
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2024) 25:2
https://doi.org/10.1007/s10710-023-09465-z

1 3

A geometric semantic macro‑crossover operator
for evolutionary feature construction in regression

Hengzhe Zhang1 · Qi Chen1 · Bing Xue1 · Wolfgang Banzhaf2 · Mengjie Zhang1

Received: 2 June 2023 / Revised: 24 August 2023 / Accepted: 10 October 2023 /
Published online: 8 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Evolutionary feature construction has been successfully applied to various scenar-
ios. In particular, multi-tree genetic programming-based feature construction meth-
ods have demonstrated promising results. However, existing crossover operators
in multi-tree genetic programming mainly focus on exchanging genetic materials
between two trees, neglecting the interaction between multi-trees within an individ-
ual. To increase search effectiveness, we take inspiration from the geometric seman-
tic crossover operator used in single-tree genetic programming and propose a macro
geometric semantic crossover operator for multi-tree genetic programming. This
operator is designed for feature construction, with the goal of generating offspring
containing informative and complementary features. Our experiments on 98 regres-
sion datasets show that the proposed geometric semantic macro-crossover operator
significantly improves the predictive performance of the constructed features. More-
over, experiments conducted on a state-of-the-art regression benchmark demonstrate
that multi-tree genetic programming with the geometric semantic macro-crossover
operator can significantly outperform all 22 machine learning algorithms on the
benchmark.

Keywords  Evolutionar feature construction · Genetic programming · Geometric
semantic genetic programming

1  Introduction

Automated feature construction is a key technique in the machine learn-
ing domain. The goal is to automatically construct features �(X) to improve
the learning performance of a machine learning algorithm on a specific task
(X, Y) =

{(
x1, y1

)
,
(
x2, y2

)
,… ,

(
xn, yn

)}
 [1]. Here, X represents input data, Y rep-

resents the corresponding target labels, and n represents the number of instances.
Automated feature construction techniques have been successfully applied to various

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09465-z&domain=pdf

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 2 of 23

areas, including regression [1], classification [2], clustering [3] and manifold learn-
ing [4]. Among existing evolutionary feature construction techniques, genetic pro-
gramming-based feature construction techniques have shown promising results in
constructing expressive features for improving the predictive performance of exist-
ing machine learning algorithms [1, 5].

Genetic programming (GP) is a gradient-free and variable-length evolutionary
algorithm [6]. For evolutionary feature construction tasks, tree-based GP is particu-
larly suitable since the constructed features can be naturally represented by GP trees.
However, a single tree may not contain all the necessary information to fit a good
machine learning model. Therefore, multi-tree GP has been developed to achieve
better performance. The general idea of multi-tree GP is to simultaneously construct
multiple relatively simple, informative, and complementary features for enhancing
the learning performance of a machine learning algorithm. Multi-tree GP has been
successfully applied to improve the predictive performance of machine learning
algorithms on regression [7] and classification tasks [2].

Although multi-tree GP has achieved great success in feature construction tasks,
the existing crossover operators in multi-tree GP rarely consider the complementa-
rity between features during crossover. Formally, assuming L is the loss function, A
is the learning algorithm, �i(X),�j(X) are two constructed features, if
L(A, {𝜙i(X),𝜙j(X)}) > max{L(A,𝜙i(X)),L(A,𝜙j(X))} , then these two features are
considered as complementary. For example, if a pair of constructed features
�i(X),�j(X) have symmetrical semantics with respect to the target semantics Y, then
the linear regression technique can determine a coefficient � to make the equation
�i(X) + ��j(X) = Y hold, thereby achieving the exact target semantics. For a tradi-
tional crossover operator in multi-tree GP, it randomly selects two GP trees �a

i
,�b

j

from two parents Φa,Φb for crossover, no matter whether they are complementary or
not. To discover a set of complementary features, it is sensible to utilize a geometric
semantic crossover operator to assemble GP trees under the guidance of semantics.
The primary focus of geometric semantic crossover in this context is not only to
consider �a

i
,�b

j
 during crossover, but also considering interaction between features

such as �a
k
 in Φa . More specifically, if �a

i
 in Φa is complementary to �a

k
 in Φa , as

illustrated in Fig. 1a, it is advisable to avoid disrupting �a
i
 and �a

k
 during crossover.

Conversely, if the complementarity between �a
i
 and �a

k
 is not strong, and �a

i
 in Φa is

complementary to �b
j
 in Φb , as depicted in Fig. 1b, performing a crossover to replace

�a
k
 in Φa with �b

j
 in Φb is an optimal strategy.

In order to achieve this goal, we aim to propose a geometric semantic macro-
crossover operator (GSMX) for evolutionary feature construction.1 Different from
the traditional crossover operator which focuses on exchanging genetic materials
between different GP trees, the GSMX operator focuses on how to combine GP trees
from different parents to get a set of relevant and complementary features. GSMX
as a macro-crossover operator will perform crossover on the tree level instead of the
subtree level. Specifically, we focus on the following objectives:

1  Source code: https://tinyurl.com/MAPMX-GPFC

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 3 of 23  2

•	 To explicitly integrate relevant and complementary features, we develop a macro
geometric semantic crossover operator that considers the geometric semantic
relationships between GP trees in the crossover process.

•	 To make the constructed features relevant to the target label and complementary
to each other, we propose two ways of implementing the GSMX operator: one
based on the angle-driven selection operator (ADS) and the other on the multi-
dimensional archive of phenotypic elites algorithm (MAP-Elites).

•	 To make GSMX compatible with traditional crossover operators, we develop two
modes to apply the GSMX operator in GP, which are parallel mode and sequen-
tial mode. The difference between them depends on whether an individual can be
modified simultaneously by both GSMX and traditional crossover operations in
one generation.

The remainder of this paper is organized as follows: Sect. 2 presents related work
on semantic GP and crossover operators for multi-tree GP. In Sect. 3, the proposed
approach is introduced in detail. Section 4 describes the experimental settings. Sec-
tion 5 reports the experimental results to demonstrate the effectiveness of the pro-
posed algorithm. Section 6 further analyzes the effectiveness of the proposed opera-
tor under different settings. Finally, Sect. 7 provides the conclusion and future work.

