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1. Introduction

The induction of examination timetables is a well researched
field and various artificial intelligence techniques such as Tabu
search, simulated annealing and evolutionary algorithms, includ-
ing genetic algorithms, have been evaluated for this purpose. The
study presented in this paper applies genetic algorithms to the
uncapacitated examination timetabling problem. The approach
taken in this study differs from previous studies applying genetic
algorithms to this domain as follows:

� A two-phased approach is taken to the problem. In the first phase
a genetic algorithm is employed to produce timetables that do
not violate any hard constraints and in the second phase a
genetic algorithm is used to optimize the soft constraint costs of
the timetables evolved during the first phase.
� The genetic algorithm implemented in the first phase uses

domain specific knowledge, in the form of heuristics, to guide the
evolutionary process.

The informed genetic algorithm (IGA) was tested on the Carter
benchmark set which is comprised of 13 real-world problems. The
results obtained are comparable to that of other artificial
intelligence methodologies applied to this domain.

The study presented in this paper has made the following
contributions:

� This study has illustrated the effectiveness of using domain
knowledge, in the form of heuristics, to guide the search process
when applying genetic algorithms to the uncapacitated exam-
ination timetabling problem.
� It introduces a new low-level heuristic, namely, highest cost, for

the domain of examination timetabling.
� Although genetic algorithms have previously been applied to this

domain, most of the systems implemented have been used to
solve a problem for a particular institution and have not been
tested on the Carter benchmarks which are generally used for
comparing the performance of different methodologies applied
to this domain. The only study testing a GA system on the Carter
benchmark set it that conducted by Erben and Song [14].
However, the results obtained are not presented in the paper and
the authors report that the performance of the system was not
comparable to that of other techniques for this set of problems.
Thus, one of the contributions of this study is the comparison of a
GA based system with that of other methodologies on this set of
benchmarks. Furthermore, this study provides a starting point
for the further improvement of genetic algorithms in this
domain.

The following section defines the examination timetabling
problem. Section 3 provides an overview of methodologies
previously applied to the uncapacitated ETP. A summary of studies

Applied Soft Computing 10 (2010) 457–467

A R T I C L E I N F O

Article history:

Received 8 February 2007

Received in revised form 20 January 2009

Accepted 3 August 2009

Available online 11 August 2009

Keywords:

Examination timetabling

Evolutionary algorithms

Genetic algorithms

Heuristics

A B S T R A C T

This paper presents the results of a study conducted to investigate the use of genetic algorithms (GAs) as

a means of inducing solutions to the examination timetabling problem (ETP). This study differs from

previous efforts applying genetic algorithms to this domain in that firstly it takes a two-phased approach

to the problem which focuses on producing timetables that meet the hard constraints during the first

phase, while improvements are made to these timetables in the second phase so as to reduce the soft

constraint costs. Secondly, domain specific knowledge in the form of heuristics is used to guide the

evolutionary process. The system was tested on a set of 13 real-world problems, namely, the Carter

benchmarks. The performance of the system on the benchmarks is comparable to that of other

evolutionary techniques and in some cases the system was found to outperform these techniques.

Furthermore, the quality of the examination timetables evolved is within range of the best results

produced in the field.

� 2009 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +27 33 2605644; fax: +27 33 2605648.

E-mail addresses: pillayn32@ukzn.ac.za (N. Pillay), banzhaf@cs.mun.ca

(W. Banzhaf).

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsevier .com/ locate /asoc

1568-4946/$ – see front matter � 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2009.08.011



Author's personal copy

using evolutionary algorithms to solve the examination time-
tabling problem is presented in Section 4. Section 5 outlines the
experimental setup for testing the system. The IGA system
implemented is described in Section 6. The performance of the
system on the 13 Carter benchmarks is discussed in Section 7.
Finally, Section 8 summarises the findings of the study.

2. The examination timetabling problem (ETP)

The examination timetabling problem basically involves
allocating a set of examinations to a given set of examination
periods. Some versions of this problem require the solution
timetable to use a minimum number of periods. Each ETP has its
own set of hard constraints and soft constraints.

Hard constraints must be satisfied by the timetable. For
example, a student cannot write two examinations at the same
time, i.e. there must not be any clashes. Timetables that meet the
hard constraints of the problem are referred to as feasible

timetables.
Soft constraints on the other hand are wish lists of the

characteristics that we would like the timetable to possess, e.g.
examinations with a larger number of enrolments must be
scheduled early in the timetable to allow sufficient time for them
to be marked. All soft constraints cannot be met and we aim to
minimise the soft constraint cost for a timetable. Examinations are
usually allocated to periods so as to ensure that hard constraints
are not violated and soft constraint costs are minimised.

There are two versions of the examination timetabling problem,
namely, the capacitated ETP and the uncapacitated ETP. In the
capacitated version of the problem room allocation is taken into
consideration while in the uncapacitated version it is not.

3. Techniques applied to the ETP

The approach taken by earlier attempts at solving the ETP
generally involved sorting examinations according to the difficulty
associated with scheduling the examination, and allocating the
most difficult examinations first so as to ensure that clashes did not
occur. In the case of clashes re-allocation of examinations was
performed. A low-level heuristic was used to assess the difficulty of
an examination. Low-level heuristics generally used for this
purpose include largest degree, largest enrolment, largest
weighted degree and saturation degree. Research in this field
was initiated by the study conducted by Carter et al. [7] which
employed such a heuristic-based sequential technique with
backtracking to generate examination timetables. This system
was used to induce examination timetables for 13 different
institutions. These 13 real-world problems are now referred to as
the Carter benchmarks and are used to compare the performance
of different techniques applied to the uncapacitated ETP.

Since this first study the field has advanced fairly rapidly and a
number of different optimization techniques have been applied to
this domain. This field has basically developed in two directions.
The first focuses on applying one or more optimization techniques
to the problem to generate examination timetables that meet the
hard and soft constraints for the particular problem. The second
area examines methodologies to induce hyper-heuristics for the
problem. Hyper-heuristics are used to identify which heuristic or
combination of heuristics is most suitable for the problem at hand
and are used by the search process. This study falls into the first
area and thus this section provides an overview of previous
studies conducted to generate solutions to the uncapacitated
examination timetabling problem. There is a vast amount of work
done in this area and the studies described are those that are
commonly cited in the literature as having made a contribution to
the field.

