 3.12 (2) 4.0e-06
aMOGP 5.01 (6) 1.1e-07 7.17 (7) 0.0e+00
DTS 5.11 (7) 2.3e-08 3.14 (3) 4.0e-06
PAP 6.37 (8) 0.0e+00 335 4) 2.6e-07
OpenML_586 OpenML_608
20
g 1s g
%) [
g 10 éi ; 8 10 % ;
P Ragxdl f° Thomks
S ocg@%/\%‘?@/@ﬁoc’? .§°Q S ocgqé\%\%@«%’%o%v .é\\"&q
& «d & <& &
i &
OpenML_628 OpenML_646
g 15 315
) %)
2 10 i%i % 10 % % ¥§
. 2 S R ITERTTE
LSO R 2% O L &XOE R 28 O
@Qioc’&%‘ PSRN S F B FTITF
» <2 %\\} & <2 %\\/‘
OQ;Q QQ/Q
Fig. 8. Boxplots of average tree sizes for different bloat control methods.

contrast, the average tree size goes up during evolution if using
SHM as a bloat control technique. It is worth noting that the
goal of a bloat control technique is not to limit average tree
size at a stable level as the flexible length representation is
one vital advantage of GP. Instead, bloat control techniques
should be able to allow GP trees to grow within a reasonable
range. From this point of view, SHM is more appropriate than
other bloat control techniques, and this can explain why the
SHM method can achieve the best R?> scores among eight
bloat control methods as shown in Table IV. The tree size
distribution on 4 representative datasets over 30 independent
runs is presented in Fig. 8, verifying that the SHM method is
robust to reduce model size. Fig. 9 presents the distribution of
average tree size on each dataset. We can find that the average
GP tree size on all problems based on the SHM operator
is spread around a mean value of 4.5. In comparison, the

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

1698

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024

Algorithm
30 s SHM
. aMOGP
= B Tarpeian
3 20 B DTS
O Bl PAP
B TS-S
- NH\ | ‘II bl
B DepthLimitin
0 L .|| I|| X | |||| |I I||| ||| ||I| la ||I || ||.||I || I| d o I| TH M g . ’
5 10 15 20
Tree Size
Fig. 9. Distribution of tree size for different bloat control methods.
R? Test Model Size Training Time (s)
SHM-GP ° ®
*PSTree ® ® [
*Operon L { L J
*SBP-GP 2 ®)
*FEAT J ® ®
*EPLEX - ° ®
XGB < - ®
LGBM - - ®
*GP-GOMEA L 4 ® o
AdaBoost L o ®
RandomForest o —0— °
*ITEA —-- { ®
*AFP_FE L 4 o o
*AFP L 4 ® L J
*FFX —_—— ® ®
KernelRidge —— ® ®
*gplearn -&- ® ®
*DSR ® ® ®
*MRGP —— L ®
MLP
Linear
*BSR
*AlFeynman
-0.25 0.00 0.25 0.50 0.75 1.00 102 104 100 102 104

Fig. 10. R? scores, model sizes, and training time of 23 algorithms on 120 regression problems.

average tree size induced by the depth limiting method and the
oMOGP method can be up to around 20. This suggests that
for some datasets, the depth limiting method and the « MOGP
method may yield large solutions, while the SHM operator
has a relatively stable behavior on all 98 datasets. Based on
these results, we can conclude that the SHM operator is a
stable method that can reduce model size on a wide range of
problems without impeding the search progress.

C. Overall Comparisons

Summary results combining the test R? scores and average
tree size are shown in Table VI. The SHM operator ranks
first in both test R> scores and average tree size. For an ideal
bloat control method, it should perform as well as the bloat
control method in test R? scores and minimize model size.
Among the bloat control methods, only SHM and Tarpeian
have better mean ranks of R” scores than the depth limiting
method. In addition, DSA and TS-S are slightly worse than the
depth-limiting method. Further comparing the R? scores and
the model size between these four methods, it can be seen that

the SHM operator has a substantial advantage over Tarpeian
and DSA in model size and a big advantage over DSA and
TS-S in R? scores indicating that the SHM operator strikes the
best balance between accuracy and complexity.