2 � Related work

2.1 � Geometric semantic operators

Over recent years, geometric semantic operators have become a popular topic in GP
[8]. Unlike traditional genetic operators that randomly exchange genetic materials,

Fig. 1   Two situations of complementarity need to be considered for crossover in multi-tree GP, where
the complementarity is measured by the degree of symmetry with respect to the target semantics

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 4 of 23

geometric semantic operators crossover or mutate genetic materials to fulfill the
desired semantics. A pioneering work on geometric semantic operators is the geo-
metric semantic crossover (GSX) and geometric semantic mutation (GSM) [9].
GSX combines two GP trees to form a new GP tree, which ensures that the seman-
tics of the offspring lie on the line connecting the semantics of the parents. For-
mally, supposing the semantics of two parents as P⃗1 and P⃗2 , the semantics of the off-
spring O⃗ should satisfy

‖P⃗2 − P⃗1‖ = ‖O⃗ − P⃗1‖ + ‖P⃗2 − O⃗‖ . GSM combines a GP tree with
a randomly generated GP tree to perturb the semantics of a GP tree within a certain
radius r. Formally, supposing the semantics of the parent as P⃗ , the semantics of the
offspring O⃗ should satisfy ‖O⃗ − P⃗‖ ≤ r . However, a problem with GSX and GSM
is that using them repeatedly will make GP trees grow exponentially. To solve this
issue, maintaining a table in memory to store semantics can significantly reduce the
computational cost [10, 11], and hashing can be used to merge identical subtrees,
alleviating the exponential growth problem of the GSX operator [12]. Nonetheless,
the size of the final GP tree can still be up to 10,000 nodes. To obtain an inter-
pretable model, approximate semantic crossover operators have been developed to
address the exponential growth problem [13]. These operators search for subtrees
that satisfy desired semantics from an external library to ensure that the offspring
satisfy the desired semantics of geometric crossover [14], back-propagated target
semantics [15], and projected semantics [16]. The approximated semantic crossover
operators not only reduce model sizes but also improve the generalization perfor-
mance of the discovered model [17]. Alternatively, performing geometric semantic
crossover on the subtree level instead of the tree level can also alleviate the exponen-
tial growth problem without an external library [18]. Moreover, geometric semantic
operators have been studied from the perspective of variation rate self-tuning [19],
efficient large data mining [20], and binary classification using the sigmoid function
[21]. Although geometric semantic operators have been widely studied, geometric
semantic operators for multi-tree GP still lack investigation and are worth exploring.

2.2 � Crossover operators in multi‑tree genetic programming

Unlike single-tree GP, which has only one GP tree in each individual in the popula-
tion, multi-tree GP has multiple candidates to be crossed and mutated, making the
problem more complex. For multi-tree GP, the simplest crossover operator randomly
selects an index across a parent individual and then uses the traditional crossover
operator on the selected parent trees [1, 22]. Although these methods are intuitive,
randomly selecting a GP tree to crossover may be more likely to disrupt good GP
trees or to leverage bad GP trees. In some algorithms, a random crossover operator
has been proposed to cross two whole GP trees rather than two subtrees [22, 23],
but these operators do not explicitly consider the semantics of GP trees, making it
difficult to maintain complementary features. In the data imputation task [24], the
importance of GP trees is considered when performing crossover, and experimental
results show that using a higher probability to mutate important features is the most
effective approach. In a job shop scheduling task, a self-competitive crossover and
mutation operator [25] is designed to modify the worst GP tree in each individual.

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 5 of 23  2

Although several crossover operators have been designed for multi-tree GP, these
crossover operators focus on exploiting important GP trees based on the importance
value of GP trees, whereas the semantics of each GP tree are not explicitly consid-
ered, leaving room for improving effectiveness using semantics.

2.3 � Evolutionary feature construction

Evolutionary feature construction is an automatic feature construction technique that
has a history of more than 20 years [26] and has shown excellent performance in
recent years [27, 28]. Generally, evolutionary feature construction techniques can be
categorized into three types based on the evaluation method: filter-based, wrapper-
based, and embedded methods. Filter-based feature construction methods use sim-
ple metrics instead of a learning algorithm to measure the quality of features with
respect to the target labels, such as information gain [29], Pearson correlation [30],
and other information-theoretic measures [31]. The filter-based feature construc-
tion methods are fast, and the constructed features can generalize well to different
machine learning algorithms. However, since they do not rely on any machine learn-
ing algorithms, performance improvement might be limited. In contrast, wrapper-
based feature construction methods evaluate features based on specific machine
learning algorithms, such as a decision tree [7], a linear model [22], a random forest
[1], or a heterogeneous ensemble model [32, 33]. They are more time-consuming
than filter-based methods, but they can achieve better performance on the specific
algorithm. Finally, the embedded methods embed feature construction in the learn-
ing process [34]. Representative examples include GP-based symbolic regression
methods, which construct features and models simultaneously using the GP method.

3 � The proposed method

3.1 � Overall framework

In this paper, we propose a geometric semantic crossover operator (GSMX) for a
multi-tree GP-based evolutionary feature construction algorithm. The overall algo-
rithm consists of four parts, as follows:

•	 Population Initialization: The population initialization stage randomly generates
N GP individuals, each with m trees, using the ramped half-and-half method,
where m GP trees represent m constructed features.

•	 Solution Evaluation: The solution evaluation stage uses all GP trees {�1 …�m}
to construct a set of features {�1(X)…�m(X)} , with ridge regression determin-
ing the coefficients of these features. To encourage generalization on unseen
data, a leave-one-out cross-validation method is applied to the training data to
obtain predictions {ŷ1,… , ŷn} for fitness evaluations. In this paper, squared errors
between predicted values and target values, i.e., {(ŷ1 − y1)

2,… , (ŷn − yn)
2} , are

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 6 of 23

defined as fitness cases. Finally, the mean value of all fitness cases determines
the fitness value for model selection.

•	 Parent Selection: Parents are selected using the automatic �-lexicase selection
operator [35]. The general idea of lexicase selection is to initialize a candidate
pool P based on all individuals in the current population, and then construct
multiple filters based on the fitness cases to filter out individuals in the candi-
date pool until only one individual remains, which is then selected as the parent.
In this paper, the filter is defined as minp∈PLk(p) + �k [36], where Lk(p) repre-
sents the fitness value of individual p on training instance k, and �k represents
the median absolute deviation of fitness values on training instance k for all indi-
viduals in the candidate pool.

•	 Offspring Generation: Once two parents are selected, the offspring are generated
using the random subtree crossover and mutation operators. For an m-tree GP,
the crossover and mutation operators are repeated m

∕
2 and m times , respectively,

to encourage the exploration of GP trees.

Although the simplest way to crossover parents Φa and Φb is to exchange sub-
trees �a and �b between randomly selected GP trees �a and �b in Φa and Φb , a more
effective approach is to swap GP trees based on their semantics to take relevancy
and complementarity into consideration. Specifically, the goal is to best approximate
the target semantics with the weighted average of all GP trees in an individual : ∑m

i=1
wi�i(X) ≈ y , where weights wi are determined by linear regression.