One of the earlier studies is that conducted by Di Gaspero and
Schaerf [11] to implement a Tabu search to generate solutions to
12 of the Carter benchmarks. Input to the search is a graph
representing student conflicts with node weights indicating the
number of students writing the examination and edge weights
representing the number of students writing both the examina-
tions joined by the edge. The search space consists of both feasible
and infeasible colourings of the graph. In an attempt to reduce the
runtime of the algorithm, the Tabu search was started with an
initial solution generated by a greedy algorithm.

Caramia et al. [6] use sequential construction techniques to
induce examination timetables. A greedy scheduler is firstly
applied to allocate examinations. Examinations are allocated
according to their priority value, i.e. the number of conflicts the
examination has. Each examination is allocated to a clash-free
period that produces the lowest soft constraint cost. A penalty
decreaser is then applied to further reduce the soft constraint costs.
If the penalties can no longer be decreased a penalty trader is used
to add an additional period to the timetable and re-allocate
examinations so as to reduce the soft constraint cost.

The GRASP system implemented by Casey and Thompson [8]
takes a two-phased approach to the problem. The aim of the first
phase is to produce a feasible timetable. This is achieved by
ordering the examinations according to one of the low-level
heuristics, i.e. largest degree, largest weighted degree, largest
enrolment or saturation degree, and applying roulette wheel
selection to the first n examinations to determine which
examination to allocate next. Each examination is allocated to
the first clash-free period available. If a clash-free period cannot be
found, a form of backtracking is performed to re-schedule
examinations so that clashes are eliminated. The second phase
focuses on minimising the soft constraint costs of a feasible
timetable found during the first phase. A form of simulated
annealing is used for this purpose.

Abdullah et al. [1] use the Ahuja–Orlin large neighbourhood
search to generate timetables for 12 of the Carter benchmarks. A
feasible timetable is firstly found and this timetable is then
optimized to reduce the soft constraint costs. The search space
consists of tree representations of each timetable with each branch
representing a day and each level a timeslot. Each node stores a
subset of examinations scheduled on the day corresponding to the
branch the node is in and the timeslot corresponding to the level
the node is at.

Ayob et al. [2] apply an iterative re-start variable neighbour-
hood search (IRVNS) to the uncapacitated examination timetabling
problem. The search consists of three phases, namely, the
initialization, construction and improvement phases. The first
two phases focus on constructing timetables that meet the hard
constraints. Examinations are allocated according to their diffi-
culty which is assessed using the saturation degree. If necessary
backtracking is performed to eliminate clashes. The improvement
phase explores the neighbourhood of the constructed timetable so
as to optimize the soft constraint cost.

The Flex–Deluge algorithm is employed by Burke and Bykov [5]
to obtain solutions for 11 of the Carter benchmarks. This algorithm
is essentially an extension of the Great Deluge algorithm that
incorporates the use of hill-climbing.

Section 7 examines the performance of the systems surveyed in
this section on the Carter benchmarks and compares the results
obtained with that of the IGA.

4. Evolutionary algorithms and the ETP

The study presented in this paper uses an informed genetic
algorithm to induce solutions to the uncapacitated ETP. Genetic
algorithms are based on Darwin’s theory of evolution [16]. The first
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step of the algorithm involves creating an initial population. This
initial population then goes through a process of refinement
comprised of a number of iterations referred to as generations.
During each generation the fitness of each individual in the
population is calculated using a fitness function. Parents are
selected based on this fitness measure. Fitness proportionate
selection, roulette wheel selection and tournament selection are
selection methods commonly used for this purpose. Offspring are
created using genetic operators. The genetic operators generally
employed are crossover, mutation and reproduction. The popula-
tion is iteratively refined until the termination criteria for the
particular problem are met.

This section describes the evolutionary algorithms that have
been applied to the examination timetabling problem including
memetic algorithms, genetic algorithms, multi-objective evolu-
tionary algorithms (MOEA), and ant colonization.

Burke et al. [4] investigate the use of a memetic algorithm as a
means of inducing examination timetables. Each timetable is
represented as a number of memes, one for each timeslot. Each
meme stores a list of examinations allocated to the timeslot and
the corresponding room that the examination has been scheduled
in. The memetic algorithm employed by Burke et al. combines the
use of light and heavy mutation together with hill-climbing. The
light mutation operator selects one or more examinations and
reschedules each examination while maintaining a feasible
timetable. The heavy mutation operator reschedules the examina-
tions of one or more selected examination periods. A hill-climbing
operator is applied to the timetables output by both these
operators to further improve the quality of the timetable. This
system was successfully applied to evolve timetables for the
University of Nottingham.

A similar approach is taken by Ozcan and Ersoy [17] in the
implementation of the final exam scheduler (FES) system. The FES
system employs the use of a memetic algorithm that combines a
genetic algorithm and violated directed hill-climbing (VDHC). The
chromosome representing each timetable is comprised of a
number of genes, one for each examination. Each gene stores
the timeslot and day the examination has been allocated to. The
genetic algorithm uses one-point crossover and mutation to
improve timetables. The mutation operators change the timeslot
and/or day for an examination. This system was applied to a
number of datasets from the Faculty of Engineering and
Architecture of Yeditepe University.