D. Comparisons With Other Symbolic Regression Algorithms

This section follows the evaluation protocol of
SRBench [56], to compare the proposed SHM-GP algorithm
with 22 algorithms on all 120 datasets in PMLB. Fig. 10
presents the median test R? score, model size, and training time
distribution for all the 23 algorithms. The model size of SHM
is defined by the number of nodes in Sympy format in the final
model, including linear coefficients and constructed features,
which strictly follow the requirement of SRBench. The model
size of other methods is defined by their respective developers.
From this figure, it is clear that SHM-GP achieves superior
performance compared to other baseline methods while having
a similar level of complexity compared to Operon [61]. It is
worth noting that the actual number of nodes in the final model
of SHM-GP is lower than the reported model size because we

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al..: SHM OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

Wilcoxon signed-rank test, R2 Test, a = 2.0e-04

p<1le3a

p<1le2a

p<lela

p<a

-no significance

Sn52 5
2"EOC
o XIZ3
-
o ¢

Fig. 11. Pairwise statistical comparisons of R? test scores on regression

problems.

count the size of the AQ (a/[+/1+ b?%]) as 10 to follow the
rule of SRBench.? In contrast, several methods in SRBench
consider the AQ function as a node AQ with two variables a
and b, thus considering its size as 3. In terms of training time,
SHM-GP has a comparable training time to FEAT [44] and is
slightly slower than Operon. However, both FEAT and Operon
are implemented in C++-, while SHM-GP is implemented in
Python. The running time of SHM-GP still has a lot of room
for improvement. To obtain a reliable conclusion, we perform
a pairwise statistical comparison on test R> score using the
Wilcoxon signed-rank test at a significance level of 0.05 with
Bonferroni correction. The experimental results are presented
in Fig. 11 and show that SHM-GP is significantly better than
Operon in the test R> score and has similar performance to
PS-Tree [62]. Considering that the model size obtained by
the SHM operator is approximately one order of magnitude
smaller than the PS-Tree, it is clear that the SHM operator
is a successful bloat control method for GP-based feature
construction methods.

VI. FURTHER ANALYSIS
A. Analysis of Hash-Based Checking

To investigate whether the hash-based checking strategy
takes effect in SHM-GP, we plot a curve of the average
phenotype entropy over the 30 independent runs in Fig. 12
on four example datasets. The phenotype entropy is defined
as — >, pklnpy, where py represents the ratio of trees with
distinct semantics k in the population [63]. These four curves
show that the phenotype entropy is increased by employ-
ing the hash-based checking strategy. For example, on the
“OpenML_608" dataset, the entropy first drops to around
5 in the first few generations, then stays at this level. In
comparison, when not using the hash-based checking strategy,
entropy will decrease to lower than 4 at first, and then

3Sympy automatically converts the division operator to a power operator.
Thus, the AQ becomes a(v/ 1+ bz)_l. Additionally, it is worth noting that
b? is counted as three nodes in Sympy because the power operator itself is
counted as one node.

1699
OpenML_586 OpenML_608
26 2°
@ [
2 g5
as a
4
0 5 10 15 20 0 5 10 15 20
Generation Generation
OpenML_628 OpenML_646

6
2
?
25
Z

4

0 5 10 15 20 0 5 10 15 20
Generation Generation
—— False - True
Fig. 12. Phenotype entropy for using hash-based checking or not.

68

30
. 0
+ ~

57
40 39 50
20 25
2
0 — 0
" - -

(a) (b)

Fig. 13. Statistical comparison of best fitness values and R? scores using hash
checking or not. (“+,” “~,” and “-” indicate using hash-based checking is
better than, similar to, or worse than not using hash-based checking.) (a) Best
fitness values. (b) Test R? scores.

gradually increase to around 4.5. From the perspective of
the whole evolution process, phenotype entropy when using
the hash-based checking strategy develops always better than
without using it. It is worth noting that the hash-based
checking strategy is more useful when the evaluation budget
is insufficient, as the phenotype entropy can gradually recover
in the later stage of evolution. Fig. 13 presents a statistical
comparison of results on best fitness values and test R?
scores when limiting the evaluation budget to 20 generations.
The results show that the hash-based checking strategy can
significantly improve search effectiveness on 57 datasets,
while only performing worse on 2 datasets. As for the test R
scores, the checking strategy can improve performance on 30
datasets and not degrade performance on any dataset. Based
on these results, we can conclude that the hash-based checking
strategy should be incorporated into the SHM operator to
preserve population diversity and to get better search results.

B. Analysis of Simplification Strategies

This section investigates the impact on tree size made by
the proposed simplification strategies under the condition of
using the GSG operator. Comparing the test R of eliminating
either two simplification strategies, Table VII shows that the
simplification strategies do not significantly change predictive
performance on most datasets. This is reasonable because
simplification strategies do not change the semantics of GP
trees, and thus only have a minor impact on the evolution
process.

