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Abstract. We introduce a Lyapunov function which 
allows us to calculate the vectors, by which the 
synaptic strengths are determined, by means of a 
gradient dynamics. The approach does not require any 
back-propagation, nor simulated annealing, nor com- 
putations on a freely running (unclamped) network. 
The approach is applicable to noiseless patterns as well 
as to sets of noisy patterns defined by their second and 
fourth order moments. 

1 Introduct ion 

The development of adequate learning algorithms for 
associative nets and neurocomputers is a problem of 
great current interest (cf. for instance Kohonen 1987; 
Ackley et al. 1985; Rumelhart and McClelland 1986; 
Haken 1988b; Banzhaf and Haken 1988; and confer- 
ence proceedings such as Personnaz and Dreyfus 
1989). In this paper we present a learning algorithm for 
synergetic computers. This algorithm does not need 
any backpropagation, nor simulated annealing, nor 
computations on freely running (unclamped) networks 
which are usually very time-consuming. In previous 
papers (Haken 1979, 1987, 1988a) it has been shown 
that there exists a duality between pattern formation 
by systems far from thermal equilibrium and pattern 
recognition. This has led us to the proposal of a 
synergetic computer (Haken 1987, 1988a). The applica- 
bility of the corresponding algorithm has been demon- 
strated by explicit examples dealing with the recog- 
nition of faces (Fuchs and Haken 1988a, b, 1989). In 
this formalism the M prototype patterns are encoded 
as vectors Vk, k=  1, 2, ..., M. We shall assume that for 
each pattern also its negative is an acceptable pattern 
so that the moments 

(v)  =0  (1.1) 

and 

<vfvjvk> = 0 (1.2) 

vanish. We shall use the adjoint vectors v~ which have 
the property 

(v~ vk,) = 6kk'. (1.3) 

We shall assume that the adjoint vectors are represen- 
ted as superpositions of the transposed of the vectors v k 

v~- = • gkk'V~ �9 (1.4) 
k' 

When a test pattern vector q(0) is offered to the system, 
a dynamics was constructed according to which this 
initially given test pattern is eventually pulled into the 
prototype vector v k to which it had been nearest 

q(O)-*q(t)-~vk. (1.5) 

The dynamics is described by an equation of the form 

~l=Y.~vk(vfq) - B  E (v~q) 2 (v~-q)vk 
k k ~ k "  

- C E (v~' q)2(vf q)vk, 

kk' (1.6) 
c~V 

q =  aq+ 

where V is a potential function defined by 

V =  1 + 2 i --~Y2k(Vk q) +~B X (v~q)2(v~'q) 2 
k k # k '  

1 + 2 + 2 +gC E (vk, q) (vk q) �9 (1.7) 
kk" 

Here we have defined the adjoint vector q + by means of 
the relations 

q - -~  ~kVk +W (1.8) 
k 

and 

q+ ---2 ~kv~ " + w + .  (1.9) 
k 
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The equations resulting from (1.6) and (1.7) with the 
help of (1.8) and (1.9) can be written quite generally in 
the form 

eli = ~ 2ijqj + ~ 2ijt,,qjqlqm" (1.10) 
j jlm 

As has been shown elsewhere (Haken 1987), the 
coefficients 2~j, 2~jtm can be interpreted as synaptic 
strengths in a neural net where for instance 2ij is given 
by 

' ~  = Z ,~kv~v~ (1.1 i) 
k 

and a similar expression holds for 2,jr,,. When our 
algorithm is realized on a three-layer network, the 
synaptic strengths between cell i of the input layer and 
cell k of the middle layer is directly given by the vector 
components v~, while the synaptic strengths between 
cell k of the middle layer and cell l of the output layer is 
given by the vector components vkt. 

2 Construction of the Lyapunov Function 

We now wish to construct a Lyapunov function by 
which the Vk and v~- can be determined by a straight 
forward procedure. To this end in a first step we 
introduce a number of patterns to be learned 

qj, j = l  . . . . .  M.  (2.1) 

We further introduce the vectors Vk for k =  1 .. . . .  K 

Vk, k = 1 . . . . .  K (2.2) 

where we shall decide later whether K = M or K < M. 
For what follows we consider (1.7) as a function of the 
vectors v~- 

V(vk+, q~) (2.3) 

from which we construct the potential function Vx 

V~ = Y, V(v~-, q j) (2.4) 
J 

where the sum runs over the patterns offered to the 
system and to be learned by it. In case the patterns are 
noisy, a suitable average has to be taken over the 
distribution function f(q) of these patterns. Denoting 
the corresponding average by ( . . . ) ,  we define 

1/1 = (V(v L q)).  (2.5) 

We now want to show that Va is a Lyapunov function 
at least in the case where the q/s are noiseless and 
linearly independent. In case of noisy patterns, V t will 
be used to find optimal vectors v~-. We shall assume 
that v k and v~ lie in the qfspace. We wish to determine 
the v~ by minimizing V 1 

V 1 =min!  (2.6) 

Let v~ be given at an initial time t~ 

v~-(t/). (2.7) 

We then wish to show that there is a dynamics 
according to which v~ is pulled at a final time ty into v~- 

v~(tf)=v + (2.8) 

which just minimizes (2.6) and belongs to the test 
pattern qj. To this end we assume that according to the 
formalism of the synergetic computer v~ had been 
fixed so that V (1.7) is minimal for qj. This assumes that 
the prototype pattern vectors v k and the test pattern 
vectors qj in the final state are linearly independent, 
respectively. Then we may write 

v~-(q) = v~ U; (2.9) 

where U is a matrix. 