Preliminary studies in the field have assessed the performance
of genetic algorithms in this domain by applying GAs to test
problems. For example, Chu and Fang [9] use a genetic algorithm to
generate a solution for a test problem involving the allocation of 10
examinations for 50 students to 12 examination periods, i.e. 4
periods over 3 days. Each timetable is an array with each cell
representing an examination. The cell stores the examination
period the examination has been allocated to. The crossover and
mutation operators are applied sequentially to create the next
generation. The crossover operator randomly selects two crossover
points in the chosen parents and swaps the fragments at these
points. The mutation operator randomly selects two examinations
and swaps their timeslots. This evolutionary process is repeated
until an optimal timetable is found or the maximum number of
generations has been completed. A similar study conducted by
Shebani [20] implements a genetic algorithm to evolve a solution
to a test problem requiring 11 examinations to be scheduled over
two days with two examination sessions held on each day. Each
timetable is represented as an array of examination periods with a
group of examinations allocated to each timeslot. A crossover
operator, which swaps the contents of one or more cells is used to
create offspring for each generation. Burke et al. [3] also apply a
genetic algorithm to test problems. However, in this study the

performance of the GA is tested on the capacitated version of the
ETP. The length of timetables is not fixed. The mutation and
crossover operators are applied to selected parents to create
offspring. The mutation operator makes random changes to the
period and room an examination is scheduled to. The crossover
operator swaps the early and late examinations in two of the
selected parents.

Ross et al. [19] apply a genetic algorithm to the capacitated
version of the Carter benchmarks. This version of the problem has
the added constraint that a student should not sit for consecutive
examinations on the same day. A timetable is represented as an
array of timeslots with each index of the array corresponding to an
examination. The value stored at an index is the timeslot that the
examination has been allocated to. Timetables are penalized for
both clashes and near-clashes, i.e. a student has consecutive
examinations on the same day. The system was also used to
generate a timetable for the University of Edinburgh for over 1000
examinations and 9000 students.

Wong et al. [21] use a genetic algorithm to induce an
examination timetable for Ecole de Technologie Superieure. The
evolved timetable was clash-free with no student having to sit
three consecutive examinations and only 0.8% of the students had
two consecutive examinations. Furthermore, only about 11% of the
students had to sit examinations separated by 1 or 2 periods with
the rest of the student body having more than two periods between
examinations. Each timetable is represented by a vector with each
index representing an examination and each element of the vector
representing the timeslot that the examination has been allocated
to. Binary tournament selection is used to choose parents for each
generation. The crossover and mutation operators are applied to
the chosen parents to create offspring.

Based on the work by Falkenauer [15], Erben [13] uses a steady-
state grouping genetic algorithm to evolve examination time-
tables. Tournament selection is used for selecting parents.

Each chromosome is essentially an array of genes. Each gene is
comprised of a group of examinations that do not clash. The index of
each array cell corresponds to the timeslot that the group of
examinations has been allocated to. Two mutation operators are
defined. The first operator deletes one or more randomly selected
genes and reschedules the examinations contained in the gene/
genes using a first fit algorithm. The second mutation operator
swaps the positions of two randomly chosen genes. The crossover
operator randomly selects one or more genes in each of the parents
and swaps these groups of examinations. Excess examinations are
removed and missing examinations are allocated to timeslots using
a first fit algorithm. A later version of this system [14] gives priority
to unscheduled examinations with a larger number of conflicts by
swapping these with scheduled examinations and then applying the
first fit algorithm to the new list of unscheduled examinations. This
version also includes an additional mutation operator that reduces
near-clashes, i.e. consecutive examinations with common students.
This system was tested on the Carter benchmark set but the results
are not reported in the paper [14]. However, the authors state that
the performance of this system was not comparable to other
methodologies applied to this domain.

Paquete and Fonseca [18] and Cote et al. [10] apply multi-
objective evolutionary algorithms to the ETP. Paquete and Fonseca
use a multi-objective evolutionary algorithm to induce a timetable
for the Unit of Exact and Human Sciences of the University of
Algarve. This problem requires 249 examinations to be scheduled
in 30 timeslots. Each constraint corresponds to an objective that
must be met by the evolved timetable. Elements of the population
are essentially chromosomes consisting of a set of possible
examination slots for each exam. Pareto ranking is used to
measure the fitness of each timetable. The mutation operator is
used to improve timetables.

N. Pillay, W. Banzhaf / Applied Soft Computing 10 (2010) 457–467 459
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The hybrid multi-objective algorithm (hMOEA) implemented
by Cote et al. [10] maintains both a population and an archive of
non-dominated timetables on each iteration of the overall
algorithm. The population and archive are initialized to contain
randomly created timetables. The algorithm then performs a
number of iterations each consisting of four phases. The first
phase applies two local search operators to both the population
and the archive. The first operator eliminates hard constraint
violations while the second operator reduces the proximity cost
of the soft constraints. The first operator implements a Tabu
search while the second operator uses a Variable Neighborhood
Descent (VND) search. The second phase performs a Pareto
ranking of the population and archive. This is followed by an
‘‘update’’ phase during which the weaker elements of the
archive are replaced. The last phase mutates the population and
applies tournament selection with a tournament size of 2 to
create the next generation. The mutation operator changes the
timeslot of one or more randomly selected examinations. The
system was applied to the Carter benchmarks [7]. The authors
report that the performance of the multi-objective approach was
comparable to other optimization techniques used for this
purpose.

Eley [12] applies a Max–Min ant system (MMAS) to the
uncapacitated version of the examination timetabling problem.
The algorithm consists of n cycles during which m ants
generate feasible timetables. Hill-climbing is applied to the
best timetable constructed during each cycle to further
reduce the cost of the timetable. The hill-climbing search is
terminated if the timetable can no longer be improved. The
examination to be scheduled next is chosen from a list of
preferred exams. This list is comprised of a percentage of the
examinations with the lowest saturation degree. The use of this
list was found to reduce the computational time and improve
the quality of timetables.

A majority of the studies have used evolutionary algorithms to
induce timetables for a particular institution with specific hard and
soft constraints. Two systems, namely, the hMOEA implemented
by Cote et al. [10] and the ant system employed by Eley [12], have
generated solutions for the Carter benchmarks. A comparison of
the performance of these systems and that of the IGA is presented
in Section 7.

5. Experimental methodology

The main aim of this study is to determine the performance of
genetic algorithms on the uncapacitated ETP. The IGA system was
applied to the 13 Carter benchmarks listed in Table 1.