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

1700

TABLE VII
STATISTICAL COMPARISON OF TEST R? WHEN REMOVING
DIFFERENT SIMPLIFICATION STRATEGIES

No Ablation

0(+)/95(~)/3(-)
2(+)/93(~)/3(-)

Equivalent Prune

Constant Prune 1(+)/94(~)/3(-)
Equivalent Prune —

TABLE VIII
STATISTICAL COMPARISON OF MODEL SIZES WHEN
REMOVING DIFFERENT SIMPLIFICATION STRATEGIES

No Ablation

1(+)/93(~)/4(-)
OH)/TT(~)I21(-)

Equivalent Prune

Constant Prune 21(+)/76(~)/1(-)
Equivalent Prune —

Strategy
60 mmm GSG
50 Random
= 40
3
/<3
O 30
20
10
0 I [I . I . o v
2 4 6 8 10
Number of Used Features
Fig. 14. Distribution for the number of selected features using GSG or not.

Further, we compare the average tree size by remov-
ing either one of the two prune strategies and present the
significance comparison results in Table VIII. The results
demonstrate that removing the constant prune strategy and the
equivalent prune strategy will lead to worse results on 4 and
21 datasets, respectively. Thus, both strategies help the SHM
operator reduce model size.

However, the SHM operator can significantly reduce model
size on all datasets, and thus the main reason why the
SHM operator outperforms other bloat control methods is not
because of these two strategies. Due to the page limit, more
experimental results supporting this claim are provided in the
supplementary material.

C. Analysis of Guided Subtree Generation

In SHM-GP, the GSG operator is used to reduce the number
of selected features to improve interpretability and predictive
performance. In this section, we verify whether the GSG
operator is helpful for SHM-GP. We present the distribution
of the number of selected features in the final tree concerning
using GSG or not in Fig. 14. Fig. 14 shows that the GSG
operator can largely reduce the number of selected features.
The average number of selected features before using the
GSG operator is 5.5, whereas the number after using the GSG
operator is 5. Therefore, the GSG operator is an effective
method to simplify the number of used features in constructed
features.

Further, since the irrelevant original features will have a
low probability to be sampled in the GSG operator, the GSG
operator may improve the predictive performance of the final

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024

63
60

40 35

20

0 0
+ - -
Fig. 15. Statistical comparison of test R? scores using GSG or not.
i :
075
N
)
85 0
=
25
GSG Random
Number of Trees
Fig. 16. Distribution of tree size with respect to using GSG or not.
67
60
40
29
20
2
0 =
+ -
Fig. 17. Statistical comparison of test R2 scores using GP with ten trees

instead of using a single-tree GP.

model. To verify this, we plot the significance comparison
for using the GSG operator or not in Fig. 15. Experimental
results in Fig. 15 show that the GSG operator significantly
improves the performance on 35 datasets, meanwhile having
a similar performance on 63 datasets. These results indicate
that the GSG operator not only reduces the number of selected
features but also increases the predictive performance on
unseen data. Moreover, experimental results in Fig. 16 show
that the increase in predictive performance is not accompanied
by a large increase in tree sizes, indicating that the SHM
operator works well with the GSG operator.

D. Multitree GP Versus Single-Tree GP

In this article, we propose to use multitree GP instead of
single-tree GP for evolutionary feature construction. In this
section, we conduct experiments to verify the advantage of
using multitree GP over single-tree GP. Fig. 17 presents the
statistical comparison of test R? scores for using multitree GP
or single-tree GP. The results show that using multitree GP can
significantly improve the predictive performance of single-tree
GP on 67 datasets, and only degrade the performance on 2
datasets. In fact, multitree GP can be viewed as multiple base
learners in an ensemble learning model, and the LR model in
SHM-GP can be viewed as a model combination technique.
In the machine learning domain, there have been theories to
prove the superiority of an ensemble of weak learners. Thus,
it is not surprising that multitree GP can achieve better results
than single-tree GP on test R? scores.

In addition to the test R? scores, tree size is another factor
that needs to be considered. Fig. 18 presents the tree size
using multitree GP and single-tree GP. For a fair comparison,

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al..: SHM OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

~
o

-

"
)

Tree Size
[:]
o

N
o

0

1 10
Number of Trees

Fig. 18. Distribution of the sum of tree size with respect to different numbers
of trees in GP.

