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Abstract. In this paper artificial regulatory networks (ARN) are evolved
to match the dynamics of test functions. The ARNs are based on a
genome representation generated by a duplication / divergence process.
By creating a mapping between the protein concentrations created by
gene excitation and inhibition to an output function, the network can be
evolved to match output functions such as sinusoids, exponentials and
sigmoids. This shows that the dynamics of an ARN may be evolved and
thus may be suitable as a method for generating arbitrary time–series
for function optimization.

1 Introduction

It has been recognized that understanding the differences between species (and
thus the key to evolution) lies in the DNA information controlling gene expression
since only a tiny fraction of DNA is translated into proteins [1]. Regulation
appears to be a very reasonable answer for a functional role for unexpressed
DNA. According to Neidthardt [2] and Thomas [3], 88% of the genome of E.
Coli is expressed with 11% suspected to contain regulatory information.

Since many evolutionary effects can be traced back to their regulatory causes,
regulatory networks mediate between development and evolution and thus serve
to help shape organism morphology and behavior [4]. Studying models of regula-
tory networks can help us to understand some of these mechanisms by providing
lessons for both natural and artificial systems under evolution.

It has been previously shown that our regulatory network model is able to
reproduce dynamic phenomena found in natural genetic regulatory networks
[5]. One example is the ability to capture shifts in the onset and offset of gene
expression (heterochrony) based on single bit–flip mutations. As such, this model
can relate changes in time and intensity to tiny pattern changes on bit strings.
This could possibly provide the algorithmic “missing link” between genotypes
subject to constant evolutionary changes and the remarkably stable phenotypes
found in the real world. In addition, this model has previously been shown to
generate scale–free and small world topologies [6] and network motifs [7].



Recently, there has been significant interest in modelling regulatory networks
in the evolutionary computation literature [5, 8–14]. Features of regulatory net-
works have been previously used in the context of optimization by [8, 10, 14].
However, these models have been explicitly designed for artificial ontogeny. Here
we propose the use of a regulatory network framework as a general method for
evolving arbitrary time series. Obtaining arbitrary functions through evolution-
ary means for the purpose of model optimization has been previously performed
for flying [15], locomotion [16] and the inference of differential equations [17].

In addition, previous models of ARNs primarily use boolean representations
of network dynamics [8, 9, 12, 13]. Here we show that an ARN model using differ-
ential equations (approximated as difference equations) can also display complex
behaviors which may be selected by evolution.

Other ideas relating to genetic transcription have also previously been used in
function optimization such as genetic–code transformations [18], gene expression
[19, 20], gene signaling [21] and diploidity [22].

2 Artificial Regulatory Network Model

The ARN consists of a bit string representing a genome with direction (i.e.
5’→ 3’ in DNA) and mobile “proteins” which interact with the genome through
their constituent bit patterns. In this model, proteins are able to interact with the
genome most notably at “regulatory” sites located upstream from genes. Attach-
ment to these sites produces either inhibition or activation of the corresponding
protein. Therefore, these interactions may be interpreted as a regulatory network
with proteins acting as transcription factors.

The genome itself is created through a series of whole length duplication /
divergence events. Creation of a genome in such a manner has been shown to
generate network topologies which have similarities to biological networks such
as having scale–free and small world topology as well as network motifs [6, 7].
First, a random 32–bit string is generated. This string is then used in a series of
length duplications similar to those found in nature [23] followed by mutations
in order to generate a genome of length LG. A “promotor” bit sequence of 8–bits
was then arbitrarily selected to be “01010101”. By randomly choosing “0”s and
“1”s to generate a genome, any one–byte pattern can be expected to appear
with probability 2−8 = 0.39%. Since the promotor pattern itself is repetitive,
overlapping promotors or periodic extensions of the pattern are not allowed, i.e.
a bit sequence of “0101010101” (10–bits) is detected as a single promotor site
starting at the first bit. However regions associated with one gene may overlap
with another should a promotor pattern also exist within a portion of the coding
region of a gene.