This dataset has the following hard and soft constraint
requirements:

� Hard constraint – A feasible timetable is one in which there are
no clashes, i.e. no student must be scheduled to write more than
one examination at the same time.
� Soft constraint – The examinations must be well spaced for

students. This cost is defined in terms of how well examinations
with common students are spaced. The proximity cost defined by
Carter et al. [7] is used to calculate this cost. This cost is
calculated using the following equation:

P
wðjei� e jjÞNi j

S
(1)

where jei – ejj is the distance between the periods of each pair of
examinations (ei,ej) with common students. Nij is the number of
students common to both examinations. S is the total number of
students. wð1Þ ¼ 16, wð2Þ ¼ 8, wð3Þ ¼ 4, wð4Þ ¼ 2 and wð5Þ ¼ 1,
i.e. the smaller the distance between periods the higher the weight
allocated.

The overall approach of the IGA presented in this paper is
comprised of two phases. In the first phase a genetic algorithm is
implemented to evolve feasible timetables. The second phase
employs a genetic algorithm to optimize the soft constraint cost of
the feasible timetables evolved during phase 1. The genetic
parameter values used for phase 1 are tabulated in Table 2. Test
runs were performed to find suitable values for these parameters.
Decreasing the population size resulted in the system taking longer
to converge to a feasible timetable. However, increasing the size of
the population to beyond 1000 did not speed up convergence. The
algorithm generally converged within the first 15–20 generations
and hence a higher number of generations did not in any way
improve the performance of the system. Increasing the limit on the
number of mutation iterations tended to impede the convergence
of the algorithm and increased the overall runtime of the system.

Table 3 lists the parameter values used for phase 2. As in the
case of phase 1, test runs were also performed to find suitable

Table 1
Carter benchmarks.

Problem Institution Periods No. of examinations No. of students Density of

conflict matrix

car-f-92 I Carleton University, Ottawa 32 543 18419 0.14

car-s-91 I Carleton University, Ottawa 35 682 16925 0.13

ear-f-83 I Earl Haig Collegiate Institute, Toronto 24 190 1125 0.27

hec-s-92 I Ecole des Hautes Etudes Commerciales, Montreal 18 81 2823 0.42

kfu-s-93 King Fahd University of Petroleum and Minerals, Dharan 20 461 5349 0.06

lse-f-91 London School of Economics 18 381 2726 0.06

pur-s-93 I Purdue University, Indiana 43 2419 30029 0.03

rye-s-93 Ryerson University, Toronto 23 486 11483 0.08

sta-f-83 I St Andrew’s Junior High School, Toronto 13 139 611 0.14

tre-s-92 Trent University, Peterborough, Ontario 23 261 4360 0.18

uta-s-92 I Faculty of Arts and Sciences, University of Toronto 35 622 21266 0.13

ute-s-92 Faculty of Engineering, University of Toronto 10 184 2749 0.08

yor-f-83 I York Mills Collegiate Institute, Toronto 21 181 941 0.29

Table 2
Parameters for phase 1.

Population size 1000

Maximum generations 20

Tournament size 10

Maximum mutation iterations 3

Table 3
Parameters for phase 2.

Population size 500

Maximum generations 1000

Tournament size 10

Maximum mutation iterations 3

N. Pillay, W. Banzhaf / Applied Soft Computing 10 (2010) 457–467460
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parameter values for this phase. A population size of 500 allowed
for sufficient variety in the initial population, however increasing
the population size to 1000 did not increase the variety much
more. Runs were performed with the maximum number of
generations increased to 2000 and 3000. This did not provide any
improvements as the algorithm basically converged within a 1000
generations.

The system was implemented in Java using JDK 1.4.2 and
simulations were run on an Apple iMac with a 2.16 Mhz Intel Core
2 Duo processor and 1 gigabyte of memory.

6. Proposed system

This section describes the IGA implemented to evolve solutions
to the examination timetabling problem. The overall approach
consists of two phases. The first phase focuses on evolving
timetables that meet the hard constraints while the second phase
improves the timetables generated in the first phase by minimising
the soft constraint values. The algorithm is illustrated in Fig. 1.

In both phases genetic algorithms have been implemented to
evolve and improve timetables. Each timetable is represented as a
linear structure with each cell representing a timetable period.
Each cell stores a string of integer values representing the
examinations allocated to that period. Fig. 2 illustrates an example
of the representation used.

Both phases of the algorithm are described in detail in the
following sections.

6.1. Phase 1

This phase implements a genetic algorithm to induce a
timetable that meets the hard constraints. While the main focus
of this phase is to produce timetables that satisfy the hard
constraints, it also attempts to minimise the soft constraint cost.
However, this minimisation is not at the expense of violating any

hard constraints. The overall algorithm employs the generational
control model. An initial population of timetables is created and
iteratively refined during each generation using mutation until a
feasible timetable is found.

6.1.1. Initial population generation

The genetic algorithm implemented in this phase differs from that
employed in previous studies applying GAs to the ETP in that it uses
domain specific knowledge, in the form of heuristics, during initial
population generation to guide the evolutionary process. Section
6.1.1.1 presents an analysis of the heuristics used and Section 6.1.1.2
describes the overall initial population generation process.

6.1.1.1. Using heuristics. Section 3 describes a number of meth-
odologies that use low-level heuristics to order examinations
during the timetable construction process. The low-level heuristics
generally used are the largest degree, largest weighted degree,
largest enrolment and saturation degree. In previous studies
applying genetic algorithms to the ETP timetables are constructed
by the random allocation of examinations to timeslots. The study
presented in this paper investigated the effect of using low-level
heuristics in the construction of timetables. The low-level heuristic
is used to assess the difficulty of examinations. Instead of randomly
choosing the next examination to allocate, the examinations are
scheduled sequentially according to their difficulty. This process is
described in Section 6.1.1.2. The following low-level heuristics
have been tested for this purpose.

� Largest degree (LD) – The number of conflicts an examination is
involved in. The examination with the largest number of conflicts
is the most difficult.
� Largest enrolment (LE) – The examination with the largest

student enrolment is the most difficult to schedule.
� Largest weighted degree (LWD) – The examination with the

largest number of conflicting students is the most difficult.
� Saturation degree (SD) – The number of periods that an

examination can be allocated to without causing a clash, i.e.
the number of feasible periods. A smaller value indicates an
examination that is more difficult to schedule.
� Highest cost (HC) – This is the cost of scheduling an examination

e in terms of its distance from examinations that it has students
in common with. Fig. 3 illustrates the function used to calculate
this cost.