Feature #1 (W:-0.25) Feature #2 (W:-0.54) Feature #3 (W:-0.19) Feature #4 (W:-0.04)

® ®

Feature #5 (W:0.06)

Feature #6 (W:-0.33) Feature #7 (W:0.29) Feature #8 (W:0.11)

Feature #9 (W:0.03)
[Add]

Feature #10 (W:0.31)

X3 X0

Fig. 19. Example of constructed features based on the SHM operator.

we present the sum of tree sizes instead of the mean of
tree sizes in each individual. The experimental results show
that although multitree GP has ten times the number of
GP trees compared to single-tree GP, the sum of tree sizes
is even smaller. As previously mentioned, multitree GP is
similar to an ensemble learning model, which can make an
accurate prediction by combining several weak GP trees. For
tree-based GP, the random subtree crossover operator tends
to generate a lot of tiny GP trees following a Lagrange
distribution [64]. For single-tree GP, this is a problem because
tiny GP trees are usually inferior to large GP trees, thus
leading to an increase in the average tree size. In contrast,
for multitree GP, a combination of tiny GP trees can still
produce accurate prediction and thus mitigate bloat based
on the crossover bias theory. In general, we can conclude
that multitree GP is more appropriate than single-tree GP for
evolutionary feature construction tasks from the perspective of
predictive performance and tree size.

E. Example Models

The previous experimental results show that the SHM
operator can significantly reduce tree size while maintaining
the fitness value at the same level or even performing better.
For a more intuitive understanding, we provide an illustrative
example that demonstrates trees generated by SHM-GP on
a galaxy visualization dataset [65] in Fig. 19. Additionally,
two examples of trees generated by standard GP with limited
tree depth are presented in Fig. 20. Due to their complexity,
the complete examples of trees generated by standard GP
with limited tree depth are included in the supplementary
material. The weight of these features in the linear model is
presented in parentheses. The first model achieves an R? score
of 0.974, while the second model achieves an R’ score of
0.971 on the test data, indicating similar accuracy between
the two models. However, when comparing the complexity

1701

Feature #1 (W:-0.08) Feature #2 (W:0.64)

Fig. 20. Example of two out of ten features constructed using the depth-
limiting method.

of the two models, it is clear that the constructed features
in Fig. 19 are simpler than those features in Fig. 20. For
example, Feature #2 in Fig. 20 is hard to read, while the
largest feature in Fig. 19 only has nine nodes. It is worth
noting that although judging the rationale of the final model
needs domain knowledge, the obtained model shows great
consistency with the model discovered by other evolutionary
feature construction methods [44], which reports that features
{X0, X1, X3} and their interactions correspond to large weights
in the final model.

VII. CONCLUSION

The goal of this article is to propose a genetic operator
to control bloat for GP-based feature construction algorithms
without sacrificing the predictive accuracy of the final model.
This has been successfully achieved by proposing a new SHM
operator that retains the most informative subtree during the
evolution process while discarding other parts. Moreover, we
have developed a hash-based checking strategy to prevent
generating repetitive features in an individual, which increases
population diversity.

Extensive experiments have been conducted to validate
the effectiveness and efficiency of the SHM operator. The
results on 98 datasets show that the proposed method not
only significantly reduces tree size but also improves the test
accuracy compared to the other seven bloat control methods.
In addition, the comparison with 22 machine learning and
symbolic regression algorithms on all 120 datasets in PMLB
confirms the superiority of using the SHM operator in GP.
Further analysis of mutation probability in the supplementary
material shows that the proposed operator can be parameter-
free. The ablation study on the hash-based checking strategy
indicates that it is an effective way to increase population
diversity. Therefore, the proposed bloat control method can
significantly reduce tree size without sacrificing or even
improving regression performance.

In the future, there are three promising research directions
worth exploring. First, the generalization bound in this article
only considers the hoist mutation operator in each generation.
It would be better to prove that the generalization error is
also bounded when combining the hoist mutation operator
with crossover, mutation, and selection operators. Second, the
SHM operator proposed in this article is designed for small-
scale and medium-scale problems. In the future, it would
be worthwhile to investigate whether the proposed operator

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

1702

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 6, DECEMBER 2024

is also applicable to large-scale problems. One promising
direction is to apply the proposed operator in GP for neural
architecture search. However, defining the semantics in a
neural architecture search scenario is an issue that still needs
exploration. Finally, different features in each individual may
share the same building blocks. In the future, it is worth
investigating how to design a modular GP system to further
reduce tree size.