To achieve this goal, the proposed geometric semantic crossover oper-
ator (GSMX) crosses two GP individuals based on their semantics
{�a

1
(X),… ,�a

m
(X)} ∪ {�b

1
(X),… ,�b

m
(X)} to obtain a set of relevant and complemen-

tary GP trees {��
1
…��

m
} as a new individual that approximates the target seman-

tics. Figure 2 presents an example of the ideal behavior of GSMX in genotype and
semantic space. Figure 2a shows the view from the genotype space, where GSMX
selects {�a

1
,�a

3
} from parent A and {�b

1
,�b

4
} from parent B to form an offspring. The

reason for selecting these two pairs of trees is illustrated by the geometric relation-
ship between the trees in Fig. 2b. As it shows, �1 and �3 in parent A, and �1 and �4
in parent B, are complementary with respect to the target semantics, as their cosine
similarities are exactly -1. Therefore, selecting these four trees allows the linear
combination of the constructed features to equal the target semantics. The following
sections will introduce how to implement such an operator.

3.2 � Sequential mode and parallel mode

The GSMX operator is compatible with the traditional crossover and mutation
operators, and it can be applied in either a sequential mode or a parallel mode. The
key difference between the two modes is whether the GSMX operator and the tradi-
tional variation operator can be used on the same individual. The purpose of having

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 7 of 23  2

these two modes is to explore the best way to combine GSMX with the traditional
crossover and mutation operators. An illustrative example is presented in Fig. 3. The
details for these two modes are described as follows:

•	 Parallel Mode: The GSMX operator is applied in parallel with standard crosso-
ver and mutation operators. The choice between using the GSMX operator or
standard genetic operators is determined by a predefined probability pGSMX . For
each pair of parents, based on the probability pGSMX , either GSMX or standard
operators are chosen, resulting in a new population generated by a combination
of GSMX and standard operators. Another key aspect is that the GSMX operator
produces only a single offspring from two parents, as the set of less-important
features is discarded.

•	 Sequential Mode: The GSMX operator is invoked with a probability of pGSMX
before applying standard genetic operators. Firstly, this mode invokes lexi-
case selection four times to select two pairs of parents ΦA,ΦB,ΦC,ΦD . Then,
it combines relevant and complementary features from two pairs of parents
{ΦA,ΦB}, {ΦC,ΦD} to produce two offspring ΦO1,ΦO2 . Finally, traditional
genetic operators can make further changes on ΦO1,ΦO2 to fine-tune GP trees.

3.3 � Two implementations of GSMX

In this section, we presents two alternative approaches for implementing macro-
crossover in genetic programming: MAP-Elites and Angle-Driven Selection.
Both methods aim to consider complementarity by measuring the cosine simi-
larity between GP trees during macro-crossover, thereby improving the search
effectiveness.

Fig. 2   View of GSMX from genotype space and semantic space

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 8 of 23

3.3.1 � MAP‑elites for macro‑crossover

The goal of the GSMX operator is to form a set of relevant and complementary
GP trees in the offspring individuals. To achieve this goal, we propose using MAP-
Elites, a niching algorithm that has shown promising results in many quality-diver-
sity optimization tasks [37, 38]. The general idea of MAP-Elites is to map individu-
als into a low-dimensional behavioral space and then discretize the behavioral space
into multiple cells. On each cell, the elite can be chosen according to their fitness
values. By identifying elites located at different regions of the behavior space, we
can maintain a high-quality and complementary set of GP trees as the offspring.

The process of using MAP-Elites for GSMX can be divided into four steps:

•	 Step 1. Data processing: At the beginning of MAP-Elites, semantics of GP trees
are centralized according to the target semantics, which ensures that the cosine
similarity is calculated using the target semantics as a central point.

•	 Step 2. Dimensionality reduction: The second step is dimensionality reduction.
This is necessary because the curse of dimensionality can make the number of
elite cells very large and fail to select elites. In this paper, we use cosine ker-
nel principal component analysis (KPCA) to reduce the semantic space to a
two-dimensional space, which has shown superior performance to other dimen-
sionality reduction methods in MAP-Elites for evolutionary ensemble learning

Fig. 3   Workflow of different modes for GSMX

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 9 of 23  2

[39]. To be specific, the reason for using a cosine kernel is because using cosine
similarity as the distance metric in MAP-Elites can make it explicitly consider
the complementarity of different features. In an ideal scenario, if two features
that have an exact cosine similarity of -1 with respect to the target semantics
have been identified, they can be used to accurately estimate the target semantics
through a linear combination method.

•	 Step 3. Discretization: After reducing the semantic space from ℝn to a behavioral
space of ℝ2 , MAP-Elites discretizes the behavioral space into a k × k cell with
equal distance between the cells.

•	 Step 4 Elite Selection: For each cell gi,j , where i, j ∈ [1, k] , MAP-Elites selects the
most important GP tree ei,j in gi,j , where the importance value of each GP tree � is
determined by the absolute value of its coefficient �� in the linear model. If no GP
tree is in the cell, gi,j , ei,j is marked as a nonelement. To avoid the scale difference of
constructed features influencing the magnitude of coefficients, all constructed fea-
tures are standardized before training the linear model.

At the end of the MAP-Elites selection, we rank all elements in the grid
{ei,j ∣ i, j ∈ [1, k]} according to their importance values in a descending order. Then, we
simply select the top-m trees to form an offspring individual with m GP trees. However,
the number of elites in the elite grid may be less than m, making the above process
unable to select enough features. If this occurs, GSMX repeats the MAP-Elites process
until enough features have been selected.

3.3.2 � Angle‑driven selection for macro‑crossover

The GSMX operator is a general concept and there are multiple ways to implement it.
The Angle-Driven Selection (ADS) is another way to implement the GSMX operator,
which consists of three steps:

•	 Step 1. Redundant feature elimination: At the start of the macro-crossover process,
redundant features are eliminated to ensure that no semantically equivalent features
appear in the offspring. For speedup, the hash value h(�(X)) is calculated using
SipHash [40] for compressing the semantics of each feature � , and then the seman-
tic equivalence is checked based on hash values.

•	 Step 2. Roulette wheel selection: In this stage, the roulette wheel selection operator
is used to select a feature � based on the normalized importance values of all fea-
tures. The importance value is the same as the importance value defined in MAP-
Elites, which is the absolute value of the corresponding coefficient in the linear
model.