Three of the Carter datasets, with varying conflict matrix
densities, namely, hec-s-92, sta-f-83, and ute-s-92, were used to test
the effect of using heuristics in constructing timetables. The
following versions of the GA for phase 1 were implemented for
comparison purposes:

Fig. 1. Overall IGA algorithm.

Fig. 2. Representation of a timetable.

N. Pillay, W. Banzhaf / Applied Soft Computing 10 (2010) 457–467 461
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� Random – Both the examination to schedule next and the
examination period it is allocated to, are randomly chosen.
� Best-slot – In this version the examination to be scheduled next

is randomly chosen but it is allocated to the minimum cost
period. Fig. 5 in Section 6.1.1.2 defines the algorithm to
determine the minimum cost period.
� Heuristic – At each stage of the construction process the

examinations are ordered according to their difficulty and the
most difficult examination is scheduled next. Each examination
is allocated to the minimum cost period.

Thirty runs per dataset were performed for each version of
phase 1. These simulations were run on a PC with an Intel Pentium
III 1000 Mhz processor and 256 MB of memory. The values used for
the GA parameters for these runs are listed in Table 4. The values of
these parameters were obtained empirically by performing test
runs. A lower value for the population size increased the time it
took for the algorithm to converge while a higher value did not any
anyway improve the convergence of algorithm. The algorithm was
found to converge within 50 generations. A value lower than 10 for
the tournament size did not provide sufficient selection pressure
while higher values resulted in the algorithm converging quicker,
however it often led to premature convergence. An increase in the
number of mutation iterations did not in anyway improve the
performance of the algorithm and resulted in longer runtimes.

Table 5 lists the average time and soft constraint cost for each of
the datasets. The soft constraint cost is calculated using Eq. (1)
(Section 5). It also lists the number of runs which produced
infeasible timetables. It is evident from Table 5 that the allocation
of an examination to the minimum cost slot and the use of
heuristics affect both the soft constraint cost of the timetable and
the runtime needed to produce a feasible timetable. The allocation
of randomly selected examinations to the minimum cost slot
reduces both the runtime of phase 1 and the soft constraint cost of
the timetable. Note that in some cases the random version of the
system was unable to evolve a feasible timetable within 50
generations. In these instances the cost for the run was calculated
to be 2 times the maximum proximity cost for all the runs
producing feasible timetables. The heuristic version of the system
produced the best results. With the exception of the largest degree
heuristic all the other low-level heuristics used resulted in a
reduction in both the soft constraint cost and the time taken to

induce a feasible timetable. The saturation degree heuristic
produced the lowest runtimes while the highest cost heuristic
produced the lowest soft constraint cost. Hypothesis tests, namely
Z tests, were performed to test the statistical significance of these
results. The decision rules and hypotheses are specified in the
tables that follow.

Table 6 lists the levels of significance and the corresponding
critical values and decision rules. The hypotheses and correspond-
ing Z values for cost comparisons are listed in Table 7 and the
hypotheses and corresponding Z values for the time comparisons
are listed in Table 8.

It can be seen from Table 7 that, with an exception of the largest
degree heuristic for sta-f-83, in all other cases the Z value at a 0.01
significance level is greater than the critical value. Thus, in these
cases the null hypothesis is rejected and the results are significant.

Fig. 3. Pseudo code for calculating the HC heuristic for examination e.

Table 4
Parameters for heuristic experiments.

Population size 1000

Maximum generations 50

Tournament size 10

Maximum mutation iterations 3

Table 5
Average proximity cost and average runtimes.

hec-s-92 sta-f-83 ute-s-92

Random Mean cost 17.86 207.90 41.03

Mean time (s) 466.83 837.40 1001.10

No. of infeasible timetables 1 6 1

Best-slot Mean cost 14.30 171.02 34.79

Mean time (s) 77.33 38.23 41.67

No. of infeasible timetables 0 0 0

LD Mean cost 15.13 189.20 34.98

Mean time (s) 1.63 0.21 5.07

No. of infeasible timetables 0 0 0

LWD Mean cost 12.75 170.32 29.88

Mean time (s) 25.77 0.38 35.17

No. of infeasible timetables 0 0 0

LE Mean cost 12.94 170.41 29.00

Mean time (s) 21.10 0.34 31.63

No. of infeasible timetables 0 0 0

SD Mean cost 13.84 168.84 31.65

Mean time (s) 0.42 0.28 0.32

No. of infeasible timetables 0 0 0

HC Mean cost 12.63 165.78 28.95
Mean time (s) 29.33 0.17 10.09

No. of infeasible timetables 0 0 0

The bold values indicate the best soft constraint cost obtained and best time.

Table 6
Levels of significance, critical values and decision rules.

p Critical value Decision rule

0.01 2.33 Reject Ho if Z>2.33

0.05 1.64 Reject Ho if Z>1.64

0.10 1.28 Reject Ho if Z>1.28
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At the 0.05 and 0.10 levels of significance all the Z values are
greater than the critical values and hence all the results are
statistically significant at these levels. In the case of time
comparisons all the Z values are greater than the critical values
for all datasets at all levels of significance. Thus, we can conclude
that the time differences in Table 5 are significant.

Hypothesis tests were also performed to test the significance of
the differences between the best-slot and heuristic versions of
phase 1. The hypotheses and Z values for the soft constraint cost
and time comparisons are listed in Table 9 and Table 10,
respectively.

From Table 5 it appears that the best-slot version evolves
timetables with a better soft constraint cost than the heuristic
version of the system with the largest degree heuristic. This result
was found to be significant at all levels of significance for all
datasets except ute-s-92. Note that to test this hypothesis, the
negative of the critical values in Table 6 is used and the decision
rule rejects the null hypothesis if the Z value is less than the critical
value. For all other low-level heuristics the heuristic version
generated better quality timetables than the best-slot version. It is
evident from Table 9 that these results are significant for the
datasets hec-s-92 and ute-s-92 at all levels of significance. For the
sta-f-83 dataset these results are only significant at all levels of
significance for the saturation degree and highest cost heuristics.