[1]

[2]

[3]

[7]
[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

B. Tran, B. Xue, and M. Zhang, “Genetic programming for multiple-
feature construction on high-dimensional classification,” Pattern
Recognit., vol. 93, pp. 404—417, Sep. 2019.

H. Zhang, A. Zhou, and H. Zhang, “An evolutionary forest for
regression,” IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 735-749,
Aug. 2022.

W. B. Langdon, “Size fair and homologous tree genetic programming
crossovers,” Genet. Program. Evol. Mach., vol. 1, nos. 1-2, pp. 95-119,
2000.

W. A. Tackett, “Recombination, selection, and the genetic construction
of computer programs,” Ph.D. dissertation, Dept. Comput. Sci., Univ.
Southern California, Los Angeles, CA, USA, 1994.

W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic
Programming: An Introduction on the Automatic Evolution of Computer
Programs and Its Applications. San Francisco, CA, USA: Morgan
Kaufmann Publ., Inc., 1998.

T. Soule and J. A. Foster, “Removal bias: A new cause of code growth
in tree based evolutionary programming,” in Proc. IEEE Int. Conf. Evol.
Comput., 1998, pp. 781-786.

W. B. Langdon and R. Poli, “Fitness causes bloat: Mutation,” in Proc.
Ist Eur. Conf. Genet. Program., 1998, pp. 37-48.

S. Luke and L. Panait, “A comparison of bloat control methods for
genetic programming,” Evol. Comput., vol. 14, no. 3, pp. 309-344, 2006.
E. Alfaro-Cid, J. Merelo, F. F. de Vega, A. 1. Esparcia-Alcdzar, and
K. Sharman, “Bloat control operators and diversity in genetic program-
ming: A comparative study,” Evol. Comput., vol. 18, no. 2, pp. 305-332,
2010.

Y. Mei, Q. Chen, A. Lensen, B. Xue, and M. Zhang, “Explainable
artificial intelligence by genetic programming: A survey,” IEEE Trans.
Evol. Comput., vol. 27, no. 3, pp. 621-641, Jun. 2023.

S. Luke and L. Panait, “Lexicographic parsimony pressure,” in Proc.
GECCO, 2002, pp. 829-836.

S. Luke and L. Panait, “Fighting bloat with nonparametric parsimony
pressure,” in Proc. 7th Int. Conf. Parallel Probl. Solv. Nat., 2002,
pp. 411-421.

S. Silva and E. Costa, “Dynamic limits for bloat control in genetic
programming and a review of past and current bloat theories,” Genet.
Program. Evol. Mach., vol. 10, no. 2, pp. 141-179, 2009.

E. Alfaro-Cid, A. Esparcia-Alcdzar, K. Sharman, and F. F. de Vega,
“Prune and plant: A new bloat control method for genetic
programming,” in Proc. HIS, 2008, pp. 31-35.

A. Ekart and S. Z. Nemeth, “Selection based on the Pareto
nondomination criterion for controlling code growth in genetic program-
ming,” Genet. Program. Evol. Mach., vol. 2, no. 1, pp. 61-73, 2001.
K. Nag and N. R. Pal, “Feature extraction and selection for parsimo-
nious classifiers with multiobjective genetic programming,” IEEE Trans.
Evol. Comput., vol. 24, no. 3, pp. 454-466, Jun. 2020.

M. Zhang and P. Wong, “Genetic programming for medical classifica-
tion: A program simplification approach,” Genet. Program. Evol. Mach.,
vol. 9, no. 3, pp. 229-255, 2008.

T. P. Pawlak, B. Wieloch, and K. Krawiec, “Semantic backpropagation
for designing search operators in genetic programming,” IEEE Trans.
Evol. Comput., vol. 19, no. 3, pp. 326-340, Jun. 2015.

M. Virgolin, T. Alderliesten, and P. A. Bosman, “Linear scaling with
and within semantic backpropagation-based genetic programming for
symbolic regression,” in Proc. GECCO, 2019, pp. 1084-1092.

Q. U. Nguyen and T. H. Chu, “Semantic approximation for reducing
code bloat in genetic programming,” Swarm Evol. Comput., vol. 58,
Nov. 2020, Art. no. 100729.

Q. Chen, B. Xue, and M. Zhang, “Preserving population diversity
based on transformed semantics in genetic programming for symbolic
regression,” IEEE Trans. Evol. Comput., vol. 25, no. 3, pp. 433-447,
Jun. 2021.