•	 Step 3. Angle-driven pairing: Based on the selected feature � , the angle-driven
selection mechanism selects the feature �′ with the maximal cosine distance with
respect to � . This is because the feature with the maximal cosine distance is the
feature that has the most symmetrical semantics with respect to the target semantics.
In the ideal scenario, the angle-driven pairing process can identify a pair of features
that have a cosine similarity of −1. This enables an exact estimation of the target
semantics by using a linear combination of the complementary features.

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 10 of 23

To generate a child individual, Steps 2 and 3 are executed repeatedly m
2
 times until m

features have been selected.

4 � Experimental settings

4.1 � Datasets

In this paper, we conduct experiments on Penn Machine Learning Benchmark (PMLB)
[41]. Due to limited computational resources, in ablation studies, 98 datasets with less
than 2000 data instances in PMLB are used. The properties of these datasets are pre-
sented in Fig. 4. Figure 4 shows that the largest dataset has 1059 instances, whereas
the smallest dataset only has 47 instances. As for the number of features, they are
within the range of 2 to 124. When comparing with machine learning algorithms, all
120 regression datasets from PMLB are used, resulting in the maximum number of
instances in the experimental datasets being 1,000,000.

4.2 � Parameter settings

The parameter settings are shown in Table 1, and most of them are common settings used
in the existing literature. The population size is set to 30 times the number of features D,
with a maximum limit of 300. This is because high-dimensional datasets require more
computational resources to discover good high-order features. To avoid the problem of
zero division, the analytical quotient (AQ) operator [42] is used to replace the division
operator.

Fig. 4   Properties of the regres-
sion benchmark

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 11 of 23  2

4.3 � Comparison methods

4.3.1 � Macro‑crossover operators

This paper proposes two methods for implementing the Geometric Semantic Macro-
Crossover (GSMX) algorithm: Angle-Driven Selection (ADS) and MAP-Elites.
Both methods can be applied in either sequential or parallel mode, resulting in four
macro-crossover operators. These operators are named MAP-Elites Macro-Crosso-
ver Operator in parallel (MAPMX-P), Angle-Driven Macro-Crossover Operator in
parallel (ADMX-P), MAPMX in sequential (MAPMX-S), and ADMX in sequential
(ADMX-S). The standard Genetic Programming (STD-GP) serves as the baseline
for comparison.

4.3.2 � Micro‑crossover operators

As GSMX is a macro-crossover operator, it is compatible with traditional crosso-
ver operators in GP. In this paper, we also investigate the performance gain brought
by using MAPMX-P in conjunction with different micro-crossover operators. In the
default implementation, we use a random crossover operator to crossover GP trees
by randomly selecting a GP tree in each GP individual. To ensure sufficient variation
for m GP trees in each individual, we repeat the random crossover operator m times
under the control of crossover probability. However, existing literature offers more
advanced crossover operators for multi-tree GP than the random selection operator.
In this paper, we consider two micro-crossover operators:

•	 Self-Competitive Crossover (SCX) [25]: This is a biased crossover operator [43]
that replaces a subtree of the least important tree in parent A with a subtree of the
most important tree in parent B, while leaving the most important subtree in par-
ent B intact. This biased crossover operator ensures exploration without disrupt-
ing important GP trees.

Table 1   Parameter settings for GP

Parameter Value

Population Size 30 × D
Maximal Number of Generations 100
Crossover and Mutation Rates 0.9 and 0.1
Maximum Tree Depth 8
Maximum Initial Tree Depth 2
Number of Trees in Each Individual 20
Elitism (Number of Individuals) 1
Macro-Crossover Rate 0.2
Functions Add, Sub, Mul, AQ, Sin, Cos, Abs,

Max, Min, Negative

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 12 of 23

•	 Probability Best Index Crossover (PBIX) [24]: This crossover operator selects
the tree to be crossed with a probability proportional to the importance value of
each tree. The importance of each tree in PBIX is defined as the Kolmogorov-
Smirnov distance between the features constructed by a GP tree in the source
domain and the target feature in the target domain [24].

It is important to note that both operators require defining the important trees in
each individual. In this paper, the importance value of each GP tree is defined as the
absolute value of the coefficient for each GP tree in each individual. While the origi-
nal implementation of PBIX and SCX operators are invoked only once for multi-
tree GP, it is possible to invoke PBIX operator m times to facilitate the exchange of
genetic materials. Consequently, this section considers five crossover operators:

•	 SCX: SCX uses the most important and the most unimportant GP tree in each
individual.

•	 PBIX: Performing PBIX once.
•	 PBIX-All: Performing PBIX m times.
•	 RIX: Performing Random Crossover once.
•	 RIX-All: Performing Random Crossover m times.

4.4 � Evaluation protocol

The evaluation protocol used in this paper follows the conventional protocol used
in the machine learning domain. Specifically, datasets are split into training and test
sets in a ratio of 80:20. For each combination of algorithms and datasets, experi-
ments are conducted for 30 independent runs with different random seeds. Based
on the experimental results, a Wilcoxon signed rank test is performed with a signifi-
cance level of 0.05.

5 � Experimental results

5.1 � Comparisons of macro‑crossover methods

Table 2 provides a statistical comparison of the test R2 scores of four macro-
crossover operators, namely MAPMX-P, ADMX-P, MAPMX-S, and ADMX-S,
with the standard GP (STD-GP). The results show that MAPMX-P outperforms
STD-GP on 37 datasets while only performing worse on 5 datasets, validating the
effectiveness of the proposed semantic macro-crossover operator in multi-tree GP.
In contrast, the angle-driven macro-crossover operator only outperforms STD-GP
on 18 datasets, indicating that the MAP-Elites selection mechanism is crucial for
the improvement of the effectiveness of the semantic macro-crossover operator.
Additionally, changing from parallel mode to sequential mode can degrade the
performance of both ADMX-P and MAPMX-P. MAPMX-S is significantly worse
than MAPMX-P on 27 datasets, whereas it is only better on 5 datasets. As for

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 13 of 23  2

ADMX-S, it performs worse than ADMX-P on 9 datasets, while is only better on
1 dataset. Thus, it is not recommended to use sequential mode for MAPMX and
ADMX.

To gain a deeper understanding of the success of GSMX, the evolutionary
plot of test R2 scores with respect to different macro-crossover operators on four
representative datasets is presented in Fig. 5. The plot demonstrates that GSMX
significantly improves the test R2 scores over standard GP in early generations.
This can be explained by the MAP-Elites mechanism in GSMX tries to explic-
itly maintain a set of relevant and complementary features. Thus, despite fea-
tures in early generations have low predictive performance, they can still work
well as long as they are complementary with each other with respect to the target
semantics.