The Z values listed in Table 10 for all the datasets are greater
than the critical value for all levels of significance. Thus, in all cases

the null hypothesis is rejected proving that the time comparisons
are significant for all heuristics.

Based on these results we can conclude that the best-slot and
heuristic versions of phase 1 definitely perform better than the
random version. The heuristic version takes less time in
converging to a feasible timetable than the best-slot version
irrespective of the heuristic used. However, when comparing the
soft constraint cost of both versions the performance of the
heuristic version is dependant on the heuristic used. The heuristic
version of phase 1 using the saturation degree and highest cost
heuristics outperform the best-slot version with respect to the
soft constraint cost.

The results of these experiments have revealed the effective-
ness of using heuristics to allocate examinations during timetable
construction. The saturation degree heuristic has lower runtimes
while the timetables induced using the highest cost heuristic have
the lowest soft constraint cost. Thus, it was decided to allocate
examinations using a combination of both these heuristics. During
the process of sorting examinations according to their level of
difficulty when constructing a timetable, examinations are
compared by performing a Pareto comparison of the saturation
degree and highest cost heuristics for the examinations. The
following section describes the overall process of creating an
individual and the population for phase 1.

6.1.1.2. Overall process. Each element of the initial population is
created using the algorithm in Fig. 4. The examinations are firstly
ordered according to their difficulty. As discussed in Section
6.1.1.1, a Pareto comparison of the saturation degree and highest
cost heuristics is used to order examinations.

Table 7
Hypotheses and Z values for cost comparisons of the random version of the GA with

the best-slot and heuristic versions.

Hypothesis Z value

hec-s-92 sta-f-83 ute-s-92

Ho: mRandom_cost =mBest_slot_c 3.55 2.60 3.91

Ha: mRandom_cost>mBest_slot_c

Ho: mRandom_cost =mLD_cost 2.75 1.32 3.72

Ha: mRandom_cost>mLD_cost

Ho: mRandom_cost =mLWD_cost 5.12 2.65 7.04

Ha: mRandom_cost>mLWD_cost

Ho: mRandom_cost =mLE_cost 4.94 2.64 7.64

Ha: mRandom_cost>mLE_cost

Ho: mRandom_cost =mSD_cost 4.02 2.75 5.94

Ha: mRandom_cost>mSD_cost

Ho: mRandom_cost =mHC_cost 5.25 2.97 7.67

Ha: mRandom_cost>mHC_cost

Table 8
Hypotheses and Z values for time comparisons of the random version of the GA with

the best-slot and heuristic versions.

Hypothesis Z value

hec-s-92 sta-f-83 ute-s-92

Ho: mRandom_time =mBest_slot_t 5.10 14.35 8.33

Ha: mRandom_time>mBest_slot_t

Ho: mRandom_time =mLD_time 6.25 15.03 8.65

Ha: mRandom_time>mLD_time

Ho: mRandom_time =mLWD_time 5.92 15.03 8.39

Ha: mRandom_time>mLWD_time

Ho: mRandom_time =mLE_time 5.98 15.03 8.42

Ha: mRandom_time>mLE_time

Ho: mRandom_time =mSD_time 3.30 15.03 8.69

Ha: mRandom_time>mSD_time

Ho: mRandom_time =mHC_time 5.87 15.03 8.61

Ha: mRandom_time>mHC_time

Table 9
Hypotheses and Z values for cost comparisons of the best-slot and heuristic versions

of the GA for phase 1.

Hypothesis Z value

hec-s-92 sta-f-83 ute-s-92

Ho: mBest_slot_c =mLD_cost �6.21 �21.71 �0.38

Ha: mBest_slot_c<mLD_cost

Ho: mBest_slot_c =mLWD_cost 9.10 0.91 15.26

Ha: mBest_slot_c>mLWD_cost

Ho: mBest_slot_c =mLE_cost 9.45 0.76 22.12

Ha: mBest_slot_c>mLE_cost

Ho: mBest_slot_c =mSD_cost 2.66 2.35 10.99

Ha: mBest_slot_c>mSD_cost

Ho: mBest_slot_c =mHC_cost 10.64 5.71 22.03

Ha: mBest_slot_c>mHC_cost

Table 10
Hypotheses and Z values for time comparisons of the best-slot and heuristic

versions of the GA for phase 1.

Hypothesis Z value

hec-s-92 sta-f-83 ute-s-92

Ho: mBest_slot_t =mLD_time 4.49 32.14 27.42

Ha: mBest_slot_t>mLD_time

Ho: mBest_slot_t =mLWD_time 3.05 31.94 5.02

Ha: mBest_slot_t>mLWD_time

Ho: mBest_slot_t =mLE_time 3.32 31.98 8.71

Ha: mBest_slot_t>mLE_time

Ho: mBest_slot_t =mSD_time 4.56 32.05 36.09

Ha: mBest_slot_t>mSD_time

Ho: mBest_slot_t =mHC_time 2.85 32.17 13.51

Ha: mBest_slot_t>mHC_time
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The function used to determine the minimum cost slot, is
illustrated in Fig. 5.

6.1.2. Fitness calculation and selection

The raw fitness of an individual is calculated to be the number
of clashes in the timetable. Tournament selection is used to choose
the parents of the next generation.

This selection method randomly selects n elements, called the
tournament, from the population and returns the timetable with
the fewest number of clashes as the winner. If two timetables have
the same number of clashes their soft constraint cost is then
compared. The soft constraint cost is calculated using Eq. (1)
(Section 5).

6.1.3. Mutation

The mutation operator reschedules one or more examinations
in the chosen timetable. The number of examinations to be
rescheduled is randomly selected to be between one and the
maximum number of changes permitted. Only examinations that
are involved in a clash are selected for rescheduling. Each
examination is allocated to the minimum cost slot which is
identified using the algorithm in Fig. 5. The following mutation and
crossover operators were also tested for this domain:

� The random deletion and re-allocation of the examinations
scheduled in a randomly chosen timeslot.