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

(36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

E. Dolson, A. Lalejini, and C. Ofria, “Exploring genetic programming
systems with MAP-elites,” in Genetic Programming Theory and Practice
XVI. Cham, Switzerland: Springer, 2019, pp. 1-16.

B.-T. Zhang and H. Miihlenbein, “Balancing accuracy and parsimony
in genetic programming,” Evol. Comput., vol. 3, no. 1, pp. 17-38,
Mar. 1995.

E. D. De Jong and J. B. Pollack, “Multi-objective methods for tree
size control,” Genet. Program. Evolv. Mach., vol. 4, no. 3, pp. 211-233,
2003.

M. Kommenda, G. Kronberger, M. Affenzeller, S. M. Winkler, and
B. Burlacu, “Evolving simple symbolic regression models by multi-
objective genetic programming,” in Genetic Programming Theory and
Practice XIII. Cham, Switzerland: Springer, 2016, pp. 1-19.

D. Liu, M. Virgolin, T. Alderliesten, and P. A. N. Bosman, “Evolvability
degeneration in multi-objective genetic programming for symbolic
regression,” in Proc. GECCO, 2022, pp. 973-981.

S. Wang, Y. Mei, and M. Zhang, “A multi-objective genetic program-
ming algorithm with & dominance and archive for uncertain capacitated
arc routing problem,” IEEE Trans. Evol. Comput., early access, Jul. 29,
2022, doi: 10.1109/TEVC.2022.3195165.

R. Poli, “A simple but theoretically-motivated method to control bloat in
genetic programming,” in Proc. 6th Eur. Conf. Genet. Program., 2003,
pp. 204-217.

A. de Lima, S. Carvalho, D. M. Dias, E. Naredo, J. P. Sullivan,
and C. Ryan, “Lexi2: Lexicase selection with lexicographic parsimony
pressure,” in Proc. GECCO, 2022, pp. 929-937.

S. Silva, S. Dignum, and L. Vanneschi, “Operator equalisation for bloat
free genetic programming and a survey of bloat control methods,” Genet.
Program. Evol. Mach., vol. 13, no. 2, pp. 197-238, 2012.

K. E. Kinnear, “Evolving a sort: Lessons in genetic programming,” in
Proc. Proc. IEEE Int. Conf. Neural Netw., 1993, pp. 881-888.

N. Javed, F. Gobet, and P. Lane, “Simplification of genetic pro-
grams: A literature survey,” Data Min. Knowl. Discov., vol. 36, no. 4,
pp. 1279-1300, 2022.

A. Song, D. Chen, and M. Zhang, “Contribution based bloat control
in genetic programming,” in Proc. IEEE Congr. Evol. Comput., 2010,
pp. 1-8.

P. Wong and M. Zhang, “Algebraic simplification of GP programs during
evolution,” in Proc. GECCO, 2006, pp. 927-934.

D. Kinzett, M. Johnston, and M. Zhang, “Numerical simplification
for bloat control and analysis of building blocks in genetic program-
ming,” Evol. Intell., vol. 2, no. 4, pp. 151-168, 2009.

L. Vanneschi, M. Castelli, and S. Silva, “A survey of semantic meth-
ods in genetic programming,” Genet. Program. Evol. Mach., vol. 15,
pp. 195-214, Jan. 2014.

M. A. Haeri, M. M. Ebadzadeh, and G. Folino, “Statistical genetic
programming for symbolic regression,” Appl. Soft Comput., vol. 60,
pp. 447-469, Nov. 2017.

M. Castelli, S. Silva, and L. Vanneschi, “A C++ framework for
geometric semantic genetic programming,” Genet. Program. Evolvable
Mach., vol. 16, pp. 73-81, Mar. 2015.

J. F. B. Martins, L. O. V. Oliveira, L. F. Miranda, F. Casadei, and
G. L. Pappa, “Solving the exponential growth of symbolic regression
trees in geometric semantic genetic programming,” in Proc. GECCO,
2018, pp. 1151-1158.

Q. Chen, B. Xue, and M. Zhang, “Improving generalization of genetic
programming for symbolic regression with angle-driven geometric
semantic operators,” [EEE Trans. Evol. Comput., vol. 23, no. 3,
pp. 488-502, Jun. 2019.

W. La Cava, T. Helmuth, L. Spector, and J. H. Moore, “A probabilistic
and multi-objective analysis of lexicase selection and e-lexicase selec-
tion,” Evol. Comput., vol. 27, no. 3, pp. 377-402, 2019.