The promotor signals the beginning of a gene on the bit string analogous to
an open reading frame (ORF) on DNA – a long sequence of DNA that contains
no “stop” codon and therefore encodes all or part of a protein. Each gene is
set to a fixed length of lgene = 5 32–bit integers which results in an expressed
bit pattern of 160 bits. Genes can thus be created on the genome by complete



duplications of previously created genes, mutation, and / or combinations of the
ending and starting sequences of the genome during duplication.

Immediately upstream from the promotor sites exist two additional 32–bit
segments which represent the enhancer and inhibitor sites. As previously men-
tioned, attachment of proteins (transcription factors) to these sites results in
changes to protein production for the corresponding genes (regulation). In this
model, we assume only one regulatory site for the increase of expression and
one site for the decrease of expression of proteins. This is a radical simplification
since natural genomes may have 5–10 regulatory sites that may even be occupied
by complexes of proteins [4].

Processes such as transcription, diffusion, spatial variations and elements
such as introns, RNA–like mobile elements and translation procedures resulting
in a different alphabet for proteins are neglected in this model. This last mech-
anism is replaced as follows: Each protein is a 32–bit sequence constructed by
a many–to–one mapping of its corresponding gene which contains five 32–bit
integers. The protein sequence is created by performing the majority rule on
each bit position of these five integers so as to arrive at a 32–bit protein. Ties
(not possible with an odd number for lg) for a given bit position are resolved by
chance.

Proteins may then be examined to see how they may “match” with the
genome, specifically at the regulatory sites. This comparison is implemented by
using the XOR operation which returns a “1” if bits on both patterns are com-
plementary. In this scheme, the degree of match between the genome and the
protein bit patterns is specified by the number of bits set to “1” during an XOR
operation. In general it can be expected that a Gaussian distribution results from
measuring the match between proteins and bit sequences in a randomly gener-
ated genome [4]. By making the simplifying assumption that the occupation of
both of a gene’s regulatory sites modulates the expression of its corresponding
protein, we may deduce a gene–protein interaction network comprising the dif-
ferent genes and proteins which can be parameterized by strength of match. The
bit–string for one gene is shown in Figure 1.

Fig. 1: Bit string for one gene in the ARN model.



The rate at which protein i is produced is given by:

dci

dt
=

δ (ei − hi) ci∑
j cj

(1)

ei, hi =
1
N

N∑
j

cj exp (β(uj − umax)) (2)

where ei and hi represent the excitation and inhibition of the production of
protein i, uj represents the number of matching bits between protein j and
activation or inhibition site i, umax represents the maximum match (in this case,
32), β and δ are positive scaling factors, and ci is the concentration of protein
i at time t. Note that the concentrations of the various proteins are required
to sum to 1. This ensures that there is a competition between binding sites for
proteins.

It can be noted that the ARN model presented bears some resemblance to
a recurrent neural network (RNN). In the ARN, genes and the match strength
between inhibition / activation sites and proteins are analogous to the neurons
and connection strengths in an RNN framework.

3 Optimization

By simulating the ARN model presented in the previous section, we obtain a
dynamical view of the protein concentrations in the system. However, such a
system has no assigned semantics – the protein concentrations have no meaning
outside the system. In addition, since the protein concentrations are limited to
sum to 1 (i.e.

∑
ci = 1), generation of some functions is excluded. In order to

use such a system for the purpose of optimization, a mapping is required. An
additional 64–bit sequence is randomly selected along the genome as a binding
site for the desired output function. The first 32–bits specify the inhibition site
while the second 32–bits specify the activation site. The proteins generated by
the ARN are free to also bind to these additional regulatory sites. The levels of
activation and inhibition are calculated in the same way as in Section 2, Equation
2.

