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adaptation, fault tolerance, high computational speed and error resilience in the face of noisy
information, fit the requirements of building a good intrusion detection model. Here we want to provide
an overview of the research progress in applying CI methods to the problem of intrusion detection. The
scope of this review will encompass core methods of CI, including artificial neural networks, fuzzy
systems, evolutionary computation, artificial immune systems, swarm intelligence, and soft computing.
The research contributions in each field are systematically summarized and compared, allowing us to
clearly define existing research challenges, and to highlight promising new research directions. The
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1. Introduction

Traditional intrusion prevention techniques, such as firewalls,
access control or encryption, have failed to fully protect networks
and systems from increasingly sophisticated attacks and mal-
wares. As a result, intrusion detection systems (IDS) have become
an indispensable component of security infrastructure to detect
these threats before they inflict widespread damage.

When building an IDS one needs to consider many issues, such
as data collection, data pre-processing, intrusion recognition,
reporting, and response. Among them, intrusion recognition is
most vital. Audit data is compared with detection models, which
describe the patterns of intrusive or benign behavior, so that both
successful and unsuccessful intrusion attempts can be identified.

Since Denning first proposed an intrusion detection model in
1987 [80], many research efforts have been focused on how to
effectively and accurately construct detection models. Between the
late 1980s and the early 1990s, a combination of expert systems
and statistical approaches was very popular. Detection models
were derived from the domain knowledge of security experts.
From the mid-1990s to the late 1990s, acquiring knowledge of
normal or abnormal behavior had turned from manual to
automatic. Artificial intelligence and machine learning techniques
were used to discover the underlying models from a set of training
data. Commonly used methods were rule based induction,
classification and data clustering.

The process of automatically constructing models from data is
not trivial, especially for intrusion detection problems. This is
because intrusion detection faces problems such as huge network
traffic volumes, highly imbalanced data distribution, the difficulty to
realize decision boundaries between normal and abnormal beha-
vior, and a requirement for continuous adaptation to a constantly
changing environment. Artificial intelligence and machine learning
have shown limitations in achieving high detection accuracy and
fast processing times when confronted with these requirements. For
example, the detection model in the winning entry of the KDD99
competition was composed of 50 x 10 C5 decision trees. The
second-placed entry consisted of a decision forest with 755 trees
[92]. Fortunately, computational intelligence techniques, known for
their ability to adapt and to exhibit fault tolerance, high computa-
tional speed and resilience against noisy information, compensate
for the limitations of these two approaches.

The aim of this review is twofold: the first is to present a
comprehensive survey on research contributions that investigate
utilization of computational intelligence (CI) methods in building

intrusion detection models; the second aim is to define existing
research challenges, and to highlight promising new research
directions. The scope of the survey is the core methods of CI, which
encompass artificial neural networks, fuzzy sets, evolutionary
computation methods, artificial immune systems, swarm intelli-
gence and soft computing. Soft computing, unlike the rest of the
methods, has the synergistic power to intertwine the pros of these
methods in such a way that their cons will be compensated.
Therefore, it is an indispensable component in CI.

The remainder of this review is organized as follows. Section 2
defines IDSs and computation intelligence. Section 3 introduces
commonly used datasets and performance evaluation measures,
with the purpose of removing the confusion found in some
research work. Section 4 categorizes, compares and summarizes
core methods in CI that have been proposed to solve intrusion
detection problems. Section 5 compares the strengths and
limitations of these approaches, and identifies future research
trends and challenges. Section 6 concludes.

2. Background
2.1. Intrusion detection

An intrusion detection system dynamically monitors the events
taking place in a system, and decides whether these events are
symptomatic of an attack or constitute a legitimate use of the
system [77]. Fig. 1 depicts the organization of an IDS where solid
lines indicate data/control flow, while dashed lines indicate
responses to intrusive activities.

Respunse to Intrusion
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—
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Recognition Repoﬂ
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Fig. 1. Organization of a generalized intrusion detection system.
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In general, IDSs fall into two categories according to the detection
methods they employ, namely (i) misuse detection and (ii) anomaly
detection. Misuse detection identifies intrusions by matching
observed data with pre-defined descriptions of intrusive behavior.
Therefore, well-known intrusions can be detected efficiently with a
very low false alarm rate. For this reason, the approach is widely
adopted in the majority of commercial systems. However, intrusions
are usually polymorph, and evolve continuously. Misuse detection
will fail easily when facing unknown intrusions. One way to address
this problem is to regularly update the knowledge base, either
manually which is time consuming and laborious, or automatically
with the help of supervised learning algorithms. Unfortunately,
datasets for this purpose are usually expensive to prepare, as they
require labeling of each instance in the dataset as normal or a type of
intrusion. Another way to address this problem is to follow the
anomaly detection model proposed by Denning [80].

Anomaly detection is orthogonal to misuse detection. It
hypothesizes that abnormal behavior is rare and different from
normal behavior. Hence, it builds models for normal behavior and
detects anomaly in observed data by noticing deviations from
these models. There are two types of anomaly detection [54]. The
first is static anomaly detection, which assumes that the behavior
of monitored targets never changes, such as system call sequences
of an Apache service. The second type is dynamic anomaly
detection. It extracts patterns from behavioral habits of end users,
or usage history of networks/hosts. Sometimes these patterns are
called profiles.

Clearly, anomaly detection has the capability of detecting new
types of intrusions, and only requires normal data when building
profiles. However, its major difficulty lies in discovering bound-
aries between normal and abnormal behavior, due to the
deficiency of abnormal samples in the training phase. Another
difficulty is to adapt to constantly changing normal behavior,
especially for dynamic anomaly detection.

In addition to the detection method, there are other character-
istics one can use to classify IDSs, as shown in Fig. 2.

2.2. Computational intelligence

Computational intelligence (CI) is a fairly new research field
with competing definitions. For example, in Computational
Intelligence—A Logical Approach [241], the authors defined CI as:

Computational Intelligence is the study of the design of
intelligent agents. ... An intelligent agent is a system that acts
intelligently: What it does is appropriate for its circumstances
and its goal, it is flexible to changing environments and
changing goals, it learns from experience, and it makes
appropriate choices given perceptual limitations and finite
computation.

In contrast, Bezdek [39] defined CI as:

A system is computational intelligent when it: deals with only
numerical (low-level) data, has pattern recognition compo-
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Fig. 2. Characteristics of intrusion detection systems.

nents, does not use knowledge in the artificial intelligence
sense; and additionally when it (begins to) exhibit (i)
computational adaptivity, (ii) computational fault tolerance,
(iii) speed approaching human-like turnaround, and (iv) error
rates that approximate human performance.

The discussion in [63,89] further confirm the characteristics of
computational intelligence systems summarized by Bezdek’s
definition. Therefore, in this review, we subscribe to Bezdek’s
definition.

Clis different from the well-known field of artificial intelligence
(AI). Al handles symbolic knowledge representation, while CI
handles numeric representation of information; Al concerns itself
with high-level cognitive functions, while CI is concerned with
low-level cognitive functions. Furthermore, Al analyzes the
structure of a given problem and attempts to construct an
intelligent system based upon this structure, thus operating in a
top-down manner, while the structure is expected to emerge from
an unordered beginning in CI, thus operating in a bottom-up
manner [63,89].

Although there is not yet full agreement on what computational
intelligence exactly is, there is a widely accepted view on which
areas belong to CI: artificial neural networks, fuzzy sets,
evolutionary computation, artificial immune systems, swarm
intelligence, and soft computing. These approaches, except for
fuzzy sets, are capable of autonomously acquiring and integrating
knowledge, and can be used in either supervised or unsupervised
learning mode.

In the intrusion detection field, supervised learning usually
produces classifiers for misuse detection from class-labeled
training datasets. Classifiers are basically viewed as a function
mapping data samples to corresponding class labels. Unsupervised
learning distinguishes itself from supervised learning by the fact
that no class-labeled data is available in the training phase. It
groups data points based upon their similarities. Unsupervised
learning satisfies the requirement of anomaly detection, hence it is
usually employed in anomaly detection.

3. Datasets and performance evaluation

In this section, we will summarize popular benchmark datasets
and performance evaluation measures in the intrusion detection
domain, with the purpose of clarifying some mistaken terms we
found during the review process.

3.1. Datasets

Data in the reviewed research work is normally collected from
three sources: data packets from networks, command sequences
from user input, or low-level system information, such as system
call sequences, log files, and CPU/memory usage. We list some
commonly used benchmarks in Table 1. All of these datasets have
been used in either misuse detection or anomaly detection.

Here, we focus on two benchmarks: The DARPA-Lincoln
datasets and the KDD99 datasets. The DARPA-Lincoln datasets
were collected by MIT’s Lincoln laboratory, under the DARPA ITO
and Air Force Research Laboratory sponsorship, with the purpose
of evaluating the performance of different intrusion detection
methodologies. The datasets, collected in 1998, contain seven
weeks of training data and two weeks of test data. The attack data
included more than 300 instances of 38 different attacks launched
against victim UNIX hosts, falling into one of the four categories:
Denial of Service (DoS), Probe, Users to Root (U2R), and Remote to
Local (R2L). For each week, inside and outside network traffic data,
audit data recorded by the Basic Security Module (BSM) on Solaris
hosts, and file system dumped from UNIX hosts were collected. In
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Table 1
Summary of popular datasets in the intrusion detection domain.

Data source Dataset name Abbreviation

Network traffic DARPA 1998 TCPDump Files [2] DARPA98
DARPA 1999 TCPDump Files [2] DARPA99
KDD99 Dataset [4] KDD99
10% KDD99 Dataset [4] KDD99-10
Internet Exploration Shootout IES
Dataset [3]

User behavior UNIX User Dataset [6] UNIXDS

System call DARPA 1998 BSM Files [2] BSM98

sequences

DARPA 1999 BSM Files [2] BSM99
University of New Mexico UNM

Dataset [5]

1999, another series of datasets was collected, which included
three weeks of training and two weeks of test data. More than 200
instances of 58 attack types were launched against victim UNIX
and Windows NT hosts and a Cisco router. In 2000, three additional
scenario-specific datasets were generated to address distributed
DoS and Windows NT attacks. Detailed descriptions of these
datasets can be found at [2].

The KDD99 dataset was derived in 1999 from the DARPA98
network traffic dataset by assembling individual TCP packets into
TCP connections. It was the benchmark dataset used in the
International Knowledge Discovery and Data Mining Tools
Competition, and also the most popular dataset that has ever
been used in the intrusion detection field. Each TCP connection has
41 features with a label which specifies the status of a connection
as either being normal, or a specific attack type [4]. There are 38
numeric features and 3 symbolic features, falling into the following
four categories:

(i) Basic features: 9 basic features were used to describe each
individual TCP connection.

(ii) Content features: 13 domain knowledge related features were
used to indicate suspicious behavior having no sequential
patterns in the network traffic.

(iii) Time-based traffic features: 9 features were used to summarize
the connections in the past 2 s that had the same destination
host or the same service as the current connection.

(iv) Host-based traffic features: 10 features were constructed using
a window of 100 connections to the same host instead of a
time window, because slow scan attacks may occupy a much
larger time interval than 2 s.

The training set contains 4,940,000 data instances, covering
normal network traffic and 24 attacks. The test set contains
311,029 data instances with a total of 38 attacks, 14 of which do
not appear in the training set. Since the training set is prohibitively
large, another training set which contains 10% of the data is
frequently used.

McHugh [219] published an in-depth critical assessment of the
DARPA datasets, arguing that some methodologies used in the
evaluation are questionable and may have biased the results. For
example, normal and attack data have unrealistic data rates;
training datasets for anomaly detection are not adequate for its

Table 2
Confusion matrix.

intended purpose; no efforts have been made to validate that false
alarm behavior of IDSs under test shows no significantly difference
on real and synthetic data. Malhony and Chan [215] confirmed
McHugh'’s findings by experiments, which discovered that many
attributes had small and fixed ranges in simulation, but large and
growing ranges in real traffic.

By sharing the same root with the DARPA datasets, the KDD99
dataset inherits the above limitations. In addition, the empirical
study conducted by Sabhnani et al. [246] states that “the KDD
training and test data subsets represent dissimilar target
hypotheses for U2R and R2L attack categories”. According to their
analysis, 4 new attacks constitute 80% of U2R data, and 7 new
attacks constitute more than 60% of R2L data in the test dataset.
This may well explain why the detection results for U2R and R2L
attacks are not satisfactory in most IDSs.

Despite all this criticism, however, both the DARPA-Lincoln and
the KDD99 datasets continue to be the largest publicly available and
the most sophisticated benchmarks for researchers in evaluating
intrusion detection algorithms or machine learning algorithms.

Instead of using benchmarks listed in Table 1, sometimes
researchers prefer to generate their own datasets. However, in a
real network environment, it is hard to guarantee that supposedly
normal data are indeed intrusion free. The robust approach
introduced by Rhodes et al. [244] is able to remove anomalies from
collected training data. A further reason for using self-produced
datasets is incomplete training datasets, which tend to decrease
the accuracy of IDSs. Therefore, artificial data is generated and
merged within training sets [21,95,116,128,144,264].

3.2. Performance evaluation

The effectiveness of an IDS is evaluated by its ability to make
correct predictions. According to the real nature of a given event
compared to the prediction from the IDS, four possible outcomes
are shown in Table 2, known as the confusion matrix. True
negatives as well as true positives correspond to a correct
operation of the IDS; that is, events are successfully labeled as
normal and attacks, respectively. False positives refer to normal
events being predicted as attacks; false negatives are attack events
incorrectly predicted as normal events.

Based on the above confusion matrix, a numerical evaluation
can apply the following measures to quantify the performance of
IDSs:

- True negative rate (TNR): /M, also known as specificity.

- True positive rate (TPR): TPZ—PFN, also known as detection rate (DR)
or sensitivity. In information retrieval, this is called recall.

- False positive rate (FPR): TNFfFP = 1 — specificity, also known as
false alarm rate (FAR).

- False negative rate (FNR): p = 1 — sensitivity.

- Accuracy: gt

- Precision: it which is another information retrieval term, and
often is paired with “Recall”.

The most popular performance metrics are detection rate (DR)
together with false alarm rate (FAR). An IDS should have a high DR
and a low FAR. Other commonly used combinations include
precision and recall, or sensitivity and specificity.

Predicted class

Negative class (Normal) Positive class (Attack)

Actual class Negative class (Normal)

Positive class (Attack)

True negative (TN)
False negative (FN)

False positive (FP)
True positive (TP)
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4. Algorithms

In this section, we will review the core computational
intelligence approaches that have been proposed to solve intrusion
detection problems. We shall discuss artificial neural networks,
fuzzy sets, evolutionary computation, artificial immune systems,
swarm intelligence and soft computing.

4.1. Artificial neural networks

An artificial neural network (ANN) consists of a collection of
processing units called neurons that are highly interconnected in a
given topology. ANNs have the ability of learning-by-example and
generalizion from limited, noisy, and incomplete data; they have,
hence, been successfully employed in a broad spectrum of data-
intensive applications. In this section, we will review their
contributions to and performance in the intrusion detection
domain. This section is organized by the types of ANNs as
illustrated in Fig. 3.

4.1.1. Supervised learning

4.1.1.1. Feed forward neural networks. Feed forward neural net-
works are the first and arguably the simplest type of artificial
neural networks devised. Two types of feed forward neural
networks are commonly used in modeling either normal or
intrusive patterns.

Multi-layered feed forward (MLFF) neural networks: MLFF net-
works use various learning techniques, the most popular being
back-propagation (MLFF-BP). In early development of IDSs, MLFF-
BP networks were applied primarily to anomaly detection on user
behavior level, e.g. [264,245]. Tan [264] used information, such as
command sets, CPU usage, login host addresses, to distinguish
between normal and abnormal behavior, while Ryan et al. [245]
considered the patterns of commands and their frequency.

Later, research interests shifted from user behavior to software
behavior described by sequences of system calls. This is because
system call sequences are more stable than commands. Ghosh
et al. built a model by MLFF-BP for the Ipr program [116] and the
DARPA BSM98 dataset [115], respectively. A leaky bucket
algorithm was used to remember anomalous events diagnosed
by the network, so that the temporal characteristics of program
patterns were accurately captured.

Network traffic is another indispensable data source. Cannady
et al. [46] applied MLFF-BP on 10,000 network packets collected
from a simulated network environment for misuse detection
purposes. Although the training/test iterations required 26.13 h to
complete, their experiments showed the potential of MLFF-BP as a
binary classifier to correctly identify each of the embedded attacks
in the test data. MLFF-BP can also be used as a multi-class classifier
(MCC). Such neural networks either have multiple output neurons
[226] or assemble multiple binary neural network classifiers
together [294]. Apparently, the latter is more flexible than the
former when facing a new class.

Multi-layered Feed Forward
Feed Forward NN{ (MLFF) NN

Radial Basis Function (RBF) NN
Supervised Learning

Elman Recurrent NN

Recurrent NN 1
ANNSs.

Cerebellar Model Articulation
Controller (CMAC) NN

Self-Organizing Maps (SOM)
Unsupervised Leaming{

Adaptive Resonance Theory (ART)

Fig. 3. Types of ANNs reviewed in this section.

Except for the BP learning algorithm, there are many other
learning options for MLFF networks. Mukkamala and Sung [227]
compared 12 different learning algorithms on the KDD99 dataset,
and found that resilient back propagation achieved the best
performance in terms of accuracy (97.04%) and training time (67
epochs).