K. Nickerson, A. Kolokolova, and T. Hu, “Creating diverse ensembles
for classification with genetic programming and neuro-MAP-elites,” in
Proc. 25th Eur. Conf. Genet. Program., 2022, pp. 212-227.

H. Zhang, A. Zhou, Q. Chen, B. Xue, and M. Zhang, “SR-
forest: A genetic programming based heterogeneous ensemble learning
method,” [EEE Trans. Evol. Comput., early access, Feb. 7, 2023,
doi: 10.1109/TEVC.2023.3243172.

W. La Cava, T. R. Singh, J. Taggart, S. Suri, and J. H. Moore, “Learning
concise representations for regression by evolving networks of trees,” in
Proc. Int. Conf. Learn. Represent., 2018, pp. 1-16. [Online]. Available:
https://openreview.net/forum?id=Hke-JhA9Y7

J. Ma and X. Gao, “A filter-based feature construction and fea-
ture selection approach for classification using genetic programming,”
Knowl.-Based Syst., vol. 196, May 2020, Art. no. 105806.

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TEVC.2022.3195165
http://dx.doi.org/10.1109/TEVC.2023.3243172

ZHANG et al..: SHM OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

[46]

(471

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

A. Lensen, B. Xue, and M. Zhang, “Genetic programming for
evolving similarity functions for clustering: Representations and analy-
sis,” Evol. Comput., vol. 28, no. 4, pp. 531-561, 2020.

M. Muharram and G. D. Smith, “Evolutionary constructive induc-
tion,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 11, pp. 1518-1528,
Nov. 2005.

I. Armaldo, U.-M. O’Reilly, and K. Veeramachaneni, “Building
predictive models via feature synthesis,” in Proc. GECCO, 2015,
pp. 983-990.

Q. Chen, M. Zhang, and B. Xue, “Genetic programming with embedded
feature construction for high-dimensional symbolic regression,” in Proc.
20th Asia—Pacific Symp. Intell. Evol. Syst., 2017, pp. 87-102.

C. A. Owen, G. Dick, and P. A. Whigham, “Standardization and data
augmentation in genetic programming,” IEEE Trans. Evol. Comput.,
vol. 26, no. 6, pp. 1596-1608, Dec. 2022.

Q. Fan, Y. Bi, B. Xue, and M. Zhang, “Genetic programming for
image classification: A new program representation with flexible feature
reuse,” IEEE Trans. Evol. Comput., vol. 27, no. 3, pp. 460-474,
Jun. 2023.

A. Song, D. Chen, and M. Zhang, “Bloat control in genetic program-
ming by evaluating contribution of nodes,” in Proc. GECCO, 2009,
pp. 1893-1894.

Q. Chen, M. Zhang, and B. Xue, “Structural risk minimization-
driven genetic programming for enhancing generalization in symbolic
regression,” IEEE Trans. Evol. Comput., vol. 23, no. 4, pp. 703-717,
Aug. 2019.

V. Cherkassky and FE. M. Mulier, Learning from Data: Concepts, Theory,
and Methods. Hoboken, NJ, USA: Wiley, 2007.

R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and
J. H. Moore, “PMLB: A large benchmark suite for machine learning
evaluation and comparison,” BioData Min., vol. 10, no. 1, pp. 1-13,
2017.

W. L. Cava et al., “Contemporary symbolic regression methods and
their relative performance,” in Proc. NeurlPS Datasets Benchmarks,
2021, pp. 1-16. [Online]. Available: https://openreview.net/forum?id=
xVQMrDLyGst

C. A. Owen, G. Dick, and P. A. Whigham, “Standardisation and data
augmentation in genetic programming,” IEEE Trans. Evol. Comput.,
vol. 26, no. 6, pp. 1596-1608, Dec. 2022.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

T. H. Chu, Q. U. Nguyen, and M. O’Neill, “Semantic tournament
selection for genetic programming based on statistical analysis of error
vectors,” Inf. Sci., vol. 436-437, pp. 352-366, Apr. 2018.

J. Ni, R. H. Drieberg, and P. I. Rockett, “The use of an analytic quotient
operator in genetic programming,” IEEE Trans. Evol. Comput., vol. 17,
no. 1, pp. 146-152, Feb. 2013.

B. Burlacu, G. Kronberger, and M. Kommenda, “Operon C++ an
efficient genetic programming framework for symbolic regression,” in
Proc. GECCO, 2020, pp. 1562-1570.