� Two slots are randomly chosen in a parent and the examinations
scheduled in these slots are swapped.
� The examinations stored at randomly selected slots in two

chosen parents are swapped. A repair mechanism is applied to
the offspring to remove duplicate examinations and randomly
allocate missing examinations.
� The examinations stored at randomly selected slots in two

similar parents are swapped. A similarity index is used to
determine the likeness of the parents. A repair mechanism is
applied to the offspring to remove duplicate examinations and
randomly allocate missing examinations.

However, test runs revealed that none of these operators
improved the performance of the system any further and thus only
the mutation operator described above was used.

6.2. Phase 2

The main aim of this phase is to minimise the soft constraint
costs of the feasible timetables constructed during phase 1. As
illustrated in Fig. 1 the genetic algorithm of phase 1 is invoked n

times to create an initial population of size n for phase 2. During
phase 2 the genetic algorithm refines this initial population over a
set number of generations using mutation. The refinement process
focuses on reducing the soft constraint cost of the timetables.

Fig. 4. Algorithm for creating a timetable.

Fig. 5. Algorithm for finding the minimum cost period p for examination e.

Fig. 7. Pseudo code for the weight function.

Fig. 6. Pseudo code for the function used to calculate the cost of scheduling examination e in period p.
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The raw fitness of each individual is the proximity cost defined
in Eq. (1) (Section 5). The tournament selection method is also used
during this phase to select parents of the next generation. As in the
previous phase this method selects a tournament of size n. The
element of the tournament with lowest soft constraint cost is
reported as the winner.

A mutation operator, similar to that employed in phase 1, is
applied to create the next generation. One or more examinations
are randomly re-allocated so as not to cause any clashes, i.e. the
offspring produced is a feasible timetable. This process is repeated
until the offspring is at least as fit as its parent, i.e. the proximity
cost of the offspring is less than or equal to that of the parent. While
this results in the algorithm converging faster it could lead to
premature convergence of the algorithm. Hence, a limit is set on
the number steps of improvement. If an offspring with fitness as
good as its parent cannot be found within a maximum number of
steps, the current offspring is returned as the result of mutation.

7. Results and discussion

This section examines the performance of the IGA system on the
13 Carter benchmarks. Ten runs were performed for each dataset.

The combination of the saturation degree and highest cost heuristics
(SD-HC) were used to guide the search during initial population.
Experiments were also conducted to test the effect of using the
largest degree, largest weighted degree and largest enrolment
heuristics to break ties when performing a Pareto comparison of
examinations during the process of sorting the examinations
according to difficulty. Table 11 lists the best cost, the mean cost
and the standard deviation for each combination. The combination
of the saturation degree and highest cost heuristics, with the use of
the largest weighted degree and largest enrolment heuristics to
break ties, have produced the best results. Table 12 lists the runtimes
of the best results obtained by the IGA. The runtimes for each of the
seeds were found to be more or less the same as the number of
generations for the refinement process is fixed. For a majority of the
datasets the runtime is less than an hour. For the larger datasets,
namely, car-f-92, car-s-91 and uta-s-92, the runtimes are just over an
hour. The only dataset for which the runtime is high is pur-s-92. This
is the largest dataset with 2419 examinations and 30,029 students.
The best solutions generated by the IGA are accessible from http://
titan.cs.unp.ac.za/�nelishiap/et/iga.htm.

The performance of the IGA has also been compared to other
methodologies applied to the same version of the Carter bench-
marks. The performance of the methods is measured in terms of
the soft constraint cost of the best timetable evolved by the
method. A comparison of runtimes is not presented as some of the
studies do not cite the runtime of the simulations and simulations
have been run on machines of varying computing power for the
different studies. We firstly compare the performance of the IGA
with that of other evolutionary algorithms. The literature does not
cite any other studies applying genetic algorithms to the Carter
benchmarks. Thus a comparison of the IGA with other genetic
algorithms is not possible. Hence, the results obtained by the IGA
system are compared to the performance of other evolutionary

Table 11
IGA performance on the Carter benchmarks for the different heuristic combinations.

Dataset SD–HC SD–HC (LD) SD–HC (LWD) SD–HC (LE)

car-f-92 I Best: 4.25 Best: 4.24 Best: 4.23 Best: 4.22
Mean: 4.32 Mean: 4.30 Mean: 4.30 Mean: 4.28

S.D.: 0.044 S.D.: 0.033 S.D.: 0.047 S.D.: 0.039

car-s-91 I Best: 4.99 Best: 5.01 Best: 4.92 Best: 4.97

Mean: 5.08 Mean: 5.06 Mean: 5.05 Mean: 5.05

S.D.: 0.042 S.D.: 0.027 S.D.: 0.060 S.D.: 0.053

ear-f-83 I Best: 36.83 Best: 35.98 Best: 35.92 Best: 35.87
Mean: 38.28 Mean: 36.53 Mean: 36.68 Mean: 36.49

S.D.: 0.961 S.D.: 0.664 S.D.: 0.510 S.D.: 0.411

hec-s-92 I Best: 11.5 Best: 12.22 Best: 11.87 Best: 11.71

Mean: 11.69 Mean: 12.23 Mean: 11.99 Mean: 11.96

S.D.: 0.109 S.D.: 0.004 S.D.: 0.047 S.D.: 0.098

kfu-s-93 Best: 14.93 Best: 14.43 Best: 14.37 Best: 14.4

Mean: 15.23 Mean: 14.85 Mean: 14.42 Mean: 14.43

S.D.: 0.188 S.D.: 0.258 S.D.: 0.032 S.D.: 0.027

lse-f-91 Best: 10.91 Best: 10.99 Best: 10.97 Best: 10.89
Mean: 10.95 Mean: 11.03 Mean: 11.00 Mean: 10.95