Radial basis function neural networks: Radial basis function (RBF)
neural networks are another popular type of feed forward neural
networks. Since they perform classification by measuring dis-
tances between inputs and the centers of the RBF hidden neurons,
RBF networks are much faster than time consuming back-
propagation, and more suitable for problems with large sample
size [52].

Research, such as [151,206,243,295], employed RBFs to learn
multiple local clusters for well-known attacks and for normal
events. Other than being a classifier, the RBF network was also used
to fuse results from multiple classifiers [52]. It outperformed five
different decision fusion functions, such as a Dempster-Shafer
combination and weighted majority vote.

Jiang et al. [168] reported a novel approach which integrates
both misuse and anomaly detections in a hierarchical RBF network.
In the first layer, an RBF anomaly detector identifies whether an
event is normal or not. Anomaly events then pass an RBF misuse
detector chain, with each detector being responsible for a specific
type of attack. Anomaly events which could not be classified by any
misuse detectors were saved to a database. When enough anomaly
events were gathered, a C-Means clustering algorithm clustered
these events into different groups; a misuse RBF detector was
trained on each group, and added to the misuse detector chain. In
this way, all intrusion events were automatically and adaptively
detected and labeled.

Comparison between MLFF-BP and RBF networks: Since RBF and
MLFF-BP networks are widely used, a comparison between them is
natural. Jiang et al. [168] and Zhang et al. [295] compared the RBF
and MLFF-BP networks for misuse and anomaly detection on the
KDD99 dataset. Their experiments have shown that for misuse
detection, BP has a slightly better performance than RBF in terms of
detection rate and false positive rate, but requires longer training
time. For anomaly detection, the RBF network improves perfor-
mance with a high detection rate and a low false positive rate, and
requires less training time (cutting it down from hours to minutes).
All in all, RBF networks achieve better performance. The same
conclusion was drawn by Hofmann et al. on the DARPA98 dataset
[150,151].

Another interesting comparison has been made between the
binary and decimal input encoding schemes for MLFF-BP and RBF
[206]. The results show that binary encodings have lower error
rates than decimal encodings, because decimal encodings only
compute the frequency without considering the order of system
calls. However, decimal encodings handle noise better and require
less data in training. Furthermore, there are fewer input nodes in
decimal encodings than in binary encodings, which decreases the
training and test time and simplifies the network structure.

4.1.1.2. Recurrent neural networks. Detecting attacks spread over a
period of time, such as slow port scanning attempts, is important
but difficult. In order to capture the temporal locality in either
normal patterns or anomaly patterns, some researchers used time
windows and similar mechanisms [115,151,206,296], or chaotic
neurons [288] to provide BP networks with external memory.
However, window size should be adjustable in predicting user
behavior. When users perform a particular job, their behavior is
stable and predictable. At such times a large window size is needed
to enhance deterministic behavior; when users are switching from
one job to another, behavior becomes unstable and stochastic, so a
small window size is needed in order to quickly forget meaningless
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Input Layer  Hidden Layer ~ Output Layer
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Fig. 4. Compared with MLFF, parts of the output of RNN at time ¢ are inputs in time
t + 1, thus creating internal memories of the neural network.

past events [78]. The incorporation of memory in neural networks
has led to the invention of recurrent links, hence the name
recurrent neural networks (RNN) or Elman network, as shown in
Fig. 4.

Recurrent networks were initially used for forecasting, where a
network predicted the next event in an input sequence. When
there is sufficient deviation between a predicted output and an
actual event, an alarm is issued. Debar et al. [76,78] modified the
traditional Elman recurrent model by accepting input in both time
t — 1 and time t. The accuracy of predicting the next command,
given a sequence of previous commands, could reach up to 80%.
Ghosh et al. [114] compared the recurrent network with an MLFF-
BP network for forecasting system call sequences. The results
showed that recurrent networks achieved the best performance,
with a detection accuracy of 77.3% and zero false positives.

Recurrent networks were also trained as classifiers. Cheng et al.
[57] employed a recurrent network to detect network anomalies in
the KDD99 dataset, since network traffic data has the temporal
locality property. A truncated-back-propagation-through-time
learning algorithm was chosen to accelerate training speed. The
authors argued for the importance of payload information in
network packets. Retaining the information in the packet header
but discarding the payload leads to an unacceptable information
loss. Their experiment indicated that an Elman network with
payload information outperformed an Elman network without
such information. Al-Subaie et al. [21] built a classifier with an
Elman network for the UNM system calls dataset. Their paper is a
good source on the comparison of Elman and MLFF networks in
terms of network structure, computational complexity, and
classification performance. Both works confirm that recurrent
networks outperform MLFF networks in detection accuracy and
generalization capability. Al-Subaie et al., in addition, point out a
performance overhead being associated with the training and
operation of recurrent networks.

The cerebellar model articulation controller (CMAC) neural
network is another type of recurrent network, which has the
capability for incremental learning. It avoids retraining a neural
network every time when a new intrusion appears. This is the main
reason why Cannady [47,48] applied CMAC to autonomously
learning new attacks. The author modified a traditional CMAC
network by adding feedback from the environment. This feedback
would be any system status indicators, such as CPU load or
available memory. A modified least mean square learning
algorithm was adopted. A series of experiments demonstrated
that CMAC effectively learned new attacks, in real time, based on
the feedback from the protected system, and generalized well to
similar attack patterns.

4.1.2. Unsupervised learning

Self-organizing maps and adaptive resonance theory are two
typical unsupervised neural networks. Similar to statistical
clustering algorithms, they group objects by similarity. They are

suitable for intrusion detection tasks in that normal behavior is
densely populated around one or two centers, while abnormal
behavior and intrusions appear in sparse regions of the pattern
space outside of normal clusters.

4.1.2.1. Self-organizing maps. Self-organizing maps (SOM), also
known as Kohonen maps, are single-layer feed forward networks
where outputs are clustered in a low dimensional (usually 2D or
3D) grid [186]. It preserves topological relationships of input data
according to their similarity.

SOMs are the most popular neural networks to be trained for
anomaly detection tasks. For example, Fox et al. first employed
SOMs to detect viruses in a multiuser machine in 1990 [110]. Later,
other researchers [154,277] used SOMs to learn patterns of normal
system activities. Nevertheless, SOMs have been used in the
misuse detection as well, where a SOM functioned as a data pre-
processor to cluster input data. Other classification algorithms,
such as feed forward neural networks, were then trained on the
output from the SOM [40,49,169].

Sometimes, SOMs map data from different classes into one
neuron. Therefore, in order to solve the ambiguities in these
heterogeneous neurons, Sarasamma et al. [247] suggested to
calculate the probability of a record mapped to a heterogeneous
neuron being of a type of attack. A confidence factor was defined to
determine the type of record that dominated the neuron.

Rhodes et al. [244], after examining network packets carefully,
stated that every network protocol layer has a unique structure
and function, so malicious activities aiming at a specific protocol
should be unique too. It is unrealistic to build a single SOM to tackle
all these activities. Therefore, they organized a multilayer SOM,
each layer corresponding to one protocol layer. Sarasamma et al.
[247] drew similar conclusions that different subsets of features
were good at detecting different attacks. Hence, they grouped the
41 features of the KDD99 dataset into 3 subsets. A three-layer SOM
model was built, accepting one subset of features and hetero-
geneous neurons from the previous SOM layer. Results showed
that false positive rates were significantly reduced in hierarchical
SOMs compared to single layer SOMs on all test cases.

Lichodzijewski et al. employed a two-layer SOM to detect
anomalous user behavior [202] and anomalous network traffic
[201]. The first layer comprised 6 parallel SOMs, each map
clustering one feature. The SOM in the second layer combined the
results from the first layer SOMs to provide an integrated view.
Kayacik et al. [170,172,173] extended Lichodzijewski’s work by
introducing a third SOM layer, while keeping the first two layers
unchanged. The SOM in the third layer was intended to resolve the
confusion caused by heterogeneous neurons. In both Kayacik
et al.’s and Lichodzijewski et al.’s work, a potential function
clustering method was used between the first and second layer.
This clustering algorithm significantly reduced the dimensions
seen by neurons in the second layer. When comparing their results
with the best supervised learning solutions, because suitable
boosting algorithms are not available for unsupervised learning,
their methods showed a similar detection rate but a higher FP rate.

Zanero [290,292] was another proponent of the analysis of
payload of network packets. He proposed a multi-layer detection
framework, where the first layer used a SOM to cluster the payload,
effectively compressing it into a single feature. This compressed
payload feature was then passed on to the second layer as input,
together with other features in packet headers. Many classification
algorithms can be used in the second tier. Unfortunately, the high
dimensionality of (from 0 to 1460 bytes) payload data greatly
decreased the performance of the first layer. Zanero later conceived
the K-means+ [291] algorithm to avoid calculating the distance
between each neuron, thus greatly improving the runtime
efficiency of the algorithm.
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Unlike other unsupervised approaches, SOMs can be used to
visualize the analysis. Girardin introduced a visual approach for
analyzing network activities [118], which best took advantage of
topology-preserving and dimensionality-reducing properties of
SOMs. Network events are projected onto a two dimensional grid
of neurons, and then each neuron is portrayed as a square within
the grid. The foreground color of the square indicates the weights
of each neuron. Thus similar network events have similar
foreground color, and are grouped together closely. The back-
ground color indicates the quality of the mapping. The size of the
square identifies the number of events mapped to the unit. Users
can, therefore, easily identify rare and abnormal events in the
graph, which facilitates exploring and analyzing anomaly events.

If we are to use a SOM to visualize the structural features of the
data space, SOMs discussed in the previous work would be
inappropriate, because they contain only small numbers of
neurons, which prohibits the emergence of intrinsic structural
features on the map. Emergent SOMs (ESOM), based on simple
SOMs, contain thousands or tens of thousands of neurons, which
are necessary to achieve emergence, observe overall structures and
disregard elementary details. An ESOM with U-Matrix was
employed in [222-224], focusing on the detection of DoS attacks
in the KDD99 dataset. Although their work showed very high
accuracy (between 98.3% and 99.81%) and a low false alarm rate
(between 2.9% and 0.1%), the training procedure required a large
computational overhead, especially with training sets of size over
10,000.

4.1.2.2. Adaptive resonance theory (ART). The adaptive resonance
theory (ART) embraces a series of neural network models that
perform unsupervised or supervised learning, pattern recognition,
and prediction. Unsupervised learning models include ART-1, ART-
2, ART-3, and Fuzzy ART. Various supervised networks are named
with the suffix “MAP”, such as ARTMAP, Fuzzy ARTMAP, and
Gaussian ARTMAP. Compared with SOMs who cluster data objects
based on the absolute distance, ARTs cluster objects based on the
relative similarity of input patterns to the weight vector.

Amini et al. compared the performance of ART-1 (accepting
binary inputs) and ART-2 (accepting continuous inputs) on KDD99
datain [23]. They concluded that ART-1 has a higher detection rate
than ART-2, while ART-2 is 7 to 8 times faster than ART-1. This
observation is consistent with results obtained in [206]. Later,
Amini et al. [24] further conducted research on self-generated
network traffic. This time they compared the performance of ARTs
and SOMs. The results showed that ART nets have better intrusion
detection performance than SOMs on either offline or online data.

Fuzzy ART nets combine fuzzy set theory and adaptive
resonance theory. This combination is faster and more stable
than ART nets alone in responding to arbitrary input sequences.
The works of Liao et al. [199] and Durgin et al. [90] are two
examples of using Fuzzy ART to detect anomalies. Liao et al.
deployed Fuzzy ART in an adaptive learning framework which is
suitable for dynamic changing environments. Normal behavior
changes are efficiently accommodated while anomalous activities
can still be identified. Durgin et al. observed that both SOMs and
Fuzzy ARTs showed promising results in detecting network
abnormal behavior, but the sensitivity of Fuzzy ARTs seems to
be much higher than that of SOMs.

4.1.3. Summary

In this section, we reviewed research contributions on artificial
neural networks in intrusion detection. Various supervised and
unsupervised ANNs were employed in misuse and anomaly
detection tasks. These research works took advantage of ANNs’
ability to generalize from limited, noisy, and incomplete data.
Some researchers also attempted to address disadvantages of

ANNSs. For example, the authors in Refs. [57,226,290,295] tried to
reduce the long training time; the authors in Refs. [168,244,294]
used an ensemble approach to solve the retraining problem of
ANNs when facing a new class of data; to address the black box
nature of ANNs, Hofmann et al. [151] extracted attack patterns
from the trained ANNs in comprehensible format of if-then rules.

To improve detection accuracy, the following practices have
proven useful in ANNs:

- Temporal locality property: Studies [114,115] have confirmed that
the temporal locality property exists in normal as well as in
intrusive behavior in the intrusion detection field. Normally, time
in ANNSs is represented either explicitly or implicitly, but Amini
etal.[24] and Lichodzijewski et al. [202] concluded that explicitly
representing time does not accurately identify intrusions. When
it comes to implicitly representing time, researchers either
adopted neural networks with short-term memory, such as
recurrent nets, or mapped temporal patterns to spatial patterns
for networks without memory. Most of the research work chose
sliding windows, which gather n successive events in one vector
and use it as input of ANNs (e.g. [40,46,151,154,173,190,201,
206]). Other mechanisms include the leaky bucket algorithm
[115], layer-window statistical preprocessors [296], chaotic
neurons [288], and using the time difference between two
events [24]. All these results confirm that designing a detection
technique that capitalizes on the temporal locality characteristic
of data can contribute to better results.

Network structure: Intrusions are evolving constantly. Sometimes
attacks are aiming at a specific protocol, while at other times they
are aiming at a specific operating system or application.
Therefore it would be unreasonable to expect a single neural
network to successfully characterize all such disparate informa-
tion. Previous research reminds us that networks with ensemble
or hierarchical structure achieve better performance than single
layer networks, no matter whether learning is supervised or
unsupervised [46,168,173,194,247,294].

Datasets and features: Neural networks only recognize whatever
is fed to them in the form of inputs. Although they have the
ability to generalize, they are still unable to recognize some
unseen patterns. One cause of this difficulty is incomplete
training sets. To address this problem, randomly generated
anomalous inputs [21,116,264] are inserted into the training set
with the purpose of exposing the network to more patterns,
hence making training sets more complete. Selecting good
feature sets is another way to improve performance. Sarasamma
et al. [247] identified that different subsets of features are good at
detecting certain types of attacks. Kayacik et al. [173] conducted
a series of experiments on a hierarchical SOM framework with
KDD99 data. They found that 6 basic features are sufficient for
recognizing a wide range of DoS attacks, while 41 features are
necessary to minimize the FP rate. Among the 6 basic features,
protocol and service type appear to be the most significant.

4.2. Fuzzy sets

The past decades have witnessed a rapid growth in the
number and variety of applications of fuzzy logic. Fuzzy logic,
dealing with the vague and imprecise, is appropriate for
intrusion detection for two major reasons. First, the intrusion
detection problem involves many numeric attributes in col-
lected audit data, and various derived statistical measures.
Building models directly on numeric data causes high detection
errors. For example, an intrusion that deviates only slightly from
a model may not be detected or a small change in normal
behavior may cause a false alarm. Second, the security itself
includes fuzziness, because the boundary between the normal
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and abnormal is not well defined. This section will spell out how
fuzzy logic can be utilized in intrusion detection models.

4.2.1. Fuzzy misuse detection

Fuzzy misuse detection uses fuzzy models, such as fuzzy rules
or fuzzy classifiers to detect various intrusive behavior. When
fuzzy logic was initially introduced to the intrusion detection
domain, it was integrated with expert systems. Fuzzy rules
substituted ordinary rules so as to map knowledge represented in
natural language more accurately to computer languages. Fuzzy
rules were created by security experts based on their domain
knowledge. For example, the fuzzy intrusion recognition engine
(FIRE) proposed by Dickerson et al. used fuzzy rules to detect
malicious network activities [86,87]. Although fuzzy sets and their
membership functions were decided by a fuzzy C-means
algorithm, hand-encoded rules were the main limitation of this
work.

Avoiding hand-encoded fuzzy rules is the a main research topic
in fuzzy misuse detection. To generate fuzzy rules, commonly
employed methods are based on a histogram of attribute values
[14,15], or based on a partition of overlapping areas [14,15,193], or
based on fuzzy implication tables [298], or by fuzzy decision trees
[203], association rules [91] or SVMs [286]. Due to the rapid
development of computational intelligence, approaches with
learning and adaptive capabilities have been widely used to
automatically construct fuzzy rules. These approaches are artificial
neural networks, evolutionary computation, and artificial immune
systems. We will investigate them in detail in Section 4.6 on “Soft
Computing”.

Another application of fuzzy logic is decision fusion, which
means that fuzzy logic fuses outputs from different models to
prepare a final fuzzy decision. For instance, Cho et al. [62] trained
multiple HMMs to detect normal behavior sequences. The
evaluations from HMMs were sent to the fuzzy inference engine,
which gave a fuzzy normal or abnormal result. Similar fuzzy
inference systems were used to combine decisions of multiple
decision trees [266], multiple neuro-fuzzy classifiers [268], and
other models [248].

4.2.2. Fuzzy anomaly detection

Fuzzy logic plays an important role in anomaly detection, too.
Current research interests are to build fuzzy normal behavior
profiles with the help of data mining.