Moreover, Table 3 shows that GP with ADMX leads to significantly better fit-
ness values than standard GP on 94 out of the 98 datasets and is not worse on any
dataset. Combining these results with those presented in Table 2, we can conclude
the performance degradation of GSMX compared to STD-GP on 5 datasets might
be caused by overfitting. For example, GSMX outperforms STD-GP on the "sleuth
case" dataset [44], which has 6 features but only 147 instances, in terms of fit-
ness values, but performs worse on test R2 scores. Thus, if the overfitting problem
of GSMX can be alleviated in the future, we can expect that GSMX will further
improve the test R2 scores of GP.

It is worth noting that MAPMX-P performs well on both low-dimensional and
high-dimensional datasets. As shown in Fig. 6, MAPMX-P still outperforms STD-
GP on datasets with 50 dimensions and even with 100 dimensions.

5.2 � Comparisons of micro‑crossover methods

The experimental results for the micro-crossover operator are presented in
Table 4. The results indicate that MAPMX-P can significantly improve test R2
scores when used with any of the micro-crossover operators. For instance, when
applied with the PBIX operator, MAPMX-P significantly improves the predic-
tion performance on 41 datasets while only exhibiting worse performance on
6 datasets. Interestingly, applying micro-crossover operators multiple times
can be better than using them once only. One potential reason is that applying

Table 2   Statistical comparisons of test R2 scores using different macro-crossover operators.

(“+",“∼ ", and “-" indicate using the method in a row is better than, similar to or worse than using the
method in a column.)

ADMX-P MAPMX-S ADMX-S STD-GP

MAPMX-P 23(+)/71(∼)/4(-) 27(+)/66(∼)/5(-) 35(+)/57(∼)/6(-) 37(+)/56(∼)/5(-)
ADMX-P – 6(+)/90(∼)/2(-) 9(+)/88(∼)/1(-) 18(+)/78(∼)/2(-)
MAPMX-S – – 8(+)/87(∼)/3(-) 22(+)/74(∼)/2(-)
ADMX-S – – – 11(+)/87(∼)/0(-)

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 14 of 23

Fig. 5   Evolutionary plot of test R2 scores for different macro-crossover operators

Table 3   Statistical comparisons of best fitness values on training set using different macro-crossover
operators

ADMX-P MAPMX-S ADMX-S STD-GP

MAPMX-P 91(+)/5(∼)/2(-) 91(+)/7(∼)/0(-) 91(+)/6(∼)/1(-) 94(+)/4(∼)/0(-)
ADMX-P – 8(+)/77(∼)/13(-) 60(+)/38(∼)/0(-) 80(+)/17(∼)/1(-)
MAPMX-S – – 62(+)/32(∼)/4(-) 78(+)/19(∼)/1(-)
ADMX-S – – – 55(+)/42(∼)/1(-)

Fig. 6   Summary of the sta-
tistical comparison between
MAPMX-P and STD-GP on
98 datasets with respect to the
number of features

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 15 of 23  2

micro-crossover operators multiple times can provide sufficient variation to dis-
cover good enough solutions within a limited number of generations. Conversely,
applying micro-crossover operators only once may only modify an unimportant
feature of an individual, with little impact on fitness improvement. Thus, RIX-
ALL outperforms RIX on 10 datasets and is only worse on 1 dataset. Based on
this advantage, combining MAPMX-P with RIX-ALL achieves top-notch per-
formance compared to all competitors. Specifically, this operator is significantly
better than all other crossover operators except for combining MAPMX-P with
PBIX-ALL, which has a similar performance.

Table 4   Statistical comparisons of test R2 scores with different micro-crossover operators and using
GSMX or not

RIX PBIX RIX-ALL

SX 6(+)/77(∼)/15(-) 9(+)/79(∼)/10(-) 0(+)/86(∼)/12(-)
RIX – 8(+)/83(∼)/7(-) 1(+)/87(∼)/10(-)
PBIX – – 0(+)/89(∼)/9(-)
RIX-ALL – – –
PBIX-ALL – – –
MAPMX+SX – – –
MAPMX+RIX – – –
MAPMX+PBIX – – –
MAPMX+RIX-ALL – – –

PBIX-ALL MAPMX+SX MAPMX+RIX

SX 15(+)/65(∼)/18(-) 4(+)/60(∼)/34(-) 3(+)/54(∼)/41(-)
RIX 27(+)/58(∼)/13(-) 11(+)/52(∼)/35(-) 6(+)/50(∼)/42(-)
PBIX 18(+)/74(∼)/6(-) 12(+)/52(∼)/34(-) 12(+)/40(∼)/46(-)
RIX-ALL 24(+)/72(∼)/2(-) 15(+)/65(∼)/18(-) 12(+)/54(∼)/32(-)
PBIX-ALL – 14(+)/38(∼)/46(-) 17(+)/38(∼)/43(-)
MAPMX+SX – – 4(+)/78(∼)/16(-)
MAPMX+RIX – – —
MAPMX+PBIX – – —
MAPMX+RIX-ALL – – —

MAPMX+PBIX MAPMX+RIX-ALL MAPMX+PBIX-ALL

SX 3(+)/56(∼)/39(-) 1(+)/39(∼)/58(-) 1(+)/35(∼)/62(-)
RIX 3(+)/49(∼)/46(-) 3(+)/34(∼)/61(-) 1(+)/37(∼)/60(-)
PBIX 6(+)/51(∼)/41(-) 4(+)/36(∼)/58(-) 2(+)/40(∼)/56(-)
RIX-ALL 9(+)/66(∼)/23(-) 5(+)/56(∼)/37(-) 5(+)/55(∼)/38(-)
PBIX-ALL 15(+)/35(∼)/48(-) 10(+)/36(∼)/52(-) 10(+)/31(∼)/57(-)
MAPMX+SX 2(+)/79(∼)/17(-) 2(+)/49(∼)/47(-) 2(+)/50(∼)/46(-)
MAPMX+RIX 5(+)/90(∼)/3(-) 2(+)/72(∼)/24(-) 3(+)/75(∼)/20(-)
MAPMX+PBIX – 1(+)/73(∼)/24(-) 2(+)/71(∼)/25(-)
MAPMX+RIX-ALL – – 4(+)/90(∼)/4(-)