S.D.: 0.046 S.D.: 0.028 S.D.: 0.031 S.D.: 0.0

pur-s-93 I Best: 4.67 Best: 4.66 Best: 4.65 Best: 4.7

Mean: 4.71 Mean: 4.70 Mean: 4.70 Mean: 4.71

S.D.: 0.020 S.D.: 0.033 S.D.: 0.037 S.D.: 0.013

rye-s-93 Best: 9.34 Best: 9.81 Best: 9.3 Best: 9.3
Mean: 9.47 Mean: 10.01 Mean: 9.41 Mean: 9.45

S.D.: 0.099 S.D.: 0.093 S.D.: 0.081 S.D.: 0.111

sta-f-83 I Best: 159.37 Best: 157.83 Best: 158.03 Best: 157.81
Mean: 159.45 Mean: 158.07 Mean: 158.24 Mean: 158.07

S.D.: 0.070 S.D.: 0.200 S.D.: 0.204 S.D.: 0.177

tre-s-92 Best: 8.46 Best: 8.61 Best: 8.43 Best: 8.38
Mean: 8.49 Mean: 8.77 Mean: 8.47 Mean: 8.45

S.D.: 0.036 S.D.: 0.123 S.D.: 0.034 S.D.: 0.038

uta-s-92 I Best: 3.43 Best: 3.35 Best: 3.35 Best: 3.37

Mean: 3.50 Mean: 3.39 Mean: 3.40 Mean: 3.40

S.D.: 0.047 S.D.: 0.028 S.D.: 0.032 S.D.: 0.025

ute-s-92 Best: 28.07 Best: 28.49 Best: 27.24 Best: 28.04

Mean: 28.10 Mean: 28.57 Mean: 27.45 Mean: 28.05

S.D.: 0.016 S.D.: 0.092 S.D.: 0.366 S.D.: 0.014

yor-f-83 I Best: 40.17 Best: 39.86 Best: 39.72 Best: 39.33
Mean: 41.37 Mean: 39.97 Mean: 40.76 Mean: 39.74

S.D.: 0.471 S.D.: 0.081 S.D.: 0.487 S.D.: 0.329

The bold values indicate the best soft constraint cost obtained.

Table 13
The best results obtained by the IGA and other evolutionary algorithms.

Problem IGA hMOEA MMAS

car-f-92 I 4.2 4.2 4.8

car-s-91 I 4.9 5.4 5.7

ear-f-83 I 35.9 34.2 36.8

hec-s-92 I 11.5 10.4 11.3

kfu-s-93 14.4 14.3 15.0

Lse-f-91 10.9 11.3 12.1

pur-s-93 I 4.7 – 5.4

rye-s-93 9.3 8.8 10.2

sta-f-83 I 157.8 157.0 157.2

Tre-s-92 8.4 8.6 8.8

uta-s-92 I 3.4 3.5 3.8

ute-s-92 27.2 25.3 27.7

yor-f-83 I 39.3 36.4 39.6

The bold values indicate the best soft constraint cost obtained.

Table 12
Runtimes for the best results.

Dataset Runtime for best result

car-f-92 I 1 h 11 min

car-s-91 I 1 h 38 min

ear-f-83 I 12 min 31 s

hec-s-92 I 7 min 28 s

kfu-s-93 52 min 48 s

lse-f-91 47 min 43 s

pur-s-93 I 31 h 36 min

rye-s-93 1 h 12 min

sta-f-83 I 7 min 49 s

tre-s-92 18 min 41 s

uta-s-92 I 1 h 39 s

ute-s-92 11 min 3 s

yor-f-83 I 9 min 12 s
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algorithms that have been applied to the same version of the Carter
benchmarks. These studies include the hMOEA implemented by
Cote et al. [10] and the MMAS implemented by Eley [12]. These
studies are described in Section 4. Table 13 lists the best results
obtained by the IGA and that obtained by hMOEA and MMAS.

It is clear from Table 13 that the results obtained by the IGA are
comparable to the performance of other evolutionary algorithms.
For six of the datasets the IGA has outperformed the other
evolutionary methods. The performance of the IGA is also
compared to those techniques that have been cited as making a
contribution to the field. These studies are described in detail in
Section 3. The performance of the IGA is compared to that of:

� The Tabu search implemented by Di Gaspero and Schaerf [11].
� The sequential heuristic construction methods employed by

Caramia et al. [6].
� The GRASP system implemented by Casey and Thompson [8].
� The Ahuja–Orlin large neighbourhood search used by Abdullah

et al. [1].
� The IRVNS implemented by Ayob et al. [2].
� The Flex–Deluge algorithm employed by Burke and Bykov [5].

Table 14 lists the best results obtained by the IGA and these
methodologies. Although the IGA has not produced the best result
for any of the datasets, it is evident from Table 14 that the
performance of the IGA is comparable to the other methodologies
applied to these benchmarks and in some cases has outperformed
these methodologies.

8. Conclusion

The study presented in this paper implements an IGA to evolve
examination timetables. This system differs from a standard GA in
that domain knowledge, in the form of heuristics, is used to guide
the search during initial population generation. It is evident from
the results presented in the paper that the use of heuristics in
scheduling examinations improves the performance of the genetic
algorithm on the examination timetable problem. This study also
introduces a new heuristic, namely, highest cost, which has been
found to produce better quality timetables than other low-level
heuristics used to assess the difficulty of examinations.

The performance of the IGA was found to be comparable to
other evolutionary algorithms when applied to the Carter set of
benchmarks and has outperformed these methods on a number of
the datasets. Furthermore, the results obtained by IGA are within
the range of the best results cited for this set of benchmarks and
has produced better results than some of the other optimization
techniques, such as Tabu search, applied to this set of benchmarks.

This study has provided a starting point for the application of
GAs to the uncapacitated examination timetabling problem. Future

work will focus on bettering the performance of GAs in this
domain. For example, the effect of using the steady-state control
model instead of the generational control will be examined as a
means of improving the convergence time of the algorithm. This
study has also illustrated the effectiveness of using a combination
of low-level heuristics to guide the evolutionary process. Thus,
investigations into using genetic programming as a means of
evolving heuristic combinations, i.e. hyper-heuristics, that are
tailored to a particular problem will be conducted.
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