Bridges et al. suggested the use of fuzzy association rules and
fuzzy sequential rules to mine normal patterns from audit data
[42,43]. Their work was an extension of the fuzzy association rule
algorithm proposed by Kuok et al. [189] and the fuzzy sequential
rule algorithm by Mannila and Toivonen [216]. To detect
anomalous behavior, fuzzy association rules mined from new
audit data were compared with rules mined in the training phase.
Hence, a similarity evaluation function was developed to compare
two association rules [210,211]. Florez et al. [101] later described
an algorithm for computing the similarity between two fuzzy
association rules based on prefix trees to achieve better running
time and accuracy. ElI-Semary et al. [91] directly compared the test
data samples against fuzzy association rules by a fuzzy inference
engine.

Fuzzy logic also worked with another popular data mining
technique, outlier detection, for anomaly detection. According to
the hypothesis of IDSs, malicious behavior is naturally different
from normal behavior. Hence, abnormal behavior should be
considered as outliers. Fuzzy C-Medoids algorithms [253] and
fuzzy C-Means algorithms [58-60,148] are two common clustering
approaches to identify outliers. Like all clustering techniques, they
are affected by the “curse of dimensionality”, thus suffering
performance degradation when confronted with datasets of high

dimensionality. Feature selection is therefore a necessary data pre-
processing step. For example, principal component analysis
[148,253] and rough sets [58-60] can be applied on datasets
before they are being clustered.

4.2.3. Summary

Fuzzy logic, as a means of modeling the uncertainty of natural
language, constructs more abstract and flexible patterns for
intrusion detection, and thus greatly increases the robustness
and adaptation ability of detection systems. Two research
directions are currently active in the fuzzy logic area: (i) algorithms
with learning and adaptive capabilities are investigated with the
purpose of automatically designing fuzzy rules. Popular methods
include, but are not limited to, association rules, decision trees,
evolutionary computation, and artificial neural networks; (ii) fuzzy
logic helps to enhance the understandability and readability of
some machine learning algorithms, such as SVMs or HMMs. The
use of fuzzy logic smooths the abrupt separation of normality and
abnormality. From the research work reviewed in this section, and
the work will be mentioned later in the Section 4.6, the popularity
of fuzzy logic clearly demonstrates the successfulness of fuzzy
logic in fulfill these two roles. We believe that fuzzy logic will
remain an active research topic in the near future.

4.3. Evolutionary computation

Evolutionary computation (EC), a creative process gleaned from
evolution in nature, is capable of addressing real-world problems
with great complexity. These problems normally might involve
randomness, complex nonlinear dynamics, and multimodal
functions, which are difficult to conquer for traditional algorithms
[102]. In this section, we will review the role of EC in the intrusion
detection field. Some important issues, such as evolutionary
operators, niching, and fitness functions will be discussed.

This survey focuses on genetic algorithms (GA) [156] and
genetic programming (GP) [37,188]. GA and GP differ with respect
to several implementation details, with GP working on a superset
of representations compared to GAs [37]. Generally speaking,
evolution in GAs and GP can be described as a two-step iterative
process, consisting of variation and selection, as shown in Fig. 5.

4.3.1. The roles of EC in IDS
EC can be applied on a number of tasks in IDSs. We discuss them
in detail below.

4.3.1.1. Optimization. Some researchers are trying to analyze the
problem of intrusion detection by using a multiple fault diagnosis
approach, somewhat analogous to the process of a human being
diagnosed by a physician when suffering from a disease. For a start,
an events-attacks matrix is defined, which is known as pre-learned
domain knowledge (analogous to knowledge possessed by a
physician). The occurrence of one or more attacks is required to be
inferred from newly observed events (analogous to symptoms).
Such a problem is reducible to a zero-one integer problem, which is
NP-Complete. Dass [70] and Mé [220] both employed GAs as an

Initialization

Selechon
Population Mating Pool
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Term ination
Reproduction
Replacement (Crossover/Mutation)
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Fig. 5. The flow chart of a typical evolutionary algorithm.
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optimization component. Mé used a standard GA, while Dass used
a micro-GA in order to reduce the time overhead normally
associated with a GA. Both works coded solutions in binary strings,
where the length of a string was the number of attacks, and 1's or
0’s in a genome indicated if an attack was present. The fitness
function was biased toward individuals able to predict a large
number of intrusion types (number of 1's in chromosomes), while
avoiding warnings of attacks that did not exist (unnecessary 1’s in
chromosomes). Diaz-Gomez et al. corrected the fitness definition
used in [220] after careful analysis [83,84] and mathematical
justification [82], and further refined it in [85].

4.3.1.2. Automatic model structure design. ANNs and clustering
algorithms are two popular techniques to build intrusion detection
models. The problematic side of them is that one has to decide on
an optimal network structure for the former, and the number of
clusters for the latter. To remedy these drawbacks, evolutionary
algorithms are introduced for automatic design purpose.

Hofmann et al. [151] evolved an RBF neural network to classify
network traffic for the DARPA98 dataset. A GA was responsible for
learning the structure of RBF nets, such as the type of basis
function, the number of hidden neurons, and the number of
training epochs. Evolving fuzzy neural network (EFuNN) is another
example of this kind. It implemented a Mamdani-type fuzzy
inference system where all nodes were created during learning
[53,199]. In contrast to evolving networks with fixed topologies
and connections, Han et al. [140] proposed an evolutionary neural
network (ENN) algorithm to evolve an ANN for detecting anomaly
system call sequences. A matrix-based genotype representation
was implemented, where the upper right triangle was the
connectivity information between nodes, and the lower left
triangle described the weights between nodes. Consequently, this
network has no structural restrictions, and is more flexible, as
shown in Fig. 6.

Xu et al. [285] presented a misuse detection model constructed
by the understandable neural network tree (NNTree). NNTree is a
modular neural network with the overall structure being a decision
tree, but each non-terminal node being an expert NN. GAs
recursively designed these networks from the root node. The
designing process was, in fact, solving a multiple objective
optimization problem, which kept the partition ability of the
networks high, and the size of trees small. Chen et al. [56]
investigated the possibility of evolving ANNs by an estimation of

Context layer
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Fig. 6. Comparing different structures of ANNs [ 140]. (a) MLFF, (b) RNN, and (c) ENN.

distribution algorithm (EDA), a new branch of EC. The modeling
and sampling step in an EDA improves search efficiency, because
sampling is guided by global information extracted through
modeling to explore promising areas.

Experimental results of the above works all confirmed that
automatically designed networks outperform conventional
approaches in detection accuracy. Han et al. [140] further verified
that evolutionary approaches reduce training time.

As for clustering algorithms, evolutionary algorithms shorten
the tedious and time-consuming process of deciding appropriate
cluster centers and the number of clusters. Leno et al. [195] first
reported work for combining unsupervised niche clustering with
fuzzy set theory for anomaly detection, and applied it to network
intrusion detection. Here “unsupervised” means that the number
of clusters is automatically determined by a GA. An individual,
representing a candidate cluster, was determined by its center, an
n-dimensional vector with n being the dimension of the data
samples, and a robust measure of its scale (or dispersion) 8%. The
scale was updated every generation based on the density of a
hypothetical cluster. Lu et al. [207,209] applied a GA to decide the
number of clusters based upon Gaussian mixture models (GMM).
This model assumes that the entire data collection can be seen as a
mixture of several Gaussian distributions, each potentially being a
cluster. An entropy-based fitness function was defined to measure
how well the GMMs approximated the real data distribution.
Thereafter, a K-means clustering algorithm was invoked to locate
the center of each cluster. [297], in contrast, reversed the order of
the K-means and evolutionary approaches. K-means was used to
decide potential cluster centers, followed by the GA refining cluster
centers.

4.3.1.3. Classifiers. Evolutionary algorithms can be used to gen-
erate two types of classifiers: classification rules and transforma-
tion functions. A classification rule is the rule with an if-then
clause, where a rule antecedent (IF part) contains a conjunction of
conditions on predicting attributes, and the rule consequent (THEN
part) contains the class label. As depicted in Fig. 7, the task of EC is
to search for classification rules (represented as circles) that cover
the data points (denoted as “+”) of unknown concepts (represented
as shaded regions). In this sense, evolving classification rules can
be regarded as concept learning.

Research work that explores the evolution of classification rules
for intrusion detection is summarized in Table 3. The difference
between binary classifiers and multi-classifiers is the representation.

A GA uses fixed length vectors to represent classification rules.
Antecedents and class label in if-then rules are encoded as genes ina
chromosome (shown in Fig. 8). Either binary [167,221,230] or real-
number [124,197,198,240,255] encoding schemes are conceived. A
“don’t care” symbol, *, is included [124,167,197,198,221,230,240,
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O:Members of Class * +=Examples @ =Coverage of Rule A
Fig. 7. Classification rules are represented as circles who cover the data points

(denoted as “+”) of unknown concepts (represented as shaded regions) [157].
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Table 3
Evolving classification rules by EC.
Type Research work
GA Binary classifiers [120,121,197,255,221,230,281]
Multi-classifiers [36,65,124,240,250,251,249,252]
Tree GP Binary classifiers [64,208,287]
Multi-classifiers [103,104]

255] as a wild card that allows any possible value in a gene, thus
improving the generality of rules. For binary classification, the
consequent part of rules are usually omitted from the representa-
tion, because of the same class label in all rules.

All research work listed for GAs employs the Michigan approach
[155] as the learning approach, but is based on various GA models.
The authors in Refs. [255,197,240,124,36] use classic GAs with
niching to help covering all data instances with a minimum set of
accurate rules. Mischiatti and Neri [221,230] use the REGAL to
model normal network traffic. REGAL [117] is a distributed genetic
algorithm-based system. It shows several novelties, such as a
hybrid Pittsburgh and Michigan learning approach, a new selection
operator allowing the population to asymptotically converge to
multiple local optima, a new model of distribution and migration,
etc. Dam and Shafi [65,250,251,249,252] report initial attempts to
extend XCS, an evolutionary learning classifier system (LCS), to
intrusion detection problems. Although XCSs have shown excel-
lent performance on some data mining tasks, many enhancements,
such as mutation and deletion operators, and a distance metric for
unseen data in the test phase, are still needed to tackle hard
intrusion detection problems [65].

GP, on the other hand, uses different variable length structures
for binary and multi-class classification. Originally, GP was
confined to tree structures which provided the basis for the first
IDS applications. For instance, the parse tree shown in Fig. 9(a) for
binary classification [64,208,287], and a decision tree shown in
Fig. 9(b) for multiple class classification [103,104]. Compared with
a GA which connects conditions in the antecedent only by the
“AND” operator, tree-based GP has richer expressive power as it
allows more logic operators, such as “OR”, “NOT”, etc. Crosbie [64]
and Folino et al. [103,104] improved the performance of such a GP
system by introducing cooperation between individuals. The
former use autonomous agents, each being a GP-evolved program
to detect intrusions from only one data source. The latter deployed
their system in a distributed environment by using the island
model.

Namely, classification can also be achieved by a transformation
function, which transforms data into a low dimensional space, i.e.
1D or 2D, such that a simple line can best separate data in different
classes (shown in Fig. 10).

The simplest transformation function is a linear function with
the following format: C(x) = Z’}:] (wj x xj), where n is the
number of attributes, w; is a weight [282] or coefficient [61] of
attribute x;. A GA usually searches for the best set of weights or
coefficient that map any data in normal class to a value larger than
8 (C(x) > 8) and any data from anomaly class to a value less than &
(C(x) <$§). 6 is a user defined threshold. Individuals in this case
contain n genes, each for a weight or coefficient.

Compared with GAs, transformation functions evolved by GP
have more complex structures, normally nonlinear functions. Both

gene, gene, v e ‘ gene | gene
- [ ———
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Fig. 8. GA chromosome structures for classification.
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Fig. 9. Chromosome structures for classification. (a) Tree GP chromosome for binary
classification. (b) Tree GP chromosome for multiple class classification [261].

tree-based GP (shown in Fig. 9(a)) and linear GP (shown in Fig. 11)
are suitable for evolving the functions. Linear GP (LGP) is another
major approach to GP [37,41]. LGP works by evolving sequences of
instructions from an imperative programming language or from a
machine language. Fig. 11 contains two typical examples of
instructions in LGP. LGP boosts the evolutionary process because
individuals are manipulated and executed directly without passing
an interpreter during fitness calculation. Only arithmetic opera-
tors, such as “+”, “=", “x”, “+", “log”, and numeric values are
allowed to appear in the representation of the functions.
Categorical attributes have to convert their value to numeric
beforehand.

Abraham et al. [12,13,138,228] and Song et al. [259-261] are
two major research groups working on LGP and its application in
intrusion detection. Abraham et al. focused on investigating basic
LGP and its variations, such as multi-expression programming
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Fig. 10. Transformation functions as classifiers. A transformation function is an
equation which transforms data in a high dimensional space into a specific value or
a range of values in a low dimensional space according to different class labels.
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Fig. 11. Linear GP chromosome [261].
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(MEP) [232] and gene expression programming (GEP) [100], to
detect network intrusion. Experiments, in comparing LGP, MEP,
GEP and other machine learning algorithms, showed that LGP
outperformed SVMs and ANNs in terms of detection accuracy at
the expense of time [227,228]; MEP outperformed LGP for Normal,
U2R and R2L classes and LGP outperformed MEP for Probe and DoS
classes [12,13,138]. Song et al. implemented a page-based LGP
with a two-layer subset selection scheme to address the binary
classification problem. Page-based LGP means that an individual is
described in terms of a number of pages, where each page has the
same number of instructions. Page size was dynamically changed
when the fitness reached a “plateau” (i.e. fitness does not change
for several generations). Since intrusion detection benchmarks are
highly skewed, they pointed out that the definition of fitness
should reflect the distribution of class types in the training set. Two
dynamic fitness schemes, dynamic weighted penalty and lexico-
graphic fitness, were introduced. The application of their
algorithms to other intrusion detection related research can be
found in [191,192].

The above mentioned transformation functions evolved by GP
are only used for binary classification. Therefore, Faraoun et al. [96]
and Lichodzijewski et al. [200] investigated the possibilities of GP
in multi-category classification. Faraoun et al. implemented multi-
classification in two steps. In the first step, a GP maps input data to
a new one-dimensional space, and in the second step, another GP
maps the output from the first step to different class labels;
Lichodzijewski et al. proposed a bid-based approach for coevolving
LGP classifiers. This approach coevolved a population of learners
that decompose the instance space by the way of their aggregate
bidding behavior.

Research work that investigates evolving transformation
functions for intrusion detection is summarized in Table 4.

4.3.2. Niching and evolutionary operators

4.3.2.1. Niching. Most EC applications have focused on optimiza-
tion problems, which means that individuals in the population
compete with others to reach a global optimum. However, pattern
recognition or concept learning is actually a multimodal problem
in the sense that multiple rules (see Fig. 7) or clusters [195] are
required to cover the unknown knowledge space (also known as
“set covering” problem). In order to locate and maintain multiple
local optima instead of a single global optimum, niching is
introduced. Niching strategies have been proven effective in
creating subpopulations which converge on local optima, thus
maintaining diversity of the population [109].

Within the context of intrusion detection, both sharing and
crowding are applied to encourage diversity. Kayacik and Li
[171,197,198] employed fitness sharing, while Sinclair et al. [255]
employed crowding and Leon et al. [195] employed deterministic
crowding (DC). DC is an improved crowding algorithm, which
nearly eliminates replacement errors in De Jong’s crowding.
Consequently, DC is effective in discovering multiple local optima,
compared to no more than 2 peaks in De Jong's [214].
Unfortunately, there is no experimental result available in [255],
so we cannot justify the limitations of De Jong’s crowding in the
intrusion detection domain. Hamming distance [197,198,255] or

Table 4
Evolving transformation functions by EC.
Type Research work
Binary classifiers GA [61,282]
LGP [12,13,138,145,191,192,228,259-261]

Multi-classifiers Tree-based GP [96]

LGP [200]

Euclidean distance [171] were used to measure the similarity
between two individuals in both niching schemes.

However, defining meaningful and accurate distance measures
and selecting an appropriate niching radius are difficult. In
addition, computational complexity is an issue for these algo-
rithms. For example, the shared fitness evaluation requires, in each
generation, a number of steps proportional to M?, with M being the
cardinality of the population [117]. So, Giordana et al. introduced a
new selection operator in REGAL, called Universal Suffrage, to
achieve niching [117]. The individuals to be mated are not chosen
directly from the current population, but instead indirectly
through the selection of an equal number of data points. It is
important to notice that only individuals covering the same data
points compete, and the data points (stochastically) “vote” for the
best of them. In XCS, the niching mechanism was demonstrated via
reward sharing. Simply, an individual shares received rewards
with those who are similar to them in some way [65].

Lu et al. [208] implemented niching neither via fitness sharing
nor via crowding, but via token competition [196]. The idea is as
follows: a token is allocated to each record in the training dataset. If
a rule matches a record, its token will be seized by the rule. The
priority of receiving the token is determined by the strength of the
rules. On the other hand, the number of tokens an individual
acquires also helps to increase its fitness. In this way, the odds of
two rules matching the same data are decreased, hence the
diversity of the population is maintained.

4.3.2.2. Evolutionary operators. In EC, during each successive
generation, some individuals are selected with certain probabil-
ities to go through crossover and mutation for the generation of
offspring. Table 5 summarizes commonly used selection, crossover
and mutation operators employed in intrusion detection tasks.