However, instead of calculating a “concentration” of this site (which generates
no protein of its own), the activity at this site is simply summed and used directly
as an output function:

s(t) =
∑

i

(ei − hi) (3)

Subsequent normalization of s(t) to between -1 and 1 generates the dynamics of
the specific genome. Thus, the additional binding sites added to the genome may
be thought of as a method with which to extract dynamics from the changes in



concentrations of the proteins in the ARN model. Further sites may be added
to the genome for the extraction of additional signals.

In order to evolve solutions s(t), a simple (50+100)–Evolutionary Strategy
(ES) is used [24]. Genomes were generated by 10 duplication events per genome
subject to 1% mutation (without selection) leading to individual genomes of
length LG = 32768. It has been shown that a mutation rate of 1% during the
duplication / divergence process is sufficient to “rewire” parts of the topology
of the network without making it completely random [6].

The number of genes in each genome is given by the number of promotor
patterns present as was previously defined in Section 2. Each generation, 100
new individuals are created from the current population using a 1% single–point
(bit-flip) mutation (i.e. on average, 328 mutations per genome). The fitness of
these solutions was calculated and the best 50 of 150 (parents + children) proceed
to the next generation. ES was stopped when the best solution found was not
improved upon for 250 generations.

The objective is to minimize the fitness function calculated as the mean
square error (MSE) between the desired function and the evolved function. The
following cases were examined and are shown in Figure 2:
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Fig. 2: Plot of the three fitness cases.

Case 1 : sin(t) (4)

Case 2 : 2 exp (−0.1t)− 1 (5)

Case 3 :
2

1 + exp (−0.2t + 10)
− 1 (6)

All solutions were generated with a time step, dt = 0.1s. The initial protein
concentrations (the initial conditions for the differential equation) are set to be

1
#ofgenes to remain within the simplex. In addition, the first 100 time steps (10s)
are ignored. This is done in order to exclude the startup dynamics of the model.
Thus, for calculation of the fitness function, the normalized output generated by
the ARN model from time t = 10...110s is compared with the fitness case f(t)
from time t = 0...100s.



4 Results

Tables 1, 2 and 3 summarize the results of 10 evolutionary runs each for the
three fitness cases. Figures 3, 5 and 7 show the actual function generated by the
best individual of each run for the three fitness cases. Figures 4, 6 and 8 show
the progress of the best evolutionary run for each fitness case.

It is clearly shown that the ARN model accurately generates dynamics ap-
proximating the sinusoid (Figure 3), the exponential (Figure 5) and the sigmoid
(Figure 7) functions with good accuracy for all runs. In all fitness cases and
evolutionary runs, the MSE calculated was less than 0.00588654. Additional
support for the success of these simulations can be seen in the final population
fitness averages shown in Tables 1, 2 and 3. The average population fitness values
(MSE) are relatively small with low standard deviation. This indicates that the
population is such that all or virtually all individuals when simulated generate
functions that closely approximate the respective objective functions.

Run # Best MSE #Generations #Genes Avg. MSE(Pop.) Avg. #Genes (Pop.)

1 0.00101533 1235 154 0.00150(0.00013) 147.59(20.6)
2 0.00035992 557 36 0.00068(0.00012) 39.22(2.40)
3 0.00001843 758 100 0.00004(0.00001) 102.45(2.93)
4 0.00001732 721 96 0.00004(0.00001) 96.55(2.80)
5 0.00011328 617 97 0.00025(0.00006) 102.78(4.02)
6 0.00002073 825 104 0.00013(0.00005) 109.78(5.03)
7 0.00005429 465 108 0.00044(0.00018) 112.37(11.4)
8 0.00016598 879 177 0.00047(0.00022) 186.02(9.87)
9 0.00005034 575 195 0.00031(0.00012) 212.16(9.57)
10 0.00002219 987 39 0.00006(0.00001) 39.49(2.42)

Table 3: Results of 10 runs of (50+100)–ES on Case 3. Standard deviation in brackets.

5 Conclusions

It has been demonstrated that the dynamics of a differential equation based
ARN model initially created through a duplication / divergence process can be
evolved towards simple functions. This might suggest that such an approach
may also be appropriate for generating arbitrary functions suitable for use in
applications such as model optimization.