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 16 of 23

5.3 � Comparisons with machine learning algorithms

To fully investigate the performance improvement brought by using the GSMX
operator, we name a standard multi-tree GP algorithm (STD-GP) with the proposed
MAPMX-P operator as MAPMX-GP, against 22 state-of-the-art symbolic regres-
sion and machine learning algorithms on 120 datasets. Figure 7 presents the median
normalized test R2 score, model size, and training time over the 120 datasets. Here,
the test R2 scores are normalized to eliminate the differences in difficulty between
different datasets. Specifically, the test R2 scores are normalized using s−smin

smax−smin
 based

on the maximum score smax and the minimum score smin that the 23 algorithms can
achieve on each dataset. The experimental results show that MAPMX-GP achieves
the best normalized test R2 scores among the 23 algorithms and has a smaller model
size than PS-Tree, which is the state-of-the-art symbolic regression algorithm in
terms of test R2 scores. With respect to the training time, although MAPMX-GP
takes more time to train than PS-Tree, its training time is shorter than that of SBP-
GP. These results indicate that MAPMX-GP achieves top-notch performance with-
out incurring overly complex models and excessive time consumption. Figure 8 pre-
sents the statistical comparison results of normalized test R2 scores with
Benjamini-Hochberg correction [45] to make the results of multiple testing more
reliable. The experimental results show that MAPMX-GP significantly outperforms
other methods. It is worth noting that STD-GP is the same as MAPMX-GP in gen-
eration operators, selection operators and the fitness evaluation function, with the
only difference being the lack of use of the MAPMX-P operator. Figures 7 and 8
demonstrate that MAPMX-GP significantly outperforms PS-Tree, whereas STD-GP
is significantly worse than PS-Tree, indicating that the MAPMX-P operator is the
key component for the outstanding performance of MAPMX-GP. Moreover,
MAPMX-GP has the same order of magnitude in computational cost as STD-GP.
This is reasonable since MAPMX-GP does not require additional fitness evaluations,

Fig. 7   Median normalized R2 scores, model sizes and training time on 120 regression problems

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 17 of 23  2

and the extra computation cost only occurs during the crossover process. Also,
although MAPMX-GP is based on the philosophy of geometric semantics, it does
not suffer from the problem of exponential growth, because MAPMX-GP discards
some GP trees during the crossover process. Thus, as shown in Fig. 8, it has the
same order of magnitude in model size as STD-GP.

6 � Further analysis

6.1 � Analysis of success rate

To gain a comprehensive understanding of why GSMX outperforms other crosso-
ver operators and why macro-crossover is beneficial for multi-tree GP, evolution-
ary plots of successful crossover rates on four representative datasets for both the
macro-crossover operator and the micro-crossover operator are presented in Figs. 9
and 10, respectively. The successful crossover rate is calculated as the ratio between
the number of successful crossovers and the total number of crossovers. In both
MAPMX-P and ADMX-P, a successful macro-crossover is defined as when the
macro-crossover operator generates an offspring that is better than all its parents. In
both MAPMX-S and ADMX-S, if an individual is produced by macro-crossover and
is superior to its parents, it is deemed a successful macro-crossover, regardless of
subsequent micro-crossover/mutation.

The success rate of macro-crossover operators is shown in Fig. 9. The experi-
mental results demonstrate that MAPMX-P has a success rate of 0.5, even in later
generations, which is significantly higher than the success rate of other macro-cross-
over operators. The larger success rate of MAPMX-P over ADMX-P confirms the

Fig. 8   Pairwise statistical comparisons of normalized R2 test scores on 120 regression problems

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 18 of 23

benefits of using MAPMX-P. Additionally, both MAPMX-S and ADMX-S have
a lower success rate than their parallel variants, indicating that successful macro-
crossover will be disrupted by the micro-crossover/mutation operators if applying
micro-variation operators immediately after macro-crossover. Therefore, it is more
appropriate to apply the macro-crossover variation in parallel with the micro-crosso-
ver operator to achieve good search effectiveness.

Figure 10 further shows the successful variation rates of the micro-variation
operator. The results indicate that the success rate of the micro-variation operator
does not vary significantly, regardless of the accompanying macro-crossover opera-
tor. Moreover, it is clear that the micro-crossover operator only has a success rate of
0.05, which is significantly lower than the success rate of macro-crossover opera-
tors. These results reveal that MAPMX-P has a higher crossover success rate than
traditional genetic operators, meaning that applying a macro-crossover operator
on a pair of parent individuals is more likely to improve them than applying tradi-
tional genetic operators. This can explain the performance improvement brought by
MAPMX-P over other traditional genetic operators.

6.2 � Impact of macro‑crossover probability

In this paper, macro-crossover is recommended to be used in parallel with the
standard crossover operator. In this case, balancing between the macro-level

Fig. 9   Evolutionary plot of success rate for different macro-crossover operators

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 19 of 23  2

crossover and micro-level crossover is important. To investigate the impact of dif-
ferent crossover probabilities, we conduct experiments for four possible probabilities
{0.01, 0.05, 0.2, 0.5} . Table 5 presents the results of using different macro-crossover
probabilities. The test results for R2 scores suggest that a probability of 0.2 is suit-
able for macro-crossover. Specifically, when compared to a probability of 0.05, a
probability of 0.2 outperforms significantly on 14 datasets and underperforms on 4
datasets. Similarly, compared to a probability of 0.5, a probability of 0.2 shows sig-
nificantly better results on 11 datasets while performing worse on 4 datasets. Nev-
ertheless, using MAPMX-P is always better than not using it. As shown in Table 5,
even a low probability like 0.01 can be significantly better than not using MAPMX-
P on 8 out of the 98 datasets, without performing worse on any dataset.

7 � Conclusions

The aim of this paper is to improve the search effectiveness of GP-based evolutionary
feature construction methods by leveraging semantic information in crossover. This is
achieved by proposing a GSMX operator that uses MAP-Elites to maintain a set of
complementary features during crossover.

The performance of the proposed GSMX operator was validated on 98 datasets.
Experimental results show that using the GSMX operator in multi-tree GP can sig-
nificantly improve search effectiveness and yield better R2 scores compared to using

Fig. 10   Evolutionary plot of success rate for micro-crossover/mutation operators when combined with
different macro-crossover operators

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 20 of 23

only the standard crossover operator. Furthermore, a comparison between four variants
of the GSMX operator reveals that applying the GSMX operator in parallel with the
standard crossover operator is the best choice, and using MAP-Elites in macro-crosso-
ver is superior to using angle-driven selection in macro-crossover. Finally, experimental
results on the state-of-the-art symbolic regression benchmark demonstrate that multi-
tree GP with GSMX can outperform all other 22 algorithms, highlighting the superior
performance of using GSMX in multi-tree GP-based evolutionary feature construction
algorithms. Moreover, experimental results with micro-crossover operators indicate
that the proposed macro-crossover operator can significantly improve the performance
when combined with five different types of micro-crossover operators.

In this work, GSMX is applied for regression tasks. In the future, it would be inter-
esting to investigate whether such a macro-crossover operator can be applied to other
applications, such as classification [2] and clustering problems [3]. For these problems,
the lack of target semantics is the major challenge, and using state-of-the-art opera-
tional research algorithms to estimate target semantics may be a feasible approach.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10710-​023-​09465-z.