Some special evolutionary operators were introduced to satisfy
the requirements of representation. For example, page-based LGP
algorithms [192,191,259-261] restricted crossover to exchanging
pages rather than instructions between individuals. Mutation was
also conducted in two ways: in the first case the mutation operator
selected two instructions with uniform probability and performed
an XOR on the first instruction with the second one; the second
mutation operator selected two instructions in the same individual
with uniform probability and then exchanged their positions.
Hansen et al. [145] proposed a homologous crossover in LGP,
attempting to mimic natural evolution more closely. With
homologous crossover, the two evolved programs were juxta-
posed, and the crossover was accomplished by exchanging sets of
continuous instruction blocks having the same length and the
same position between the two evolved programs.

Most researchers have confirmed the positive role mutation
played in the searching process. However, they held different

Table 5
Evolutionary operators employed in intrusion detection tasks.

Operators Research work
Selection Roulette wheel [65,96,167]
Tournament [70,85,145,259]
Elitist [151,124]
Rank [140,281]
Crossover Two-point [65,70,96,124,167,208,221,230,287]
One-point [36,140,195,281,285]
Uniform [151,221,230]
Arithmetical [151]
Homologous [145,192,191,259-261]
Mutation Bit-flip [65,70,151,167,195,221,230,281,285]
Inorder mutation [240]
Gaussian [151]

One point [96,208,287]
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Table 6
Fitness summary.
Factors Examples References
DR FPR Conciseness
H(C)
x v X Hinax (C)) [140,195,209,207]
i v x %,g [61,85,96,167,192,240,255,282,297]
wy x support + w, x confidence [36,124,208,281,287]
1-[p, - ¢l [31,64,138,197,198,259]
4 Vv Vv wy x sensitivity + w, x specificity + ws x length [121]
(1+Az) xe™ [70,221,230]

opinions about crossover in multimodal problems whose popula-
tion contains niches. Recombining arbitrary pairs of individuals
from different niches may cause the formation of unfit or lethal
offspring. For example, if a crossover is conducted on the class label
part, which means rules in different classes exchange their class
labels, it would cause a normal data point to be anomalous, or vice
versa. Hence, a mating restriction is considered when individuals
of different niches are crossed over. [240] only applied mutation,
not crossover, to produce offspring; [70] restricted mutation and
crossover to the condition-part of rules; [195] introduced an
additional restriction on the deterministic crowding selection for
controlling the mating between members of different niches.

Except for these three operators, many others were conceived
for improving detection rate, maintaining diversity or other
purposes. Among them, seeding and deletion are two emerging
operators that are adopted by many EC algorithms in intrusion
detection applications.

- Seeding [65,117]: As discussed earlier, evolving classification
rules can be regarded as a “set covering” problem. If some
instances are not yet covered, seeding operators will dynamically
generate new individuals to cover them. Normally, this method is
used to initialize the first population at the beginning of the
search.

- Deletion [65]: EC works with a limited population size. When a
newly generated individual is being inserted into the population,
but the maximum population size is reached, some old
individuals have to be removed from the population. In
traditional EC with a global optimum target, the less fit
individuals are preferably replaced. However, for multimodal
problems, other criteria in addition to fitness, such as niches or
data distribution, should be considered to avoid replacement
errors. Dam et al. [65] extended the deletion operator of XCS by
considering class distribution, especially for highly skewed
datasets. For example, normal instances constitute approxi-
mately 75% of total records in the KDD99 dataset. Therefore, rules
which cover normal data points will have a higher fitness than
others, which implies that rules for the normal class have a much
lower chance to be deleted compared to rules for other classes.
So, integrating class distribution into the deletion operator
allows it to handle minority classes.

- Adding and dropping: These two operators are variations of
mutation. When evolving rules, dropping means to remove a
condition from the representation, thus resulting in a generalized
rule [208,287]. On the contrary, adding conditions results in a
specialized rule. Han et al. [140] employed adding and dropping
to add a new connection between neurons, and to delete the
connection between neurons, respectively in an evolutionary
neural network.

4.3.3. Fitness function

An appropriate fitness function is essential for EC as it correlates
closely with the algorithm’s goal, thus guiding the search process.
Intrusion detection systems are designed to identify intrusions as

accurately as possible. Therefore, accuracy should be a major factor
when yielding a fitness function. In Table 6, we categorize the
fitness function from research work we surveyed. The categoriza-
tion is based on three terms: detection rate (DR), false positive rate
(FPR) and conciseness.

The research contributions in the first row are all devoted to
anomaly detection problems. Since no attack is presented in the
training phase, DR is not available. Fitness functions may vary in
format, but all look for models which cover most of the normal
data. In this example, H(C;) represents the entropy of data points
that belong to cluster C;, and Hmqx(C;) is the theoretical maximum
entropy for C;.

Accuracy actually requires both, DR and FPR, since ignoring
either of them will cause misclassification errors. A good IDS
should have a high DR and a low FPR. The first example in the
second row directly interprets this principle. Here, o stands for the
number of correctly detected attacks, A the number of total attacks,
B the number of false positives, and B the total number of normal
connections. As we know, patterns are sometimes represented as
if-then clauses in IDSs, so in the second example, the support-
confidence framework is borrowed from association rules to
determine the fitness of a rule. By changing weights w; and w;, the
fitness measure can be used for either simply identifying network
intrusions, or precisely classifying the type of intrusion [124]. The
third example considers the absolute difference between the
prediction of EC (¢ ) and the actual outcome (¢).

Conciseness is another interesting property that should be
considered. This is for two reasons: concise results are easy to
understand, and concise results avoid misclassification errors.
The second reason is less obvious. Conciseness can be restated as
the space a model, such as a rule, or a cluster, uses to cover a
dataset. If rule A and rule B have the same data coverage, but
rule A is more concise than B, so A uses less space than B does
when covering the same amount of data. The extra space of B is
more prone to cause misclassification errors. Apparently the first
example of this kind considers all three terms, where the length
correlates with conciseness. The second example of this type
considers the number of counterexamples (w) covered by a rule,
and the ratio between the number of bits equal to 1 in the
chromosome and the length of chromosome (z), which is the
conciseness of a rule. A is a user-tunable parameter. The fitness
function in [195] also prefers clusters with small radii if they
cover the same data points.

4.3.4. Summary

In this section, we reviewed the research in employing
evolutionary computation to solve intrusion detection problems.
As is evident from the previous discussion, EC plays various roles in
this task, such as searching for an optimal solution, automatic
model design, and learning for classifiers. In addition, experiments
reasserted the effectiveness and accuracy of EC. However, we also
observed some challenges for the method, as listed below. Solving
these challenges will further improve the performance of EC-based
intrusion detection.
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- No reasonable termination criterion: Most research work simply
sets the termination criterion as a pre-specified number of
iterations, or a threshold of fitness. However, the experiment of
Shafi et al. [251] showed that such simple criteria while helpful
when searching for the global optimum, are inappropriate for
multiple local optima. A reasonable termination criterion will
definitely improve detection accuracy and efficiency.

Niching: Learning intrusion behavior is equivalent to concept
learning, which is always looking for multiple solutions.
Although niching is capable of discovering and maintaining
multiple local optima, it cannot guarantee that a complete set of
solutions is returned. More research work is required to
investigate how to maintain a diverse, and complete solution
by EC.

Distributed EC models: Training sets in intrusion detection are
normally generated from a large volume of network traffic
dumps or event logs. This makes evaluating candidate solutions
in EC quite expensive and time consuming. In contrast to
monolithic architectures, distributed models [104,117,151] have
the advantage of assigning a portion of the data to each node,
hence they put less burden on fitness evaluation. In addition,
distributed nodes are trained simultaneously and independently,
so they can be added to and removed from the system
dynamically. There are, however, still many issues deserving
careful investigation, such as evolutionary models or commu-
nication mechanisms in a distributed environment.

Unbalanced data distribution: One important feature of intrusion
detection benchmarks is their high skewness. Take the KDD99-
10 dataset as an example: there are 391,458 instances in the DoS
class while only 52 instances are in the U2R class. Both Dam et al.
[65] and Song et al. [259] point out individuals which had better
performance on frequently occurring connection types would be
more likely to survive, even if they performed worse than
competing individuals on the less frequent types. Therefore,
when designing an intrusion detection system based on EC
approaches, one should consider how to improve the accuracy on
relatively rare types of intrusion without compromising perfor-
mance on the more frequent types.

4.4, Artificial immune systems

The human immune system (HIS) has successfully protected our
bodies against attacks from various harmful pathogens, such as
bacteria, viruses, and parasites. It distinguishes pathogens from
self-tissue, and further eliminates these pathogens. This provides a
rich source of inspiration for computer security systems, especially
intrusion detection systems. According to Kim and Somayaji
[175,258], features gleaned from the HIS satisfy the requirements
of designing a competent IDS [153,175]. Hence, applying
theoretical immunology and observed immune functions, its
principles, and its models to IDS has gradually developed into a
new research field, called artificial immune system (AIS).

AIS based intrusion detection systems perform anomaly
detection. However, instead of building models for the normal,
they generate non-self (anomalous) patterns by giving normal data
only, as Fig. 12 illustrated. Any matching to non-self patterns will
be labeled as an anomaly.

In this section, we will review research progress on immune
system inspired intrusion detection. Although review work for AISs
[26,67,73,105,161] and their application to the intrusion detection
domain [20,178] exists, our review is different in that it focuses on
two perspectives: tracking the framework development of AIS
based IDSs, and investigating the key elements shown in Fig. 13
when engineering an AlS-based intrusion detection system [73]. In
recent years, research on AIS has extended to the study of innate
immune systems, in particular to the danger theory proposed by

Fig. 12. The goal of AlS-based IDSs is to generate all patterns, denoted as black
circles, which match none of the normal data. The shaded region represents a space
containing only normal data [153].

Matzinger [217,218]. Hence, the last part of this section will
present IDSs motivated by the danger theory.

4.4.1. A brief overview of human immune system

Before we start the discussion of AIS models, a brief overview of
the HIS will be necessary. A more detailed introduction of the HIS
can be found elsewhere [74]. Our human immune system has a
multi-layered protection architecture, including physical barriers,
physiological barriers, an innate immune system, and an adaptive
immune system. Compared to the first three layers, the adaptive
immune system is capable of adaptively recognizing specific types
of pathogens, and memorizing them for accelerated future
responses [153]. It is the main inspiration for AlSs.

The adaptive immune system is a complex of a great variety of
molecules, cells, and organs spread all over the body, rather than a
central control organ. Among its cells, two lymphocyte types, T
cells and B cells, cooperate to distinguish self from non-self (known
as antigens). T cells recognize antigens with the help of major
histocompatibility complex (MHC) molecules. Antigen presenting
cells (APC) ingest and fragment antigens to peptides. MHC
molecules transport these peptides to the surface of APCs. T cells,
whose receptors bind with these peptide-MHC combinations, are
said to recognize antigens. In contrast, B cells recognize antigens by
binding their receptors directly to antigens. The bindings actually
are chemical bonds between receptors and epitopes/peptides. The
more complementary the structure and the charge between
receptors and epitopes/peptides are, the more likely binding will
occur. The strength of the bond is termed “affinity”.

T cells and B cells develop and mature within the thymus and
bone marrow tissues, respectively. To avoid autoimmunity, T cells
and B cells must pass a negative selection stage, where lymphocytes
which match self cells are killed. Prior to negative selection, T cells
undergo positive selection. This is because in order to bind to the
peptide-MHC combinations, they must recognize self MHC first. So
the positive selection will eliminate T cells with weak bonds to self
MHC. T cells and B cells which survive the negative selection become
mature, and enter the blood stream to perform the detection task.
These mature lymphocytes have never encountered antigens, so
they are naive.

Naive T cells and B cells can still possibly autoreact with self
cells, because some peripheral self proteins are never presented
during the negative selection stage. To prevent self-attack, naive
cells need two signals in order to be activated: one occurs when
they bind to antigens, and the other is from other sources as a
“confirmation”. Naive T helper cells receive the second signal from
innate system cells. In the event that they are activated, T cells
begin to clone. Some of the clones will send out signals to stimulate
macrophages or cytotoxic T cells to kill antigens, or send out
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Fig. 13. The framework to engineer an AIS. Representation creates abstract models
of immune cells and molecules; affinity measures quantify the interactions among
these elements; algorithms govern the dynamics of the AIS [73].

signals to activate B cells. Others will form memory T cells. The
activated B cells migrate to a lymph node. In the lymph node, a B
cell will clone itself. Meanwhile, somatic hypermutation is
triggered, whose rate is 10 times higher than that of the germ
line mutation, and is inversely proportional to the affinity.
Mutation changes the receptor structures of offspring, hence
offspring have to bind to pathogenic epitopes captured within the
lymph nodes. If they do not bind they will simply die after a short
time. If they succeed in binding, they will leave the lymph node and
differentiate into plasma or memory B cells. This process is called
affinity maturation. Note, clonal selection affects both T cells and B
cells, but somatic mutation has only been observed in B cells. As we
can see, by repeating selection and mutation, high affinity B cells
will be produced, and mutated B cells adapt to dynamically
changing antigens, like viruses.

The immune response caused by activated lymphocytes is
called primary response. This primary response may take several
weeks to eliminate pathogens. Memory cells, on the other hand,
result in quick reaction when encountering pathogens that they
have seen before, or that are similar to previously seen pathogens.
This process is known as secondary response, which may take only
several days to eliminate the pathogens.

In summary, the HIS is a distributed, self-organizing and
lightweight defense system for the body [175]. These remarkable
features fulfill and benefit the design goals of an intrusion
detection system, thus resulting in a scalable and robust system.

4.4.2. Artificial immune system models for intrusion detection

The HIS is sophisticated, hence researchers may have different
visions for emulating it computationally. In this section, we will
review the development of AIS models for solving intrusion
detection problems.

4.4.2.1. Aself-non-self discrimination AIS model. The first AIS model
suggested by Forrest et al. was employed in a change-detection

Self Strings
(S)

Random _----- No matches during
Regeneration, .-~ 8 tolerization period
- Match

No activation in finite period

Naive, mature

Exceed activation
threshold

Not costimulated

Memory Detector

Match

Activated

Costimulated

Fig. 15. The lifecycle of a detector. A set of detectors are generated randomly as
immature detectors. An immature detector that matches none of normal data
during its tolerization period becomes mature; otherwise it dies. When a mature
detector matches sufficient input data, this detector will be activated. Alternatively,
a mature detector that fails to become activated eventually dies. Within a fixed
period of time, if an activated detectors receive no co-stimulation, e.g. responses
from system security officers, it will die too; otherwise it becomes a memory
detector [119].

algorithm to detect alterations in files [108] and system call
sequences [107]. This model simulated the self-non-self discri-
mination principle of the HISs, as illustrated in Fig. 14. Negative
selection was the core of this model, by which invalid detectors
were eliminated when they matched self data. Although not many
immune features were employed, it reflected some initial steps
toward a greater intellectual vision on robust and distributed
protection systems for computers [106].

4.4.2.2. An AIS model with lifecycle. Hofmeyr and Forrest later
extended the above prototype with more components and ideas
from the HIS. The new AIS model (shown in Fig. 15) considered the
lifecycle of a lymphocyte: immature, mature but naive, activated,
memory, and death. The finite detectors’ lifetime, plus costimula-
tion, distributed tolerance and dynamic detectors contribute to
eliminating autoreactive detectors, adapt to changing self sets, and
improve detection rates through signature-based detection.

As an application of this model, a system called LISYS
(Lightweight Immune SYStem) was developed to detect intrusions
in a distributed environment. Williams et al. employed this model
to detect computer viruses [146] and network intrusions [280], but
extended it with an affinity maturation step to optimize the
coverage of the non-self space of antibodies [147,280].

4.4.2.3. An evolutionary AIS model. Kim and Bentley proposed an
AIS model [175] based on three evolutionary stages: gene library
evolution, negative selection and clonal selection, shown in Fig. 16.
The gene library stores potentially effective genes. Immature
detectors, rather than generated randomly, are created by selecting
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‘ Nonself Detected |
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Fig. 14. The self-non-self discrimination model. A valid detector set will be generated, and then monitor protected strings [108]. (a) Censoring. (b) Detecting.
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Fig. 16. Conceptual architecture of Kim and Bentley’s AIS model. The central primary IDS generates valid detectors from gene library, and transfers unique detector subsets to
distributed secondary IDSs. Secondary IDSs execute detection task, as well as proliferate successful detectors [175].

and rearranging useful genes. Genes in successful detectors are
added to the library, while those in failed detectors are deleted. In a
sense, the library evolves; the negative selection removes false
immature detectors by presenting self without any global
information about self; the clonal selection detects various
intrusions with a limited number of detectors, generates memory
detectors, and drives the gene library evolution. Hofmeyr's
lifecycle model was adopted in their model.

4.4.2.4. A multi-level AIS model. T cells and B cells are two primary
but complex immunological elements in the HIS. Focusing on their
functions and interactions, Dasgupta et al. [69] proposed a model
that considers detecting intrusions and issuing alarms in a multi-
level manner (see Fig. 17).

T cells recognize the peptides extracted from foreign proteins,
while B cells recognize epitopes on the surface of antigens.
Therefore, in their computational model, T-detectors (analogous to
T cells) performed a low-level continuous bitwise match, while the
B-detectors (analogous to B cells) performed a high-level match at
non-contiguous positions of strings. To prevent the system from
raising false alarms, T-suppression detectors (analogous as T-
suppression cells) are introduced, which decide the activation of T-
detectors. Activated T-detectors will further provide a signal to
help activate B-detectors. This model further simulated negative
selection, clonal selection and somatic hypermutation of mature T
cells and B cells.