Due to the way in which the genes are detected on the genome, there are
plentiful opportunities for individuals in the population to acquire neutral mu-
tations. It has been previously shown that neutral mutation can be extremely
beneficial in the context of evolution [25]. Since there may exist extensive non–
coding regions of the genome, neutral mutations are free to be collected in such
regions with new genes appearing suddenly when a new promotor pattern has
been created through mutation. As well, each of the networks generated for each
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Fig. 3: Plot of best solution (run #8)
compared to ideal solution for Case #1.
The MSE is 0.000151746.
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Fig. 4: Plot of the fitness of the best
solution (run #8) and the average fitness
using (50+100)–ES for Case #1.

Run # Best MSE #Generations #Genes Avg. MSE(Pop.) Avg. #Genes (Pop.)

1 0.001445217 731 47 0.00287(0.000765) 45.31(5.72)
2 0.001165628 381 74 0.00316(0.000780) 76.92(3.42)
3 0.000614281 1214 105 0.00114(0.000147) 117.59(4.57)
4 0.000747053 835 234 0.00291(0.000817) 244.00(13.2)
5 0.001861556 428 63 0.00326(0.000684) 75.08(9.34)
6 0.000640149 1077 101 0.00186(0.000347) 102.49(4.08)
7 0.001561523 315 26 0.00440(0.000847) 32.78(5.55)
8 0.000151746 1040 124 0.00058(0.000131) 135.63(6.32)
9 0.000519559 933 71 0.00134(0.000341) 92.88(53.2)
10 0.000846462 858 55 0.00270(0.000449) 48.57(3.22)

Table 1: Results of 10 runs of (50+100)–ES on Case 1. Standard deviation in brackets.
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Fig. 5: Plot of best solution (run #3)
compared to ideal solution for Case #2.
The MSE is 0.00363873.
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Fig. 6: Plot of the fitness of the best
solution (run #3) and the average fitness
using (50+100)–ES for Case #2.

Run # Best MSE #Generations #Genes Avg. MSE(Pop.) Avg. #Genes (Pop.)

1 0.00411971 708 133 0.00447(0.000134) 142.83(5.88)
2 0.00478168 642 166 0.00554(0.000250) 185.95(13.5)
3 0.00363873 354 27 0.00641(0.000553) 52.22(7.00)
4 0.00441011 359 20 0.00660(0.000610) 31.95(7.38)
5 0.00381064 747 97 0.00505(0.000303) 106.81(5.71)
6 0.00402240 877 63 0.00464(0.000180) 58.83(4.17)
7 0.00426413 501 128 0.00574(0.000354) 116.14(8.75)
8 0.00537858 287 176 0.00661(0.000458) 164.40(11.1)
9 0.00511630 466 58 0.00688(0.000563) 54.26(3.73)
10 0.00588654 519 45 0.00643(0.000171) 45.65(3.10)

Table 2: Results of 10 runs of (50+100)–ES on Case 2. Standard deviation in brackets.
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Fig. 7: Plot of best solution (run#4) com-
pared to ideal solution for Case #3. The
MSE is 0.0000173162.
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Fig. 8: Plot of the fitness of the best solu-
tion (run#4) and the average fitness using
(50+100)–ES for Case #3.



fitness case contains a different topology (number of genes). Therefore, due to
the quality of solutions, it may be inferred that there are many different networks
which can give good approximations to each of the fitness cases.

Unfortunately, it is difficult to determine how the number of genes in the
genome affects the evolvability or richness of dynamics in the system. It is an
open question within this framework how the number of genes affects the ability
of the system to generate functions of a given type. Another interesting area
of further inquiry is to determine the minimum number of genes required for a
given function. Further studies investigating the evolvability and ability of the
ARN model to represent other classes of functions as well as arbitrary functions
are necessary before the use of regulatory networks in function optimization can
be systematically and fully realized. However, this contribution is a first step in
that direction.
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