Acknowledgements  The authors would like to acknowledge the assistance of the volunteer evaluators
and the helpful comments of the reviewers, which have significantly improved the paper.

Author Contributions  Hengzhe Zhang, Qi Chen, and Mengjie Zhang designed the algorithm and experi-
mental protocol. Hengzhe Zhang implemented the code and conducted the experiments. All authors ana-
lyzed the results. Hengzhe Zhang drafted the paper, and all authors edited the manuscript.

Funding  This work was supported in part by the Marsden Fund of New Zealand Government under Con-
tracts VUW1913, VUW1914, VUW2016, MBIE Data Science SSIF Fund under the contract RTVU1914,
Huayin Medical under grant E3791/4165, and MBIE Endeavor Research Programme under contracts
C11X2001 and UOCX2104.

Declarations 

Conflict of interest  The authors are not aware of any competing interests.

References

	 1.	 H. Zhang, A. Zhou, H. Zhang, An evolutionary forest for regression. IEEE Trans. Evol. Comput.
26(4), 735–749 (2022)

Table 5   Statistical comparisons of test R2 scores with different macro-crossover probabilities

0.2 0.05 0.01 0

0.5 4(+)/83(∼
)/11(-)

18(+)/65(∼)/15(-) 33(+)/52(∼)/13(-) 47(+)/35(∼)/16(-)

0.2 – 14(+)/80(∼)/4(-) 30(+)/62(∼)/6(-) 37(+)/56(∼)/5(-)
0.05 – – 21(+)/75(∼)/2(-) 22(+)/76(∼)/0(-)
0.01 – – – 8(+)/90(∼)/0(-)

https://doi.org/10.1007/s10710-023-09465-z
https://doi.org/10.1007/s10710-023-09465-z

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 21 of 23  2

	 2.	 B. Tran, B. Xue, M. Zhang, Genetic programming for multiple-feature construction on high-dimen-
sional classification. Pattern Recogn. 93, 404–417 (2019)

	 3.	 A. Lensen, B. Xue, M. Zhang, Genetic programming for evolving similarity functions for clustering:
Representations and analysis. Evol. Comput. 28(4), 531–561 (2020)

	 4.	 A. Lensen, M. Zhang, B. Xue, Multi-objective genetic programming for manifold learning: balanc-
ing quality and dimensionality. Genet. Program. Evolvable Mach. 21(3), 399–431 (2020)

	 5.	 W. La Cava, J.H. Moore, Learning feature spaces for regression with genetic programming. Genet.
Program. Evolvable Mach. 21, 433–467 (2020)

	 6.	 J.R. Koza, Genetic programming as a means for programming computers by natural selection. Stat.
Comput. 4(2), 87–112 (1994)

	 7.	 H. Zhang, A. Zhou, H. Qian, H. Zhang, PS-Tree: a piecewise symbolic regression tree. Swarm Evol.
Comput. 71, 101061 (2022)

	 8.	 L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming. Genet.
Program Evolvable Mach. 15, 195–214 (2014)

	 9.	 A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming. In: Interna-
tional Conference on Parallel Problem Solving from Nature. pp. 21–31. Springer (2012)

	10.	 L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic GP
and its application to problems in pharmacokinetics. In: Genetic Programming: 16th European Con-
ference, EuroGP 2013, Vienna, Austria, April 3-5, 2013. Proceedings 16. pp. 205–216. Springer
(2013)

	11.	 M. Castelli, S. Silva, L. Vanneschi, A c++ framework for geometric semantic genetic programming.
Genet. Program. Evolvable Mach. 16, 73–81 (2015)

	12.	 J.F.B. Martins, L.O.V. Oliveira, L.F. Miranda, F. Casadei, G.L. Pappa, Solving the exponential
growth of symbolic regression trees in geometric semantic genetic programming. In: Proceedings of
the Genetic and Evolutionary Computation Conference. pp. 1151–1158 (2018)

	13.	 K. Krawiec, T. Pawlak, Approximating geometric crossover by semantic backpropagation. In: Pro-
ceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. pp. 941–948
(2013)

	14.	 K. Krawiec, T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics and
homology in recombination operators. Genet. Program. Evolvable Mach. 14, 31–63 (2013)

	15.	 T.P. Pawlak, B. Wieloch, K. Krawiec, Semantic backpropagation for designing search operators in
genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2014)

	16.	 Q. Chen, B. Xue, M. Zhang, Improving generalization of genetic programming for symbolic regres-
sion with angle-driven geometric semantic operators. IEEE Trans. Evol. Comput. 23(3), 488–502
(2018)

	17.	 T.P. Pawlak, B. Wieloch, K. Krawiec, Review and comparative analysis of geometric semantic
crossovers. Genet. Program. Evolvable Mach. 16, 351–386 (2015)

	18.	 Q.U. Nguyen, T.A. Pham, X.H. Nguyen, J. McDermott, Subtree semantic geometric crossover for
genetic programming. Genet. Program. Evolvable Mach. 17, 25–53 (2016)

	19.	 M. Castelli, L. Manzoni, L. Vanneschi, S. Silva, A. Popovič, Self-tuning geometric semantic genetic
programming. Genet. Program. Evolvable Mach. 17, 55–74 (2016)

	20.	 M. Castelli, L. Vanneschi, L. Manzoni, A. Popovič, Semantic genetic programming for fast and
accurate data knowledge discovery. Swarm Evol. Comput. 26, 1–7 (2016)

	21.	 I. Bakurov, M. Castelli, F. Fontanella, A.S. di Freca, L. Vanneschi, A novel binary classification
approach based on geometric semantic genetic programming. Swarm Evol. Comput. 69, 101028
(2022)

	22.	 W. La Cava, T.R. Singh, J. Taggart, S. Suri, J.H. Moore, Learning concise representations for
regression by evolving networks of trees. In: International Conference on Learning Representations
(2018)

	23.	 L. Muñoz, L. Trujillo, S. Silva, M. Castelli, L. Vanneschi, Evolving multidimensional transforma-
tions for symbolic regression with M3GP. Memetic Comput. 11, 111–126 (2019)

	24.	 B. Al-Helali, Q. Chen, B. Xue, M. Zhang, Multitree genetic programming with new operators for
transfer learning in symbolic regression with incomplete data. IEEE Trans. Evol. Comput. 25(6),
1049–1063 (2021)

	25.	 S. Nguyen, D. Thiruvady, M. Zhang, D. Alahakoon, Automated design of multipass heuristics
for resource-constrained job scheduling with self-competitive genetic programming. IEEE Trans.
Cybern. 52(9), 8603–8616 (2021)