4.4.2.5. Artificial immune network model. Artificial immune net-
works (AIN) are based on the immune network theory proposed by
Jerne [158]. This theory hypothesizes that the immune system
maintains an idiotypic network of interconnected B cells for
antigen recognition. These B cells stimulate or suppress each other
to keep the network stable. In AIN, antigens are randomly selected
from the training set and presented to B cells. The stimulation
effects between B cells and antigens (binding) are calculated.

Meanwhile, the stimulation and suppression effects between B
cells are also calculated. B cells will be selected to clone and mutate
based on the total interaction effects. Useless B cells are removed
from the network, while new B cells are created randomly and
incorporated into the network, and links among all B cells are
reorganized. A network is returned for detection when the
stopping criterion is met. Based on Jerne’s work, many AIN models
have been developed [112], as shown in Fig. 18. AINs have been
proposed for problem solving in areas such as data analysis,
pattern recognition, autonomous navigation and function optimi-
zation.

4.4.2.6. Other AIS models. Millions of lymphocytes circulate in the
blood stream and lymph nodes, and perform the role of immune
surveillance and response. Therefore, Dasgupta [66] and Hamer
[146] both proposed a model for mapping the mobility of cells into
an AIS by mobile agents. Lymphocytes, antibodies and other cells
are mapped into agents roaming around a protected system to
perform sensing, recognizing, deleting and cleaning jobs. Luther
et al. [213] presented a cooperative AIS framework in a P2P
environment. Different AIS agents collaborate by sharing their
detection results and status. Twycross et al. [273] incorporated
ideas from innate immunity into artificial immune systems (AISs)
and presented an libtissue framework.

4.4.3. Representation scheme and affinity measures

The core of the HIS is self and non-self discrimination
performed by lymphocytes. To engineer such a problem in
computational settings, the key steps are appropriately represent-
ing lymphocytes and deciding the matching rules.

Antibodies are generated by random combinations of a set of
gene segments. Therefore, a natural way to represent detectors is
to encode them as gene sequences, comparable to chromosomes in
genetic algorithms. Each gene represents an attribute in the input
data. Normally, a detector is interpreted as an if-then rule, such as
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Fig. 17. A multi-level AIS model proposed by Dasgupta et al. [69].

Fig. 19 has shown. The affinity, when mapped into the intrusion
detection domain, means the similarity between detectors and
data.

Binary strings are the most commonly adopted coding schemes.
There are two ways to represent detectors in binary strings. The
difference lies in how to determine the number of nucleotides.
Suppose the number of nucleotides in a gene is denoted as N,,, and
the number values of an attribute is denoted as N,. N, can either be
equal to N, [180,175] or be the minimum integer which satisfies
2N > = N, [26,108,119,146,153,280]. The first representation
allows a single attribute of each detector to have more than one
value, but requires more space. Affinity measures for binary strings
are r-contiguous bits matching (rcb) [108], r-chunks matching [32],
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Fig. 18. Genealogical tree of AIN models: each model is a modification or is based on
its parent [112].

landscape-affinity matching [146], Hamming distance and its
variations. Compared to perfect matching, these partial matchings
provide generalization for a learning algorithm. Homer compared
rch, landscape-affinity matching, Hamming distance and its
variations on a randomly generated dataset [146]. The results
showed that the Rogers and Tanimoto (R&T), a variation of the
Hamming distance, produced the best performance.

Gonzalez [127] further compared R&T with r-chunks, rcb and
Hamming distance on two real-valued datasets. Although r-chunks
outperformed others, it still showed a very high false positive rate.
This can be explained by the intrinsic meaning of difference or
similarity in numeric data. Affinity measures suitable for binary
strings do not correctly reflect the distance in numeric meanings.

Detector Genotype
Gene 1 Gene 2 Gene3 Genen

Lo[1[+fofof Jof ol o 1ol 1] 3% [o]o]o]o]

Gene 1 clustertable Gene 2 cluster table  Gene 3 cluster table  Gene n cluster table

ID | Gene value ID | Gene value 1D | Gene value| ID | Gene value
1]TCP 1 | [min..10) | 1| [min..324) 1 | TRUE
2 | UDP 21010.17) 2 | [324. max] 2 | FALSE
3 | TMCP 31017.20) 3 | UNKNOWN
4 ] [20.max]
Detector Phenotype

IF { Attributel = TCP OR UDP ) AND
(Atribute2 = [min..10} ) AND
( Atribute3 = ANY VALUE ) AND
(Atribute n = NULL )

THEN  Detector detects NON-SELF

Fig. 19. Detector genotype and phenotype [175].
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Therefore, two real-valued representations were suggested by
Dasgupta’s research group to encode numeric information. In the
first coding scheme, a gene in a detector has two nucleotides: one
saves the lower bound value of an attribute, and the other one
saves the upper bound [68]. Hence, a chromosome actually defines
a hypercube. In the second coding scheme, a detector has n + 1
genes, where the first n genes represent the center of an n-
dimensional hypersphere, and the last gene represents the radius
[128]. Major matching rules used in real-valued representation
include: Euclidean distance, generalized distances of different
norms in Euclidean space (including special cases; Manhattan
distance (1-norm), Euclidean distance (2-norm), A-norm distance
for any A, and infinity norm distance), interval-based matching,
and other distance metrics [166].

Representations combining the two approaches were adopted,
too [143]. Numeric attributes are encoded in real-valued format,
and category attributes are encoded in strings. Matching rules
were accordingly applied.

4.4.4. Negative selection algorithms

The negative selection (NS) algorithm simulates the process of
selecting nonautoreactive lymphocytes. Consequently, given a set
of normal data, it will generate a set of detectors which match none
of these normal data samples. These detectors are then applied to
classify new (unseen) data as self (normal) or non-self (abnormal).
In this section, various NS algorithms will be summarized; then
some key issues, such as detector generation, controlling the FP
rate and FN rate, and coverage estimation will be discussed.

4.4.4.1. Development of negative selection algorithms. The negative
selection algorithm was first suggested by Forrest et al., already
shown in Fig. 14. This algorithm started with a population of
randomly generated detectors. These potential detectors, analo-
gous to immature lymphocytes, were exposed to normal data.
Those which matched normal data were removed from the
population immediately and replaced by new detectors. Detectors
which survived this selection process were used in the detection
phase (shown in Fig. 14(b)). In this model, self data and detectors
were encoded as binary strings, and rch matching rules decided the
affinity.

Since the empirical study [127] supported the advantages of
real-valued representations on numeric data, Dasgupta and his
group extended the initial negative selection algorithm to a series
of real-valued NS algorithms. Fig. 20 lists NS algorithms proposed
by that group and by other researchers. Dasgupta et al. hypothe-

sized that each self sample and its vicinity is normal, so they
considered a variability range (called vr) as the radius for a normal
point. Obviously, representing normal data points by a hyper-
sphere achieved generalization for unseen data. An example
showing how a self-region might be covered by circles in 2-
dimension is given in Fig. 21(a).

Features of these NS algorithms can be summarized as follows:

- Multi-level: By changing the parameter vr of self hypersphere, a
set of detectors with hierarchical levels of deviation were
generated. Such a hierarchical detector collection characterized a
noncrisp description for the non-self space [68]. A variation of
this algorithm integrated fuzzy systems to produce fuzzy
detectors [130].

- Real-valued: Instead of inefficiently throwing away detectors

who match self samples, this algorithm gave these detectors a

chance to move away from the self set during a period of

adaptation. Detectors would eventually die if they still matched
self sets within a given time frame. Meanwhile, detectors moved
apart from each other in order to minimize the overlap in the
non-self space [126]. In the end, this algorithm generated a set of
constant-sized (because of constant radius) hypersphere detec-

tors covering non-self space, as demonstrated in Fig. 21(a) for a 2-

dimensional space. Shapiro et al. expressed detectors by hyper-

ellipsoids instead of hyperspheres [254].

v-Vector: Clearly in real-valued NS algorithms, large numbers of

constant-sized detectors are needed to cover the large area of

non-self space, while no detectors may fit in the small area of
non-self space, especially near the boundary between self and

(a) Constant-sized detectors

(b) Variable-sized detectors

Fig. 21. The main concept of v-Vector. The dark area represents self-region. The light
gray circles are the possible detectors covering the non-self region [163]. (a)
Constant-sized detectors. (b) Variable-sized detectors.
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Fig. 22. Generating detectors by evolutionary algorithms.

non-self. Hence a variable radius was suggested in the v-Vector
algorithm [162,163]. The core idea of this algorithm is illustrated
in Fig. 21(b) in a 2-dimensional space.

Boundary-aware: Previous algorithms took each self sample and
its vicinity as a self region, but deciding vicinity is difficult,
especially for self samples that are close to the boundary between
self and non-self. This algorithm aims to solve the “boundary
dilemma” by considering the distribution of self samples.
Multi-shape: Different geometric shapes, such as hyper-rectan-
gles [68,130], hyper-spheres [126,162,163] and hyper-ellipses
[254], were used for covering the non-self space. This algorithm
thus incorporated these multiple hyper-shape detectors together
[28,29]. Detectors with suitable size and shape were generated
according to the space to be covered. As an application, this
algorithm was used to detect intrusions in Ad-Hoc networks [30].
Ostaszewski: Ostaszewski et al. argued that detectors generated
by the multi-level NS algorithm cannot completely cover the
non-self space, due to the shape conflict between the structures
used for self (hypersphere) and non-self (hypercubes). Hence, in
their algorithm, both self and non-self patterns were hypercubes.
Self-patterns, instead of self data, were used in the NS algorithm.
The conversion of large self data space into comparatively small
schemata space was effective, and the conversion compressed
the number of inputs of the NS algorithm. A similar conversion
was also suggested by Hang and Dai [142,144].

New NS algorithms are continuously being published. For
example, a NS algorithm, enhanced by state graphs [212], is able to
locate all occurrences of multi-patterns in an input string by just
one scan operation; a feedback NS algorithm was proposed to solve
the anomaly detection problem [293].

Recently concerns were raised on the applicability of NS
algorithms. Garrett [113] concluded that NS algorithms are
distinct, and are suitable for certain applications only. Freitas
etal. [111] criticized NS algorithms used as a general classification
method because they are one-class based. Stibor et al. [262,263]
pointed out that a real-valued NS algorithm, defined over the
hamming shape-space, is not well suited for real-world anomaly
detection problems. To tackle these issues, Ji et al. [165] clarified
some confusion that may have mislead the applicability of
negative selection algorithms. Gonzalez and Hang [128,144] also

suggested another potential of NS algorithms as non-self data
generators. The artificial non-self data can be mixed with self data
to train classifiers, which helps to identify the boundary between
normal and abnormal data.

4.4.4.2. Detector generation. The typical way of generating detec-
tors in NS algorithms is random or exhaustive, as described in the
model (Fig. 14) originally proposed by Forrest et al., later being
frequently adopted in other research work [69,125,126,153,160,
163].

Instead of inefficiently throwing away detectors who match self
samples, Ayara et al. [27] and Gonzalez et al. [126] both decided to
give these detectors a chance to move away from the self set in a
period of time before eliminating them. Ayara et al. further
compared their algorithm (NSMutation) with exhaustive, linear
[81], greedy [81], and binary template [279] detector generating
algorithms in terms of time and space complexities. The results can
be found in [27]. They concluded that though NSMutation was
more or less an exhaustive algorithm, it eliminated redundancy
and provided tunable parameters that were able to induce a
different performance.

Recent trends are applying evolutionary algorithms to evolve
detectors to cover the non-self space, since a similar evolution
process was observed in antibodies. The evolutionary negative
selection algorithm (ENSA) is shown in Fig. 22, where a negative
selection algorithm is embedded in a standard evolutionary
process as an operator. Detectors which match the self data will
either be penalized by decreasing their fitness or even removed
from the population. Removed ones are replaced by newly
generated detectors.

Kim et al. [176] introduced niching to the ENSA to maintain
diversity. Diversity is necessary for ENSA because a set of solutions
(detectors) collectively solves the problem (covering non-self
space). Kim implemented niching in a way similar to the token
competition. A self sample and several detectors were randomly
selected. Only the detector which showed least similarity with the
self sample had the chance of increasing its fitness.

Dasgupta’s group claimed the detector generation was not only
a multimodal optimization problem, but also a multiobjective
problem [68]. Hence, they used sequential niching to achieve
multimodal, and defined three reasonable criteria to evaluate a
detector: a good detector must not cover self space; it should be as
general as possible; and it has minimum overlap with the rest of
the detectors. Therefore, the fitness function was defined as:

f(x) = volume(x) — (C x num_elements(x)

+ overlapped_volume(x)) (1)

where volume(x) is the space occupied by detector x;
num_elements(x) is the number of self samples matched by x; C
is the coefficient. It specifies the penalty x suffers if it covers normal
samples; overlapped_volume(x) is the space x overlaps with other
detectors. Obviously, the first part is the reward, while the second
part is the penalty. This multi-objective multimodal ENSA was
applied in their multi-level NS [68], fuzzy NS [130] and multi-
shape NS algorithms [28,29]. Ostaszewski et al. also used this
fitness definition in their work. The multi-shape NS used a
structure-GA while the rest used standard GAs.

With the development of EC, ENSA is gradually strengthened by
new evolutionary features. Gonzalez and Cannady [131] imple-
mented a self-adaptive ENSA, where the mutation step size was
adjustable in a Gaussian mutation operator. Their method avoided
trial and error when determining the values of tunable parameters
in NSMutation; Ostaszewski et al. [233-235] employed co-
evolution in their ENSA. A competitive co-evolutionary model
helped detectors to discover overlooked regions. The anomaly
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dataset and the detector set took their turn as predators and prey.
Detectors were trying to beat down anomaly data points by
covering them. The fitness of data points not covered by any
detector were increased, thus resulting in a high possibility of
these points to be presented to detectors again. Haag et al. [139]
employed a multi-objective evolutionary algorithm to measure the
tradeoff among detectors with regard to two independent
objectives: best classification fitness and optimal hyper-volume
size.

4.4.4.3. Controlling false positive and false negative errors. Inaccu-
rate boundaries between self and non-self space (see Fig. 23(a)),
and incomplete non-self patterns (see Fig. 23(b)) are two main
causes of false positive and false negative errors in AlSs.

Self samples in training sets are never complete. As a result,
some autoreactive detectors cannot be eliminated during negative
selection. These detectors fail to recognize unseen normal data,
thus causing false positives, as shown in Fig. 23(a). To avoid false
positive errors, Hofmeyr [153] introduced the activation threshold
(1), sensitivity level (8), and costimulation. Instead of signaling an
alarm every time a match happens, a detector has to wait until it is
matched at least T times within a limited time period. However, if
attacks are launched from different sources, a single detector
cannot be matched repeatedly. Therefore, § is intended to consider
the matches of all detectors in a host. An alarm will be triggered
when the contributions of multiple detectors exceeds & within a
limited time period. Costimulation requires a confirmation from a
human operator whenever an activated detector raises an alarm.

Giving generality to self samples is another way to address
incomplete self samples problem. As previously discussed,
Dasgupta’s group used a hyper-sphere area around self samples
in the NS algorithm. Although their methods successfully avoid
overfitting, it unfortunately produces an over-generalization
problem. Over-generalization will cause false negative errors as
shown in Fig. 23(a). Therefore, Ji et al. proposed a boundary-aware
algorithm [159]; Ostaszewski et al. presented the self samples by
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Fig. 23. Reasons for FPR and FNR in AISs [153]. (a) Inaccurate boundaries. (b)
Incomplete non-self patterns.

variable-sized hyper-rectangles; Hang et al. [142,144] employed a
co-evolutionary algorithm to evolve self patterns.

Incomplete non-self patterns in AISs are mainly caused by
holes, which are the undetectable negative space (shown in
Fig. 23(b)). They are desirable to the extent that they prevent false
positives if unseen self samples are falling into them. They are
undesirable to the extent that they lead to false negatives if non-
self samples are falling into them. Balthrop et al. [32] and Esponda
et al. [93,94] pointed out that matching rules are one reason for
inducing holes. For example, the r-contiguous bit matching rule
induces either length-limited holes or crossover holes, while the r-
chunks matching rule only induces crossover holes. Their analysis
is consistent with the D’haeseleer’s suggestion: using different
matching rules for different detectors can reduce the overall
number of holes [81]. Alternatively, using different representations
helps to avoid holes, too. Hofmeyr [153] introduced the concept of
permutation masks to give a detector a second representation.
Permutation masks are analogous to the MHC molecules in HIS. In
fact, changing representation is equivalent to changing the “shape”
of detectors. Dasgupta and other researchers [233] then suggested
variable-sized [162,163,234,235] and variable-shaped detectors
(e.g. hyper-rectangular [68,130], hypersphere [126,163], hyper-
ellipsoid [254], or a combination of them [28,29]). Niching
sometimes contributes to filling holes, because it attempts to
maximize the space coverage and minimize the overlaps among
them.

Holes bring another issue. Hofmeyr explained in [153] that the
longer the period of time over which holes remain unchanged, the
more likely an intruder will find gaps, and once found, those gaps
can be exploited more often. Therefore, he proposed a combination
of rolling coverage and memory cells to solve this problem. Each
detector is given a finite lifetime. At the end of its lifetime, it is
eliminated and replaced by a new active detector, thus resulting in
a rolling coverage. Memory detectors ensure that what has been
detected in the past will still be detected in the future.

4.4.4.4. The estimation of coverage. No matter whether detectors
are generated exhaustively or by using evolutionary algorithms, a
measure is required to decide when to stop the generation process.
Estimating the coverage ratio, which is also called detector
coverage, is one major research subject of NA algorithms.