H. Zhang, A. Zhou, H. Qian, and H. Zhang, “PS-tree: A piecewise
symbolic regression tree,” Swarm Evol. Comput., vol. 71, Jun. 2022,
Art. no. 101061.

E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic pro-
gramming: An analysis of measures and correlation with fitness,” IEEE
Trans. Evol. Comput., vol. 8, no. 1, pp. 47-62, Feb. 2004.

S. Dignum and R. Poli, “Generalisation of the limiting distribution of
program sizes in tree-based genetic programming and analysis of its
effects on bloat,” in Proc. GECCO, 2007, pp. 1588-1595.

W. S. Cleveland, Visualizing Data. Thousand Oaks, CA, USA: Hobart
Press, 1993.

Hengzhe Zhang (Member, IEEE) received the
B.Sc. degree in software engineering from Xiangtan
University, Xiangtan, Hunan, China, in 2019, and the
M.Sc. degree in computer science from East China
Normal University, Shanghai, China, in 2022. He
is currently pursuing the Ph.D. degree in computer
science with the Victoria University of Wellington,
Wellington, New Zealand.

His current research interests include symbolic
regression, genetic programming, evolution compu-
tation, and statistical machine learning.

1703

Qi Chen (Member, IEEE) received the B.E. degree
in automation from the University of South China,
Hengyang, Hunan, China, in 2005, the M.E. degree
in software engineering from the Beijing Institute
of Technology, Beijing, China, in 2007, and the
Ph.D. degree in computer science from the Victoria
University of Wellington (VUW), Wellington, New
Zealand, in 2018.

She is currently a Senior Lecturer of Artificial
Intelligence with the School of Engineering and
Computer Science, VUW. Her research interests
include machine learning, evolutionary computation, feature selection, feature
construction, transfer learning, domain adaptation, and statistical learning
theory.

Dr. Chen serves as a Reviewer for international conferences, including
AAAI and IJCALI, and international journals, including IEEE TRANSACTIONS
ON EVOLUTIONARY COMPUTATION and IEEE TRANSACTIONS ON
CYBERNETICS.

Bing Xue (Senior Member, IEEE) received the
Ph.D. degree in computer science from the Victoria
University of Wellington, Wellington, New Zealand,
in 2014.

She is currently a Professor of Artificial
Intelligence, the Deputy Director of the Centre
for Data Science and Artificial Intelligence, and
the Deputy Head of School with the School
of Engineering and Computer Science, Victoria
University of Wellington. She has over 300 papers
published in fully refereed international journals and
conferences and her research focuses mainly on evolutionary computation and
machine learning.

Dr. Xue is currently the Chair of IEEE CIS Evolutionary Computation
Technical Committee and an Editor of IEEE CIS Newsletter. She has
also served as an Associate Editor for several international journals, such
as IEEE Computational Intelligence Magazine, IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, and ACM Transactions on Evolutionary
Learning and Optimization. She is also a Fellow of Engineering New Zealand.

Wolfgang Banzhaf (Member, IEEE) received the
Drrernat (Ph.D.) degree from the Department
of Physics, Technische Hochschule Karlsruhe
(currently, Karlsruhe Institute of Technology),
Karlsruhe, Germany, in 1985.

He was the University Research Professor with
the Department of Computer Science, Memorial
University of Newfoundland, St. John’s, NL,
Canada, where he served as the Head of Department
from 2003 to 2009 and from 2012 to 2016. He is
the John R. Koza Chair of Genetic Programming
with the Department of Computer Science and Engineering and a member of
the BEACON Center for the Study of Evolution in Action, Michigan State
University, East Lansing, MI, USA. He is also interested in self-organization
studies and in artificial life field. He has become more involved with network
research as it applies to natural and man-made systems. His research interests
are in the field of bioinspired computing, notably evolutionary computation,
and complex adaptive systems.

Mengjie Zhang (Fellow, IEEE) received the Ph.D.
degree in computer science from RMIT University,
Melbourne, VIC, Australia, in 2000.

He is currently a Professor of Computer Science
and the Director of the Centre for Data Science
and Artificial Intelligence, Victoria University of
Wellington, Wellington, New Zealand. He has
published over 800 research papers in refereed
international journals and conferences. His cur-
rent research interests include genetic programming,
image analysis, feature selection and reduction, job-
shop scheduling, and evolutionary deep learning and transfer learning.

Prof. Zhang is a Fellow of the Royal Society of New Zealand and
Engineering New Zealand, and an IEEE Distinguished Lecturer.

Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:23:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