	 Genetic Programming and Evolvable Machines (2024) 25:2

1 3

2  Page 22 of 23

	26.	 K. Krawiec, Genetic programming-based construction of features for machine learning and knowl-
edge discovery tasks. Genet. Program. Evolvable Mach. 3, 329–343 (2002)

	27.	 K. Neshatian, M. Zhang, P. Andreae, A filter approach to multiple feature construction for symbolic
learning classifiers using genetic programming. IEEE Trans. Evol. Comput. 16(5), 645–661 (2012)

	28.	 K. Nag, N.R. Pal, Feature extraction and selection for parsimonious classifiers with multiobjective
genetic programming. IEEE Trans. Evol. Comput. 24(3), 454–466 (2019)

	29.	 M. Muharram, G.D. Smith, Evolutionary constructive induction. IEEE Trans. Knowl. Data Eng.
17(11), 1518–1528 (2005)

	30.	 I. Arnaldo, U.M. O’Reilly, K. Veeramachaneni, Building predictive models via feature synthesis. In:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. pp. 983–
990 (2015)

	31.	 J. Ma, X. Gao, A filter-based feature construction and feature selection approach for classification
using genetic programming. Knowl.-Based Syst. 196, 105806 (2020)

	32.	 Y. Bi, B. Xue, M. Zhang, Genetic programming with a new representation to automatically learn
features and evolve ensembles for image classification. IEEE Trans. Cybern. 51(4), 1769–1783
(2020)

	33.	 H. Zhang, A. Zhou, Q. Chen, B. Xue, M. Zhang, SR-Forest: a genetic programming based heteroge-
neous ensemble learning method. IEEE Trans. Evol. Comput. https://​doi.​org/​10.​1109/​TEVC.​2023.​
32431​72 (2023)

	34.	 Q. Chen, M. Zhang, B. Xue, Genetic programming with embedded feature construction for high-
dimensional symbolic regression. In: Intelligent and Evolutionary Systems: The 20th Asia Pacific
Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings. pp. 87–102. Springer
(2017)

	35.	 W. La Cava, L. Spector, K. Danai, Epsilon-lexicase selection for regression. In: Proceedings of the
Genetic and Evolutionary Computation Conference 2016. pp. 741–748 (2016)

	36.	 W. La Cava, T. Helmuth, L. Spector, J.H. Moore, A probabilistic and multi-objective analysis of
lexicase selection and �-lexicase selection. Evol. Comput. 27(3), 377–402 (2019)

	37.	 J.B. Mouret, J. Clune, Illuminating search spaces by mapping elites. arXiv preprint arXiv:​1504.​
04909 (2015)

	38.	 A. Cully, J. Clune, D. Tarapore, J.B. Mouret, Robots that can adapt like animals. Nature 521(7553),
503–507 (2015)

	39.	 H. Zhang, Q. Chen, A. Tonda, B. Xue, W. Banzhaf, M. Zhang, MAP-Elites with cosine-similarity
for evolutionary ensemble learning. In: Genetic Programming: 26th European Conference, EuroGP
2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12–14, 2023, Proceedings. pp.
84–100. Springer (2023)

	40.	 J.P. Aumasson, D.J. Bernstein, Siphash: a fast short-input prf. In: Progress in Cryptology-
INDOCRYPT 2012: 13th International Conference on Cryptology in India, Kolkata, India, Decem-
ber 9-12, 2012. Proceedings 13. pp. 489–508. Springer (2012)

	41.	 J.D. Romano, T.T. Le, W. La Cava, J.T. Gregg, D.J. Goldberg, P. Chakraborty, N.L. Ray, D. Him-
melstein, W. Fu, J.H. Moore, PMLB v1.0: an open-source dataset collection for benchmarking
machine learning methods. Bioinformatics 38(3), 878–880 (2022)

	42.	 J. Ni, R.H. Drieberg, P.I. Rockett, The use of an analytic quotient operator in genetic programming.
IEEE Trans. Evol. Comput. 17(1), 146–152 (2012)

	43.	 N.F. McPhee, M.K. Dramdahl, D. Donatucci, Impact of crossover bias in genetic programming. In:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. pp. 1079–
1086 (2015)

	44.	 F. Ramsey, D. Schafer, The statistical sleuth: a course in methods of data analysis. Cengage Learn-
ing (2012)

	45.	 Q.U. Nguyen, T.H. Chu, Semantic approximation for reducing code bloat in genetic programming.
Swarm Evol. Comput. 58, 100729 (2020)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1109/TEVC.2023.3243172
https://doi.org/10.1109/TEVC.2023.3243172
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1504.04909

1 3

Genetic Programming and Evolvable Machines (2024) 25:2	 Page 23 of 23  2

Authors and Affiliations

Hengzhe Zhang1 · Qi Chen1 · Bing Xue1 · Wolfgang Banzhaf2 · Mengjie Zhang1

 *	 Qi Chen
	 qi.chen@ecs.vuw.ac.nz

	 Hengzhe Zhang
	 hengzhe.zhang@ecs.vuw.ac.nz

	 Bing Xue
	 bing.xue@ecs.vuw.ac.nz

	 Wolfgang Banzhaf
	 banzhafw@msu.edu

	 Mengjie Zhang
	 mengjie.zhang@ecs.vuw.ac.nz

1	 Center for Data Science and Artificial Intelligence and School of Engineering and Computer
Science, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

2	 Department of Computer Science and Engineering, Michigan State University,
East Lansing 48824, MI, USA

	A geometric semantic macro-crossover operator for evolutionary feature construction in regression
	Abstract
	1 Introduction
	2 Related work
	2.1 Geometric semantic operators
	2.2 Crossover operators in multi-tree genetic programming
	2.3 Evolutionary feature construction

	3 The proposed method
	3.1 Overall framework
	3.2 Sequential mode and parallel mode
	3.3 Two implementations of GSMX
	3.3.1 MAP-elites for macro-crossover
	3.3.2 Angle-driven selection for macro-crossover

	4 Experimental settings
	4.1 Datasets
	4.2 Parameter settings
	4.3 Comparison methods
	4.3.1 Macro-crossover operators
	4.3.2 Micro-crossover operators

	4.4 Evaluation protocol

	5 Experimental results
	5.1 Comparisons of macro-crossover methods
	5.2 Comparisons of micro-crossover methods
	5.3 Comparisons with machine learning algorithms

	6 Further analysis
	6.1 Analysis of success rate
	6.2 Impact of macro-crossover probability

	7 Conclusions
	Acknowledgements
	References