Forrest [108] and D’haeseleer [81] estimated the number of
detectors for a given failure probability when the exhaustive
generation and the r-continuous matching rule were used; later
Esponda et al. [94] discussed the calculation of the expected
number of unique detectors under the r-chunks matching rule for
both the positive and negative selection algorithm.

Dasgupta et al. [68] and Ji [163] estimated the coverage by retry
times. Later Ji used hypothesis testing to estimate the detector
coverage in v-vector NS algorithm [164]. Gonzalez [129] and
Balachandran [29] used the Monte Carlo estimation to calculate
the detector coverage.

4.4.5. Affinity maturation and gene library evolution

As described previously, the affinity maturation is the basic
feature of an immune response to an antigenic stimulus. Clonal
selection and somatic hypermutation are essentially a Darwinian
process of selection and variation, guaranteeing high affinity and
specificity in non-self recognition in a dynamically changing
environment. Computationally, this leads to the development of a
new evolutionary algorithm, clonal selection algorithm. This
algorithm relies on the input of non-self data (antigens), not the
self data required in the negative selection algorithms.

Forrest et al. [109] first used genetic algorithm with niching to
emulate clone selection. Kim and Bentley [180] embedded the NS
algorithm as an operator into Forrest’s work. This operator filtered
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out invalid detectors generated by mutation. Since this algorithm
only works on a static dataset, it was named static clonal selection
algorithm. Later, the same authors introduced Hofmeyr’s lifecycle
model to this algorithm to cope with a dynamic environment. This
new algorithm was called dynamic clonal selection [177].
Although this algorithm was able to incrementally learn normal
behavior by experiencing only a small subset of self samples at one
time, it showed high FP errors owing to the infinite lifespan of
memory cells. The next step was naturally to define a lifecycle for
memory cells. When an antigen detected by a memory cell turned
out to be a self-antigen, this memory cell would be deleted. Such a
confirmation was equivalent to the co-stimulation signal in
Hofmeyr’s model [181,183]. Dasgupta et al. also employed the
clone selection in their multi-level model [69]. Both mature B-
detectors and T-detectors proliferated and were mutated depend-
ing on their affinity with antigens.

The clonal selection algorithm implementing affinity matura-
tion is now gradually developed into a new computational
paradigm. CLONALG (CLONal selection ALGorithm) [75], ARIS
(Artificial Immune Recognition System) [278], and opt-aiNet [72]
are well known clonal selection algorithms. These algorithms are
used in performing machine-learning and pattern recognition
tasks, and solving optimization problems. Although they employ
the generation-based model and evolutionary operators when
generating offspring, they distinguish themselves from other
evolutionary algorithms by the following: firstly, cloning and
mutation rates are decided by an individual’s affinity. The cloning
rate is proportional to the affinity, while the mutation rate is
inversely proportional to the affinity. There is no crossover in
clonal selection algorithms; secondly, it is a multi-modal preser-
ving algorithm. The memory cell population (P,;) incrementally
saves the best solution in each generation. P, will be returned as
the final solution when the algorithm is terminated; thirdly, the
population size is dynamically adjustable. Applications of these
algorithms to intrusion detection can be found in [123,204,205,
283]

In the biological immune system, antibodies are generated by
combining fragments from gene libraries. Gene libraries, shaped by
evolution, are used to guide the creation process to create
antibodies with a good chance of success, while preserving the
ability to respond to novel threats [51].

Perelson et al. [239] and Cayzer et al. [50,51] showed that gene
libraries can enhance coverage. Cayzer et al., in addition,
investigated the role of gene libraries in AIS [50,51]. Their
empirical experiments suggest that gene libraries in AIS provide
combinatorial efficiency, reduce the cost of negative selection, and
allow targeting of fixed antigen populations.

Kim and Bentley [182,183] employed gene library evolution to
generate useful antibodies. A problem found in their extended
dynamic clonal selection algorithm was that a large number of
memory detectors require costimulations in order to maintain low
FP rates. Because new detectors were generated randomly, they
increase the possibilities of generating invalid detectors. The
authors suggested taking feedbacks from previously generated
detectors, such as using deleted memory detectors as the virtual
gene library. They argued that these deleted memory detectors still
held valid information about antibodies, so new detectors were
generated by mutating the deleted detectors. Further finetuning of
these detectors would generate a useful detector with high
probabilities.

4.4.6. Danger theory

The fundamental principle that guides the development of AIS
is the self non-self discrimination. Immune responses are triggered
when the body encounters non-self antigens. Therefore, negative
selection acts as an important filter to eliminate autoreactive

lymphocytes. However, questions have been raised regarding this
classical theory, because it cannot explain transplants, tumors, and
autoimmunity, in which some non-self antigens are not elimi-
nated, while some self antigens are destroyed. Matzinger, there-
fore, proposed the Danger Model [217,218], and claimed that
immune responses are triggered by the unusual death of normal
tissues, not by non-self antigens. Unusual death would indicate
that there was a dangerous situation.

This theory is still debated within the immunology field.
Nevertheless, it provides some fresh ideas that may benefit the
design of an AIS. For example, it avoids the scaling problem of
generating non-self patterns. Aickelin and his research group
started to work on a “Danger Project” [1] in 2003, intended to apply
Danger Theory to intrusion detection systems. The authors
emphasize the crucial role of the innate immune system for
guiding the adaptive immune responses. Their research specifi-
cally focuses on building more biologically-realistic algorithms
which consider not only adaptive, but also innate immune
reactions [17,18]. Their work so far can be mainly summarized
as one innate immunity architecture, and two danger theory based
algorithms.

Before we discuss their work, the biological inspiration should
be explained in more detail. Danger Theory is based on the
difference between healthy and stressed/injured cells. It suggests
that cells do not release alarm signals when they die by normally
planned processes (known as apoptosis), whereas cells do release
alarm signals when they are stressed, injured, or die abnormally
(known as necrosis). A type of cells known as Dendritic Cells (DC)
act as an important medium, passing the alarm signal to the
adaptive immune system. DCs have three distinct states: immature
(iDC), semimature (smDC), and mature (mDC). iDCs exist in the
extralymphoid compartments, where they function as macro-
phages: clear the debris of tissue, degrade their proteins into small
fragments, and capture alarm signals released from necrose cells
using toll-like receptors (TLR). Once iDCs collect debris and are
activated by an alarm signal, they differentiate into mDCs, and
migrate from the tissue to a lymph node. However, if iDCs do not
receive any activation in their lifespan but collect debris, they
differentiate into smDCs, and also move to a lymph node. Once in a
lymph node, mDCs and smDCs present those fragments collected
in the immature stage as antigens at their cell surface using MHC
molecules. When a naive T cell in the lymph node binds to these
antigens, it will be activated only if the antigens it bonds to are
presented by an mDC; it will not response if the antigens are
presented by an smDC. This is because mDCs secrete a type of
cytokines called IL-12 which activates naive T cells, while smDCs
secrete a type of cytokines called IL-10 which suppresses naive T
cells. In summary, DCs act as a bridge between the innate and
adaptive immune system. They will trigger an adaptive immune
response when danger has been detected [134,135,274].

From the above discussion, we can see that tissues provide an
environment that can be affected by viruses and bacteria, so that
signals are sent out and an immune response is initiated. Both
Aickelin and Bentley proposed the idea of artificial tissues, because
real-world problems sometimes are very difficult to be connected,
compared, and mapped to artificial immune algorithms. Similar to
the function of tissues, artificial tissues form an intermediate layer
between a problem and an artificial immune algorithm, for
example, providing data pre-processing for artificial immune
algorithms. However, they held different perspectives about
artificial tissues.

Bentley et al. [38] introduced two tissue growing algorithms for
anomaly detection. Artificial tissue grows to form in a specific
shape, structure and size in response to specific data samples.
When data does not exist to support a tissue, the tissue dies. When
too much, or too diverse, data exists for a tissue, the tissue divides.
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Fig. 24. The architecture of libtissue [273].

Danger signals are released when a tissue dies. In a sense, artificial
tissues provide generic data representations, enabling them to
function as an interface between a real-world problem and an
artificial immune algorithm. Twycross and Aickelin, on the other
hand, proposed a libtissue architecture in [273], which allowed
researchers to implement, analyze and test new AIS algorithms, as
shown in Fig. 24. libtissue has a client/server architecture. The
libtissue clients represent the data collected from the monitored
systems as antigens and signals, and then transmit them to the
libtissue server. The client also responds to outputs from the
libtissue server, and changes the state of the monitored system. On
the libtissue server, one or more tissue compartments are defined.
Compartments provide an environment where immune cells,
antigens and signals interact. Immune cells, which are embodied
by the artificial immune algorithms, perform analysis and
detection. The final decision will be sent back to the client.

Another observation from the introduction of the Danger
Theory is the role of DCs and their interaction with T cells. Hence,
the dendritic cell algorithm (DCA) [132-137] and TLR algorithm
(TLRA) [274-276] were proposed by Greensmith et al. and
Twycross et al., respectively.

DCA attempts to simulate the power of DCs which are able to
activate or suppress immune responses by the correlation of
signals representing their environment, combined with the locality
markers in the form of antigens [135]. To emulate DCs, Greensmith
et al. defined four input signals in the DCA: pathogen associated
molecular patterns (PAMPs), safe signals, danger signals and
inflammatory cytokines [134]. These signals describe the context
or environment of an antigen, derived either from input data or the
indices of a monitored system, such as CPU usage or errors
recorded by log systems. The DCA starts with creating a population
of immature DCs. Each iDC collects antigens (i.e. the input data)
and signals, and transforms them by an equation to three output
concentrations: costimulatory molecules (csm), smDC cytokines
(semi) and mDC cytokines (mat). csm tracks the maturation of a DC.
When this quantity is larger than a pre-defined threshold, this DC
is said to be mature. The other two outputs, semi and mat, will
determine if this DC will develop to be an smDC or mDC. Matured
DCs are ready for intrusion detection. In summary, the maturation
phase in the DCA actually correlates signals and input data to
normal or danger contexts. The DCA is deployed in the libtissue
framework to detect port scan intrusions, specifically ping scans
[132,135] and SYN scans [133]. Kim et al. [179] applied this
algorithm to detect misbehavior in sensor networks.

TLRA focuses on the interaction between DCs and T cells, which
replaces the classical negative selection algorithm. TLRA are
completed in a training and test phase. In training, only normal
data is presented to DCs. Accordingly, all DCs will develop to
smDCs. smDCs in a lymph node will match with randomly
generated T cells. If a match happens, which means smDCs activate
naive T cells, then these T cells will be killed. In the test phase,
anomaly is detected when naive T cells are activated by antigens.

Compared to the classical negative selection algorithms, TLRA
considers the environment of the input data, not only the antigen
itself, thus increasing the detection rate and decreasing the false
positive rate. The TLRA was deployed in the libtissue framework to
detect process anomaly [274-276]. Kim et al. [185] also emulated
interactions between DCs and T cells in the CARDINAL (Cooperative
Automated worm Response and Detection ImmuNe ALgorithm).
However, T cells in CARDINAL will differentiate into various
effector T cells, such as helper T cells and cytotoxic T cells. These
effector T cells are automated responders that react to worm-
related processes. They also exchange information with effector T
cells from other hosts when they respond.

In summary, both DCA and TLRA employ the model of DCs,
which is an important element in the innate immune system.
Experimental results of both algorithms showed good detection
rate, thus further confirming that incorporating innate immune
response benefits the development of an AIS. The implementation
of these two algorithms focuses on the different aspects of the DC
model. The DCA relies on the signal processing aspect by using
multiple input and output signals, while the TLRA emphasizes the
interaction between DCs and T cells, and only uses danger signals.
The DCA does not require a training phase; in addition, it depends
on few tunable parameters, and is robust to changes in the
majority of these parameters. However, choosing good signals
should not be trivial, and might affect the performance of both
algorithms.

4.4.7. Summary

In this section, we reviewed the progress in artificial immune
systems and their applications to the intrusion detection domain.
The successful protection principles in the human immune system
have inspired great interest for developing computational models
mimicking similar mechanisms. Reviewing these AlS-based intru-
sion detection systems or algorithms, we can conclude that the
characteristics of an immune system, like uniqueness, distribution,
pathogen recognition, imperfect detection, reinforcement learning
and memory capacity, compensate for weaknesses of the traditional
intrusion detection methods, thus resulting in dynamic, distributed,
self-organized and autonomous intrusion detection.

The HIS has a hierarchical structure consisting of various
molecules, cells, and organs. Therefore, researchers may have their
own perspective when starting to model. Table 7 summarizes the
similarities between the approaches.

From this table, evidently NS algorithms are more thoroughly
investigated and widely used than other AIS approaches in
intrusion detection. This is because NS algorithms lead anomaly
detection to a new direction: modeling non-self instead of self
patterns. We also notice the quick emergence of Danger Theory,
which provides some fresh ideas that benefit the design of AlSs.
The lifecycle of detectors has been proven as an effective way to
avoid holes and adapt to the changes in self data.

Although AIS is a relatively young field, it has received a great
deal of attention, and there has been some significant develop-
ments recently. Meanwhile, researchers have shown an interest in
not only developing systems, but in starting to think more carefully
about why and how to develop and apply these immune inspired
ideas. As a result, a number of AIS research groups published state-
of-the-art reviews of AlS research in 2006 and 2007, attempting to
reorganize the research efforts, to clarify terminology confusion
and misunderstandings, and to reconsider the immunological
metaphors before introducing more new ideas, specifically ones by
Dasgupta [67], by Forrest [105], by Ji and Dasgupta [166], by Kim
et al. [178], and by Timmis [267]. This also implies that anomaly
detection is getting more focus.

Despite many successes of AlS-based IDSs, there remain some
open questions:
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Table 7
Summary of artificial immune system.
HIS AIS
Layers Immune mechanism Algorithm Training data Research work
Adaptive Negative selection Negative selection Self [28]®, [29], [69], [107], [108], [125] ?, [126], [129], [159], [162],
(T cells and B cells) [165] [160] °, [163], [176], [293], [254], [235], [233], [234], [143],
[142], [144]
Clonal selection (B cells) Clonal selection Non-self [180], [177], [182], [181], [175] ¢, [183], [283], [205], [123], [204]
Idiotypic network Immune network Non-self [203]
Cell lifecycle Detector lifecycle Self [153] 2, [152], [33], [119], [280], [146] ®, [147], [182], [183]
Innate Dendritic cells DC algorithm Self and non-self [19], [136], [134], [137], [132], [135], [133], [184], [265]
T cells and dendritic cells TLR algorithm Self [185], [274], [276], [165], [275] ®
¢ Ph.D thesis.

> Master thesis.

Fitting to real-world environments: Currently most of the
algorithms were tested on benchmark datasets. However,
real-world environments are far more complicated. Hence,
improving the efficiency of the current AIS algorithms is
necessary. To take NS algorithms as an example, one needs to
consider how to avoid the scaling problem of generating non-
self patterns, how to detect and fill holes, how to estimate the
coverage of rule sets, and how to deal with a high volume and
dimensional data.

Adapting to changes in self data: Normal behavior is constantly
changing, and so should normal patterns. Although the concept
of a detector’s lifecycle contributes to adaption, co-stimulation
signals from system administrators are required, which is
infeasible in reality. Hence, related mechanisms from the human
immune system should be further explored, and carefully
mapped to solve anomaly detection problems.

- Novel and accurate metaphors from immunology: Current AIS
algorithms oversimplify their counterparts in immunology. One
needs to carefully exploit all known useful features of immune
systems, as well as consider the latest discoveries in immunol-
ogy. A better understanding of immunology will provide insight
into designing completely new models of AlS.

Integrating immune responses: The HIS not only recognizes non-
self antigens, but also removes these antigens after recognition.
Current AlS-based IDSs focus on self and non-self recognition.
Few research so far discussed the response mechanism after
detection. A response within an IDS context does not simply
mean the generation of an alert, but an implemented change in
the system as the result of a detection.

4.5. Swarm intelligence

Swarm intelligence (SI) is an artificial intelligence technique
involving the study of collective behavior in decentralized systems
[7]. It computationally emulates the emergent behavior of social
insects or swarms in order to simplify the design of distributed
solutions to complex problems. Emergent behavior or emergence
refers to the way complex systems and patterns arise out of a
multiplicity of relatively simple interactions [7]. In the past few
years, SI has been successfully applied to optimization, robotics,
and military applications. In this section, we will review its
contributions into the intrusion detection domain by discussing
two swarm motivated research methods.

4.5.1. Swarm intelligence overview

We can observe various interesting animal behavior in nature.
Ants can find the shortest path to the best food source, assign
workers to different tasks, or defend a territory from neighbors; A
flock of birds flies or a school of fish swims in unison, changing
directions in an instant without colliding with each other. These

swarming animals exhibit powerful problem-solving abilities with
sophisticated collective intelligence.

Swarm intelligence approaches intend to solve complicated
problems by multiple simple agents without centralized control or
the provision of a global model. Local interactions between agents
and their environment often cause a global pattern of behavior to
emerge. Hence, emergent strategy and highly distributed control
are the two most important features of SI, producing a system
autonomous, adaptive, scalable, flexible, robust, parallel, self
organizing and cost efficient [231].

Generally speaking, SI models are population-based. Indivi-
duals in the population are potential solutions. These individuals
collaboratively search for the optimum through iterative steps.
Individuals change their positions in the search space, however, via
direct or indirect communications, rather than the crossover or
mutation operators in evolutionary computation. There are two
popular swarm inspired methods in computational intelligence
areas: Ant colony optimization (ACO) [88] and particle swarm
optimization (PSO) [174]. ACO simulates the behavior of ants, and
has been successfully applied to discrete optimization problems;
PSO simulates a simplified social system of a flock of birds or a
school of fish, and is suitable for solving nonlinear optimization
problems with constraints.

4.5.2. Ant colony optimization

Ants are interesting social insects. Individual ants are not very
intelligent, but ant colonies can accomplish complex tasks
unthinkable for individual ants in a self-organized way through
direct and indirect interactions. Two types of emergent behavior
observed in ant colonies are particularly fascinating: foraging for
food and sorting behavior.

A colony of ants can collectively find out where the nearest and
richest food source is located, without any individual ant knowing
it. This is because ants lay chemical substances called pheromones
to mark the selected routes while moving. The concentration of
pheromones on a certain path indicates its usage. Paths with a
stronger pheromone concentration encourage more ants to follow,
thus in turn these additional ants reinforce the concentration of
pheromones. Ants who reach the food first by a short path will
return to their nest earlier than others, so the pheromones on this
path will be stronger than on longer paths. As a result, more ants
choose the short path. However, pheromones slowly evaporate
over time. The longer path will hold less or even no traces of
pheromone after the same time, further increasing the likelihood
for ants to choose the short path [231].

Researchers have applied this ant metaphor to solve difficult,
discrete optimization problems, including the traveling salesman
problem, scheduling problems, the telecommunication network or
vehicle routing problem, etc. Its application to the intrusion
detection domain is limited but interesting and inspiring. He et al.
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Fig. 25. A multi-class classification algorithm based on multiple ant colonies [149].

[149] proposed an Ant-classifier algorithm, which is an extension
of the Ant-Miner for discovering classification rules [237]. Artificial
ants forage paths from the rule antecedents to the class label, thus
incrementally discovering the classification rules, as shown in
Fig. 25. He et al. noticed that using only one ant colony to find paths
in all classes was inappropriate, because the pheromone level
updated by a certain ant would confuse successive ants interested
in another class. So more than one colony of ants (i.e. red ants and
blue ants in Fig. 25) were applied to find solutions for multi-class
classification problems simultaneously with each colony to focus
on one class. Each colony of ants deposited a different type of
pheromone, and ants were only attracted by pheromones
deposited by ants in the same colony. In addition, a repulsion
mechanism prevented ants of different colonies from choosing the
same optimal path.

Banerjee et al. [34,35] suggested to use ACO to keep track of
intruder trails. The basic idea is to identify affected paths of
intrusion in a sensor network by investigating the pheromone
concentration. This work also emphasizes the emotional aspect of
agents, in that they can communicate the characteristics of
particular paths among each other through pheromone updates.
Therefore, in a sensor network if the ants are placed, they could
keep track the changes in the network path, following certain
rules depicting the probabilities of attacks. Once a particular path
among nodes is detected by the spy emotional ant, it can
communicate the characteristics of that path through pheromone
balancing to other ants; thereafter network administrators could
be alerted.

In addition to finding the shortest path, ants also exhibit
amazing abilities to sort objects. Ants group brood items at similar
stages of development (e.g. larvae, eggs, and cocoons) together. In
order to do sorting, ants must sense both the type of element they
are carrying, and the local spatial density of that type of element.
Specifically, each ant must follow some local strategy rules: it
wanders a bit; if it meets an object which has a different type of
objects around it and if it does not carry one, it takes that object; if
it transports an object and sees a similar object in front of it, it
deposits the object. By executing these local strategy rules, ants
display the ability of performing global sorting and clustering of
objects.

Deneubourg et al. [79] in 1990 first related this biological
observation to an ant-based clustering and sorting algorithm. The
basic ant algorithm started with randomly scattering all data items
and some ants on a toroidal grid. Subsequently, the sorting phase
repeated the previously mentioned local strategy rules. Compu-
tationally, the strategy rules can be described as the following: an
ant deciding whether to pick up or drop an item i considers the
average similarity of i to all items j in its local neighborhood. The
local density of similarity ( f(o;)) is calculated by Eq. (2a), where j
denotes the neighborhood of an object o;; function d(o;,0;)
measures the similarity of two objects; 8> is the size of the local
neighborhood; o €[0,1] is a data-dependent scaling parameter.
The probability of picking up (P« (0;)) and dropping an object
(Pgrop(07)) is shown in Eq. (2b) and Eq. (2¢), respectively, where k;

and k, are scaling parameter.

d(o;,0;
f(0) = max {0,;22];(1 - (an’)>} (2a)

k1 2
Frc(00) = (m> (2b)
Parop(0) = {1f(01‘) if f(0;) <k>

if f(0) > kz
Romos and Abraham [242] applied this ant-based clustering
algorithm to detect intrusion in a network infrastructure. The
performance was comparable to the Decision Trees, Support Vector
Machines and Linear Genetic Programming. The online processing
ability, dealing with new classes, and the self-organizing nature
make the ant-based clustering algorithms an ideal candidate for
IDSs. Similar work done by Feng et al. can also be found at [97-99].
Tsang and Kwong [269,270] evaluated the basic ant-based
clustering algorithm and an improved version [141] on the KDD99
dataset. They found that these two algorithms suffer from two
major problems on clustering large and high dimensional network
data. First, many homogeneous clusters are created and are
difficult to be merged when they are large in size and spatially
separated in a large search space. Second, the density of similarity
measures only favors cluster formation in locally dense regions of
similar data objects, but cannot discriminate dissimilar objects
with any sensitivity. The authors made further improvements on
these algorithms, such as combining information entropy and
average similarity in order to identify spatial regions of coarse
clusters, and to compact clusters and incorrectly merged clusters;
cluster formation and object searching were guided by two types of
pheromones, respectively; local regional entropy was added to the
short-term memory; a tournament selection scheme counter-
balanced the population diversity and allowed to find optimal
values for control parameters, e.g. a-value, or perception radius.
Experiments on the KDD99 dataset showed strong performance in
that their algorithm obtained three best and two second best
results in five classes, when compared with the KDD99 winner, K-
means, [79,141].

(20)

4.5.3. Particle swarm optimization

Particle swarm optimization (PSO) is a population based
stochastic optimization technique, inspired by social behavior
such as bird flocking or fish schooling.

A high-level view of PSO is a collaborative population-based
search model. Individuals in the population are called particles,
representing potential solutions. The performance of the particles
is evaluated by a problem-dependent fitness. These particles move
around in a multidimensional searching space. They move toward
the best solution (global optimum) by adjusting their position and
velocity according to their own experience (local search) or the
experience of their neighbors (global search), as shown in Eq. (3). In
a sense, PSO combines local search and global search to balance
exploitation and exploration.

Vi(t) = w x Uit — 1) +¢1 x 11 (pl — Xi(t — 1)) + €3 x 1o (p}
—x(t—1)) (3a)

xi(t) = xi(t = 1) +v;(t) (3b)

where i=1,2,...,N, population size N; v;(t) represents the
velocity of particle i, which implies a distance traveled by i in
generation t; x;(t) represents the position of i in generation t; p!
represents the previous best position of i; pf represents the
previous best position of the whole swarm; w is the inertia weight
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which balances the local and global searching pressure; ¢; and c;
are positive constant acceleration coefficients which control the
maximum step size of the particle; r; and r, are random number in
the interval [0, 1], and introduce randomness for exploitation.

PSO has shown good performance in solving numeric problems.
In the context of intrusion detection, PSO algorithms have been
used to learn classification rules. Chen et al. [55] demonstrated a
“divide-and-conquer” approach to incrementally learning a
classification rule set using a standard PSO algorithm. This
algorithm starts with a full training set. One run of the PSO is
expected to produce the best classifier, which is added to the rule
set. Meanwhile, data covered by this classifier is deleted from the
training dataset. This process is repeated until the training dataset
is empty. Abadeh et al. [9] embedded a standard PSO into their
fuzzy genetic algorithm. The GA searches for the best individual in
every subpopulation. The PSO was applied to the offspring
generated by crossover and mutation, aiming to improve the
quality of fuzzy rules by searching in their neighborhood. Age was
assigned to individuals before the start of local search. Fitter
individuals live longer, thus having a longer time to perform local
search. In their algorithm, the population consists N subpopula-
tions, where N is the number of classes. Steady-state strategy was
employed to update populations.

The classification task usually involves a mixing of both
continuous and categorical attribute values. However, a standard
PSO does not deal with categorical values: category values do not
support the “+” and “—" operations shown in Eq. (3). Hence Chen
et al. mapped category values to integers. The order in mapped
sequences sometimes makes no sense in the context of original
nominal values, and mathematical operations applied to this
artificial order may generate counter-intuitive results. Abadeh
et al. then redefined the meaning of “+” and “—" operators in Eq.
(3) by the Rule Antecedent Modification (RAM) operator. The RAM
operator can be explained by a simple example. Suppose a
linguistic variable R has five fuzzy sets: {S,MS,M,ML,L}. Ante-
cedent A and B in two particles may contain {S,M} and {S,L},
respectively. B— A = RAM(2,3), which means B can be converted
to A if the 2nd fuzzy set in B is replaced with the 3rd fuzzy set in R.
Here RAM(2,3) is a RAM operator. B+ RAM(2,3) =A means
applying RAM operator RAM(2,3) to B will result in A.

4.5.4. Summary

In this section, ant colony optimization (ACO) and particle swarm
optimization (PSO) and their applications to intrusion detection
domain were reviewed. They either can be used to discover
classification rules for misuse detection, or to discover clusters for
anomaly detection, or even can keep track of intruder trails.
Experiments results have shown that these approaches achieve
equivalent or better performance than traditional methods.

ACO and PSO both have their roots in the study of the behavior
of social insects and swarms. Swarms demonstrate incredibly
powerful intelligence through simple local interactions of inde-
pendent agents. Such self-organizing and distributed properties
are especially useful for solving intrusion detection problems,
which are known for their huge volume and high dimensional
datasets, for real-time detection requirement, and for diverse and
constantly changing behavior. Swarm intelligence would offer a
way to decompose such a hard problem into several simple ones,
each of which is assigned to an agent to work on in parallel,
consequently making IDSs autonomous, adaptive, parallel, self
organizing and cost efficient.

4.6. Soft computing

Soft computing is an innovative approach to construct a
computationally intelligent system which parallels the extra-

ordinary ability of the human mind to reason and learn in an
environment of uncertainty and imprecision [289]. Typically, soft
computing embraces several computational intelligence meth-
odologies, including artificial neural networks, fuzzy logic,
evolutionary computation, probabilistic computing, and recently
also subsumed artificial immune systems, belief networks, etc.
These members neither are independent of one another nor
compete with one another. Rather, they work in a cooperative and
complementary way.

The synergism of these methods can be tight or loose. Tightly
coupled soft computing systems are also known as hybrid systems.
In a hybrid system, approaches are mixed in an inseparable
manner. Neuro-fuzzy systems, genetic-fuzzy systems, genetic-
neuro systems and genetic-fuzzy-neuro systems are the most
visible systems of this type. Comparatively, loosely coupled soft
computing systems, or ensemble systems, assemble these
approaches together. Each approach can be clearly identified as
a module.

In this section, we will discuss how to learn uncertain and
imprecise intrusive knowledge using soft computing. Hence,
neuro-fuzzy and genetic-fuzzy hybrid approaches are introduced
first. The discussion about the genetic-neuro and genetic-fuzzy-
neuro hybrid systems can be found in Section 4.3.1.2. The last part
of this section will examine the role of ensemble approaches
played in intrusion detection.

4.6.1. Artificial neural networks and fuzzy systems

Artificial neural networks model complex relationships
between inputs and outputs and try to find patterns in data.
Unfortunately, the output models are often not represented in a
comprehensible form, and the output values are always crisp.
Fuzzy systems, in contrast, have been proven effective when
dealing with imprecision and approximate reasoning. However,
determining appropriate membership functions and fuzzy rules is
often a trial and error process.

Obviously, the fusion of neural networks and fuzzy logic
benefits both sides: neural networks perfectly facilitate the process
of automatically developing a fuzzy system by their learning and
adaptation ability. This combination is called neuro-fuzzy systems;
fuzzy systems make ANNs robust and adaptive by translating a
crisp output to a fuzzy one. This combination is called fuzzy neural
networks (FNN). For example, Zhang et al. [294] employed FNNs to
detect anomalous system call sequences to decide whether a
sequence is “normal” or “abnormal”.

Neuro-fuzzy systems are commonly represented as a multi-
layer feed forward neural network, as illustrated by Fig. 26. The
neurons in the first layer accept input information. The second
layer contains neurons which transform crisp values to fuzzy sets,
and output the fuzzy membership degree based on associated
fuzzy membership function. Neurons in the third layer represent
the antecedent part of a fuzzy rule. Their outputs indicate how well
the prerequisites of each fuzzy rule are met. The fourth layer
performs defuzzification, and associates an antecedent part with
an consequent part of a rule. Sometimes more than one
defuzzification layer is used. The learning methods work similarly
to that of ANNSs. According to the errors between output values and
target values, membership functions and weights between
reasoning layer and defuzzification layer are adjusted. Through
learning, fuzzy rules and membership function will be auto-
matically determined.

Intrusion detection systems normally employ neuro-fuzzy
systems for classification tasks. For example, Toosi et al. [268]
designed an IDS by using five neuro-fuzzy classifiers, each for
classifying data from one class in the KDD99 dataset. The neural
network was only responsible for further adapting and tuning the
membership functions. The number of rules and initial member-
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Fig. 26. A generic model of a neuro-fuzzy system [25].

ship functions were determined by a subtractive clustering
method. Other similar neuro-fuzzy based IDSs can be found in
[25] and [225].

To avoid determining the number of rules before training a
ANN, the NEFCLASS system has been introduced. The NEFCLASS
system is created from scratch and starts with no rule reasoning
layer at all. Rules (neurons in the rule reasoning layer) are created
by using of the reinforcement learning algorithm in the first run
through the training data (rule learning). In the second run, a fuzzy
back propagation algorithm adapts the parameters of membership
functions (fuzzy set learning). Hofmann [150] and Alshammari
[22] used this method for misuse detection on the DARPA98 and
DARPA99 datasets, respectively. Hofmann et al. compared the
performance of four neural and fuzzy paradigms (multilayer
perceptrons, RBF networks, NEFCLASS systems, and classifying
fuzzy-k-means) on four attack types. The NEFCLASS is the first
runner-up after the RBF. Alshammari et al. pointed out that the
performance of the NEFCLASS depends on the heuristics’ learning
factors. Through their experiments they found that a trapezoid
membership function using the weight as an aggregation function
for the ANN extensively reduces the number of false positive alerts
with fewer mistakes. In addition, providing more background
knowledge about network traffic provided better results on
classification.

Another interesting type of neuro-fuzzy systems is the fuzzy
cognitive map (FCM). FCM is a soft computing methodology
developed by Kosko as an expansion to cognitive maps which are
widely used to represent social scientific knowledge [187]. They
are able to incorporate human knowledge, adapt it through
learning procedures, and provide a graphical representation of
knowledge that can be used for explanation of reasoning. Xin
et al. [284] and Siraj et al. [256,257] both used FCM to fuse
suspicious events to detect complex attack scenarios that involve
multiple steps. As Fig. 27 shows, suspicious events detected by
misuse detection models are mapped to nodes in FCM. The nodes
in the FCM are treated as neurons that trigger alerts with
different weights depicting on the causal relations between
them. So, an alert value for a particular machine or a user is
calculated as a function of all the activated suspicious events at a
given time. This value reflects the safety level of that machine or
user at that time.

4.6.2. Evolutionary computation and fuzzy systems

Evolutionary computation is another paradigm with learning
and adaptive capabilities. Hence, EC became another option for
automatically designing and adjusting fuzzy rules. In Section 4.3.1,
we discussed how to use EC approaches, especially GAs and GP, to
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Fig. 27. A FCM to fuse suspicious events to detect complex attack scenarios that
involve multiple steps [256].

generate crisp rules to classify normal or intrusive behavior. Here,
evolving fuzzy rules is as an extension of that research.
Compared with crisp rules, fuzzy rules have the following form:

ifx; =Ajand ... andx, = A, then Class C; with CF = CF;

where x; is the attribute of the input data; A; is the fuzzy set; C; is
the class label; CF; is the degree of certainty of this fuzzy if-then
rule belonging to class C;.

Technically, evolving fuzzy rules is identical as evolving crisp if-
then rules, but with two extra steps. The first step is to determine
fuzzy sets and corresponding membership functions for contin-
uous attributes before evolution. Since it is difficult to guarantee
that a partition of fuzzy sets for each fuzzy variable is complete and
well distinguishable. Therefore, genetic algorithms have been
proven [42,268,271,272] useful at tuning membership functions.
The second step is to calculate the compatibility grade of each data
instance with fuzzy rules either at the fitness evaluation or
detection phase. Possibly the same input data instance will trigger
more than one fuzzy rule at the same time. The winner-takes-all
approach and majority vote are two commonly used techniques to
resolve the conflict. Winner refers to the rule with maximum CF;.

Building models for misuse detection essentially is a multi-class
classification problem. Please recall that the crisp classification
rules discussed in Section 4.3.1 were evolved in one population,
even they have different class labels. Each individual, in a sense,
represented only a partial solution to the overall learning task.
They cooperatively solve the target problem. Niching was required
to maintain the diversity or multimodality in a population.
Normally, we call such a method Michigan approach. The XCS
mentioned in Section 4.3.1 is an example of this kind. The
Pittsburgh approach and the iterative rule learning are another two
methods. In the Pittsburgh approach, each individual is a set of
rules, representing a complete solution for the target problem.
Crossover exchanges rules in two individuals, and mutation
creates new rules. The iterative rule learning basically is a
divide-and-conquer method. Individuals are defined in the same
way as in the Michigan approach. After a pre-defined number of
generations, the best classification rule is added to a population
which keeps track of the best individuals found so far. The data
covered by this best rule is either removed from the training
dataset or decreased the probability of being selected again. Work
by Chen et al. in Section 4.5 explained this method.

Gomez et al. first showed evolving fuzzy classifiers for intrusion
detection in [120,121]. Complete binary trees enriched the
representation of a GA by using more logic operators, such as
“AND”, “OR”, and “NOT". The authors defined a multi-objective
fitness function, which considered sensitivity, specificity and
conciseness of rules. Similar ideas were also applied to their
negative selection algorithm [122,130], but the fitness function
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considered the volume of the subspace represented by a rule and
the penalty a rule suffered if it covered normal samples.

Recent work conducted by Tsang et al. [271,272], Abadeh et al.
[8,10,11] and Ozyer et al. [236] further developed Gbémez's
research in the following way:

- Parallel learning: Tsang et al. and Abadeh et al. both suggested a
parallel learning framework. Tsang et al. used multiple fuzzy set
agents (FSA) and one arbitrator agent (AA). A FSA constructed and
evolved its fuzzy system. The AA evaluated the parent and
offspring FSAs by accuracy and interpretability criteria. Abadeh
et al. [10] divided the training dataset by class labels, and sent
subsets to different hosts, where a GA worked on each sub-
dataset in parallel.

Seeding the initial population: Instead of generating the initial

population randomly, Abadeh et al. randomly selected a training

data sample, and determined the most compatible combinations

of antecedent fuzzy sets. The consequent part was decided by a

heuristic method. If the consequent part was consistent with the

class label of data samples it covered, then this rule was kept,

otherwise the generation process was repeated. Ozyer et al. [236]

ran the fuzzy association rule algorithm first. The strongest

association rules were used as seeds to generate the initial
population.

- Representation: All the research work represent fuzzy if-then
rules as string. “don’t care” (x) symbol is included in their
representation as a wild card that allows any possible value in a
gene, thus improving the generality of rules.

- Dynamically changing training data weights: Abadeh et al. [8] and
Ozyer et al. [236] associated a weight to every training sample.
Initially, the weights were the same. Weights of misclassified
samples remained the same, while weights of correctly classified
samples were decreased. Therefore, hard samples had higher
probabilities to be exposed in the training algorithms.

These three contributions, of course, were different in many
other ways. Mostly, they had different goals. Tsang et al.
emphasized the importance of interpretability of fuzzy rules;
Abadeh et al. tried to refine fuzzy rules by using local search
operators [10]; Ozyer et al. integrated boosting genetic fuzzy
classifiers and data mining criteria for rule pre-screening. The three
work also employed different classifier learning methods. Tsang
et al. employed the Pittsburgh approach; Abadeh et al. [8] the
Michigan approach; Ozyer et al. the iterative learning approach.

4.6.3. Ensemble approaches

Misuse intrusion detection is a very active and well-studied
research area. Many classification approaches from artificial
intelligence, machine learning, or computational intelligence have
been applied to improve detection accuracy, and to reduce false
positive errors as well.

However, every approach has its strengths and weaknesses,
resulting in various accuracy levels on different classes. The
winning entry of the KDD99 cup, for instance, assembled 50 x 10
C5 decision trees by cost-sensitive bagged boosting. This indicates
that even models built by the same algorithm show differences in
misclassification.

Abraham and his co-workers, therefore, investigated the
possibility of assembling different learning approaches to detect
intrusions [14,16,15,54,229,238]. Their approach is also known as
the ensemble approach. One example of their studies [16] is shown
in Fig. 28. In this study, they trained and tested a decision tree
model, a linear genetic program model, and a fuzzy classifier model
on the KDD99 dataset, respectively. They observed in the
experiments that different models provided complementary
information about the patterns to be classified. For example,

Decision Trees ——> Normal
% Linear Genetic Program —> Probe

based input ———— Linear Genetic Program —— DoS

feature selection \

12 variables

—de .
Decision tree
_—

41 variables Fuzzy Classifier — U2R

Linear Genetic Program —> R2L

Fig. 28. A exemplar of ensemble models [16].

LGP achieved the best accuracy on Probe, DoS and R2L classes,
while the fuzzy classifier on the U2R class. So instead of using one
model to classify all classes, they selected the best model for each
class, and then combined them in a way that both computational
efficiency and detection accuracy can be maximized. Sometimes
techniques, such as majority vote or winner-takes-all, will be used
to decide the output of an ensemble model when the predictions of
different models conflict.

4.6.4. Summary

Soft computing exploits tolerance for imprecision, uncertainty,
low solution cost, robustness, and partial truth to achieve
tractability and better correspondence to reality [289]. Their
advantages, therefore, boost the performance of intrusion detec-
tion systems. Evolutionary computation and artificial neural
networks automatically construct fuzzy rules from training data,
and present knowledge about intrusion in a readable format;
evolutionary computation designs optimal structures of artificial
neural networks. These methods in soft computing collectively
provide understandable and autonomous solutions to IDS pro-
blems. In addition, research has shown the importance of using
ensemble approach for modeling IDS. An ensemble helps to
combine the synergistic and complementary features of different
learning paradigms indirectly, without any complex hybridization.
Both the hybrid and ensemble systems indicate the future trends of
developing intrusion detection systems.

5. Discussion

Over the past decade intrusion detection based upon computa-
tional intelligence approaches has been a widely studied topic,
being able to satisfy the growing demand of reliable and intelligent
intrusion detection systems.

In our view, these approaches contribute to intrusion detection
in different ways. Fuzzy sets represent and process numeric
information in a linguistic format, so they make system complexity
manageable by mapping a large numerical input space into a
smaller search space. In addition, the use of linguistic variables is
able to present normal or abnormal behavior patterns in a readable
and easy to comprehend format. The uncertainty and imprecision
of fuzzy sets smooth the abrupt separation of normal and abnormal
data, thus enhancing the robustness of an IDS.

Methods like ANNs, EC, AlSs, and SI, are all developed with
inspiration from nature. Through the “intelligence” introduced via
the biological metaphor, they can infer behavior patterns from data
without prior knowledge of regularities in the data. The inference
is implemented by either learning or searching. Meanwhile, there
remain differences (see also [71]):

- Structures: All approaches mentioned are composed of a set of
individuals or agents. Individuals are neurons in ANNs;
chromosomes in EC; immune cells or molecules in AlSs; ants
and particles in SI. The collection of these individuals form a
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network in ANNs; a population in EC; repertories in AlSs;
colonies and swarms in SIL

- Performance evaluation: The performance of individuals is
evaluated. In ANNs, the goal is to minimize the error between
actual and desired outputs; in EC and SI, the fitness function
defines how good an individual is; in AISs, the goodness of an
individual is measured by the affinity between antibodies and
antigens.

- Interactions within the collection: Individuals inside the collection
interact with each other. In ANNs, neurons are connected with
each other directly. The weights associated with these connec-
tions affect the input to a neuron. In the other methods,
interaction between individuals is indirect. For example, in AISs,
interactions can be the suppression or stimulation within
artificial immune networks, or the comparison of affinities
between detectors in negative selection and in clonal selection;
in SI, ants interact indirectly with pheromone, and particles
interact with neighboring particles.

- Adaptation: All of these methods demonstrate the ability of
adaptation, but in different ways. In EC, adaptation is achieved by
evolution. Through crossover and mutation, the genetic compo-
sition of an individual can be changed. Selection weeds out poor
individuals and conserves fit individuals. As a result, the entire
population will converge to an optimum. Similar selection
processes are at work in negative and clonal selection in AlSs. SI
and ANNs achieve adaptation by learning. Weights in ANNSs,
pheromones in ACO and positions in PSO are updated according
to feedback from the environment or from other individuals.

Applications of the above approaches revealed that each has
pros and cons. Hence, soft computing either tightly (hybrid) or
loosely (ensemble) couples them together in a way that they
supplement each other favorably. The resulting synergy has been
shown to be an effective way for building IDSs with good accuracy
and real-time performance.

We further compared the performance of different CI
approaches on solving intrusion detection problems, as shown
in Table 8. These research works were trained on either the KDD99-
10 or the KDD99 dataset, but were all tested on the KDD99 test
dataset. The first five rows in this table record the detection rates
obtained by each approach on each class; the last two rows are for
the overall detection rate and false positive rate.

From this table, we can easily see that all research work did not
perform well on class “U2R” and “R2L”, because 11 attack types in
these two classes only appear in the test dataset, not the training
set; and they constitute more than 50% of the data. However, in
general CI approaches achieve better performance than the
winning entry which has 50 x 10 decision trees. This observation
xconfirms that CI approaches possess the characteristics of
computational adaptation, fault tolerance, less error prone to
noisy information. In particular, transformation functions evolved

by GP or LGP (columns 6-8) have higher detection rates than
evolved classification rules (columns 4 and 5). They especially
improved the detection rates on the “U2R” and “R2L”. This is
because classification rules have limited description power
confined by the limited operators, such as “AND”, “OR”, and
“NOT". In addition, rules are more or less a high-level abstraction of
data samples. They cannot separate data in two classes very well if
the two classes have overlaps. Evolved rules again cannot
outperform evolved fuzzy rules (column 10-11). Fuzzy rules
obtained noticeable improvement on all classes, which clearly
exhibits fuzzy sets are able to increase the robustness and adaption
of IDSs. Transform functions and fuzzy rules achieve similar
results, but fuzzy rules are easier to comprehend. The hierarchical
SOM in column 3 and the ACO algorithm in column 9 are two
unsupervised learning approaches. Since the hierarchical SOM
lacks a suitable “boosting” algorithm [173], it cannot beat the ACO
algorithm.

In order to have a global picture of research work carried out
under the heading of CI, publication statistics according to the year
of appearance is given in Fig. 29. One can see clearly that the
increasing number of research work indicates that IDSs are a
growing research area in the computational intelligence field,
notably since 2005.

From this figure, a number of trends become obvious in the
surveyed work. The first trend we encounter is the popularity of EC.
Among 193 papers surveyed, 85 are related to evolutionary
computation. Although EC methods were introduced into IDS as
early as 1997, they became popular only in recent years. There
seems to be a decline in 2006 and 2007, but in fact, the practice of
EC in these years merges with fuzzy sets to generate fuzzy
classification rules, research classified to be in the SC category.
Besides, EC plays an important role in other computational
intelligence approaches, such as in negative selection or clonal
selection algorithms from AlSs. The PSO algorithm does not belong
to EC, since no reproduction and selection is involved.

The appearance of Sl is another trend. Sl is a pretty new research
direction for intrusion detection problems. It decomposes a hard
problem into several simple sub-problems, assigning agents to work
on smaller sub-problems in parallel, thus making IDSs autonomous,
adaptive, self organizing and cost efficient. Currently, SI methods are
mainly employed to learn classification rules and clusters. More
research work in this area is expected in the near future.

We also see a trend to applying SC to intrusion detection
problems. Tightly or loosely assembling different methods in a
cooperative way definitely improves the performance of an IDS.
The most popular combinations are genetic-fuzzy and genetic-
neuro systems. The interest in integrating fuzzy sets as a part of
these solutions is noticed. In our survey, 23 out of 26 research
contributions in SCs utilize fuzzy sets.

Although some promising results have been achieved by
current computational intelligence approaches to IDSs, there are

Table 8
Performance comparison of various CI approaches on the KDD99 test dataset.
Type Wining entry ANN EC SI SC
GA GP LGP
Decision Tree Hierarchical SOM XCS Rules Transformation function LGP Coevolution ACO Fuzzy sets+EC
[92] [173] [65] [104] [96] [261] [200] [270] [272] [268]
Normal 94.5 98.4 95.7 - 99.93 96.5 99.5 98.8 98.3645 98.4
DoS 97.1 96.9 49.1 - 98.81 99.7 97 97.3 97.2017 99.5
Probe 83.3 67.6 93 - 97.29 86.8 71.5 87.5 88.5982 89.2
U2R 13.2 15.7 8.5 - 45.2 76.3 20.7 30.7 15.7895 12.8
R2L 8.4 7.3 3.9 - 80.22 12.35 3.5 12.6 11.0137 273
Detection rate 90.9 90.6 - 91.0165 98 94.4 - - 92.7672 95.3
FP rate 0.45 1.57 - 0.434 0.07 3.5 - - - 1.6
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Fig. 29. Publication statistics according to the year of appearance.

still challenges that lie ahead for researchers in this area. First and
foremost, good benchmark datasets for network intrusion detec-
tion are needed. The KDD99, and the DARPA98&99 datasets are
main benchmarks used to evaluate the performance of network
intrusion detection systems. However, they are suffering from a
fatal drawback: failing to realistically simulate a real-world
network [45,215,219]. An IDS working well on these datasets
may demonstrate unacceptable performance in real environments.
In order to validate the evaluation results of an IDS on a simulated
dataset, one has to develop a methodology to quantify the
similarity of simulated and real network traces, see for instance the
research conducted by Brugger [44].

These datasets possess some special characteristics, such as
huge volume, high dimension and highly skewed data distribution.
Such features can hardly be found in other benchmarks, so they
have been widely used for another purpose: challenging and
evaluating supervised or unsupervised learning algorithms.
However, this purpose is also under criticism [45]. For instance,
(i) the DARPA datasets include irregularities, such as differences in
the TTL for attacks versus normal traffic, so that even a simplistic
IDS could achieve a good performance [215], (ii) the KDD99
training and test datasets have dissimilar target hypotheses for
U2R and R2L classes [246]. Therefore, using these datasets alone is
not sufficient to demonstrate the efficiency of a learning algorithm.
Other benchmark datasets are recommended to use as well.

It is also worthwhile to note that the datasets shown in Table 1
were collected about 10 years ago. Maybe it is time to produce a
new and high-quality dataset for the intrusion detection task. Such
a dataset would also be meaningful for machine learning tasks in
general. When recollecting data from networks, in addition to
storing information in the header of individual packets, payload
information [22,57,290,292] and temporal locality property
[114,115] have been proven beneficial.

Secondly, an important aspect of intrusion detection is the
ability of adaptation to constantly changing environments. Not
only the intrusive behavior evolves continuously, but also the
legitimate behavior of users, systems or networks shifts over time.
If the IDS is not flexible enough to cope with behavioral changes,
detection accuracy will dramatically decrease. Although adapta-
tion is an important issue, only few research has addressed it so far.
Recurrent networks introduced context nodes to remember clues
from the recent past [21,47,48,57,76,78,114]; in AlS, the lifecycle of
immune cells and molecules provides a rolling coverage of non-self
space, which guarantees adaptation [153,183]. The Dendritic Cell
Algorithm in Danger theory fulfills adaptation requirements by
considering signals from the environment [134,135]. A focus on
adaptation in IDSs is highly recommended.

Another challenge to confront in IDS is the huge volume of audit
data that makes it difficult to build an effective IDS. For example,
the widely used KDD99 training benchmark comprises about
5,000,000 connection records over a 41-dimensional feature set.
Song et al. suggested the combination of Random Data Subset
Selection and Dynamic Data Subset Selection so that linear genetic
programming could process the data within an acceptable time
[260,261]. A similar method is to dynamically adjust the weights of
data samples according to classification accuracy, hence changing
the probability of data being selected [8,236]. Other researchers
have applied divide-and-conquer algorithms to the dataset. Data
that have been classified correctly are removed from the training
set. Consequently, the size of the dataset exposed to the learning
algorithm shrinks. Another good way to exploit this problem is to
utilize a distributed environment. Folin et al. [104] and Abadeh
et al. [11] both examined distributed intrusion detection models,
where each node was only assigned part of the data. An ensemble
method was used to fuse decisions. Although AISs and SI have
properties of self-organization and parallelism, their application to
distributed IDS is not thoroughly examined.

Most of the methods discussed in this survey have their roots in
the field of biology. However, the analogy between algorithms and
their counterpart in biology is still relatively simple. This survey
clearly shows that some researchers in this field have begun to
apply a more detailed understanding of biology to intrusion
detection, for instance the danger theory, swarm intelligence, or
advanced topics in evolutionary computation and artificial neural
networks. It is expected that new discoveries and a deepened
understanding of biology suitable for the intrusion detection task
will be the subject of future work.

6. Conclusion

Intrusion detection based upon computational intelligence is
currently attracting considerable interest from the research
community. Its characteristics, such as adaptation, fault tolerance,
high computational speed and error resilience in the face of noisy
information, fit the requirement of building a good intrusion
detection system.

This paper presents the state-of-the-art in research progress of
computational intelligence (CI) methods in intrusion detection
systems. The scope of this review was on core methods in CI,
including artificial neural networks, fuzzy systems, evolutionary
computation methods, artificial immune systems, and swarm
intelligence. However, the practice of these methods reveals that
each of them has advantages and disadvantages. Soft computing
has the power to combine the strengths of these methods in such a
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way that their disadvantages will be compensated, thus offering
better solutions. We therefore included soft computing as a topic in
this survey. The contributions of research work in each method are
systematically summarized and compared, which allows us to
clearly define existing research challenges, and highlight promis-
ing new research directions. It is hoped that this survey can serve
as a useful guide through the maze of the literature.
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