Forming the scalar product, we obtain the relations 

v~- (ti)qj = vk + Uqj = v~ %(t,), (2.10) 

where the last equation defines qj(ti). According to (1.6), 
(1.7) q can be chosen such that V approaches its 
minimal value at qj 

qj(ti)~q,~t)~qj. (2.11) 

By means of the matrix W we may express this time 
evolution in the form 

q,(t) = W(t)q i , (2.12) 

where qj is the final state just mentioned. Quite 
evidently the relation 

W(t)--*l for t ~  (2.13) 

holds. The scalar product between v~- and %(0 can be 
written in the form 

v~ q,~t)= v~ W(t)qj. (2.14) 

This relationship can be interpreted such that v~- is 
subject to a time evolution according to 

v; w(t) = v/~(t ) .  ( 2 .15 )  

Quite evidently we have 

W(t~) = U (2.16) 

and 

v~-(tr = v~. (2.17) 

In this way we have shown that starting from any 
initially given v] (2.7), we may construct the dynamics 
so that the Vs tend to lower values and approach their 
minima. Thus V~ is a Lyapunov function. 

In this argument we have used the constraints that 
v k lies in the space spanned by qk. For computational 



reasons it is more advantageous to introduce a poten- 
tial function V2 which is minimal if this requirement is 
met. Therefore we introduce this function by 

V2 = C2 • I I (1 - P)qj II 2 (2.18) 
J 

where the projection operator P is defined by 

P =2Vk" V~'. (2.19) 
k 

More explicitely (2.18) can be expressed by 

V 2 = C 2 ~ ((1 - P)qj)r(1 -- P)q~, (2.20) 
J 

where T means the transposed vector. 
Finally, we require that the relation (1.4) holds. To 

achieve this in the final state, we introduce the 
potential function V3 by means of 

a 

b t=  0.00 t=  2.00 t=  4.00 t= 12.00 t=  18.00 

t=  0.00 t=  2.00 t=  4.00 t=  12.00 t=  18.00 

Big. 1. a The patterns to be learned simultaneously, b Time 
evolution of the vectors vl, v2,vs. The initial state was chosen 

+ + + The initial random, e Time evolution of the vectors v l ,  v2, va. 
state was chosen as v~ = v~ 
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or written more explicitely by 

V 3 = C a Z / v +  x ~ .  vT\r/V + x ~  vT\ (2.22) 

If the coefficients C2 and Ca are sufficiently large, the 
constraints (2.18)=0 and (2.21)=0 are practically 
automatically fulfilled. We now require that 

Vttot = I11 + 112 + Va =min!  (2.23) 

holds. The gradient dynamics is now applied with 
respect to the variables 

Vk, i; V + " (2.24) k,i~ g k k ' '  

In our practical calculations it has turned out that we 
may save a good deal of computing time when we first 
form 

(v~-qj) (2.25) 

and then perform all the other steps. This is also true if 
qj is presented again and again in the case of noisy 
patterns. On the other hand from the purely theoretical 
point of view our approach is equivalent to one in 
which the sums over j are replaced by the average 
values 

~. q j i q j t~  < qiql> (2.26) 
.I 

and correspondingly 

( qiq iqzq,,> . (2.27) 

In this way we may state that our algorithm allows us 
to recover the prototype vectors Vk and their adjoints, if 
the second and fourth order moments of patterns are 
given. Figure la -c  and Table 1 show how the system 

Table 1. Time evolution of the matrix elements gkk' 

(1,1) (1,2) (1,3) 
(2,1) (2,2) (2,3) 
(3,1) (3,2) (3,3) 

t = 0.00 1.000 0.000 0.000 
0.000 1.000 0.000 
0.000 0.000 1.000 

t--6.00 0.745 -0.022 -0 .142 
-0.017 0.667 -0 .014 
-0.144 -0.009 0.836 

t = 10.00 0.751 --0.002 -0.169 
0.005 0.619 -0.055 

-0.171 --0.051 0.887 

t = 14.00 0.833 0.024 --0.189 
0.030 0.683 -0.113 

-0 .190 --0.110 0.964 

t = 18.00 0.924 0.035 --0.197 
0.038 0.807 -0.183 

-0.198 --0.182 1.026 
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b t= 0.00 t= 1.39 t= 2.78 t= 8.33 t= 12.50 

Table 2. Time evolution of the matrix elements gkk" 

(1,1) (1,2) (1,3) (1,4) 
(2,1) (2, 2) (2, 3) (2, 4) 
(3,1) (3,2) (3,3) (3,4) 
(4, 1) (4, 2) (4, 3) (4, 4) 

t = 0.00 1.000 0.000 0.000 0.000 
0.000 1.000 0.000 0.000 
0.000 0.000 1.000 0.000 
0.000 0.000 0.000 1.000 

t = 1.39 0.997 0.006 0.002 -0.007 
0.005 0.992 -0.001 0.008 
0.004 -0.002 1.005 0.001 

- 0.003 0.005 0.000 0.998 

t=2.78 0.941 0.025 -0.029 -0.014 
0.027 0.960 -0.006 0.050 

-0.025 -0.004 0.953 0.025 
- 0.015 0.053 0.029 0.973 

t=8.33 0.751 0.081 -0.045 -0.055 
0.083 0.968 -0.032 0.228 

-0.039 -0.032 0.844 0.090 
-0.058 0.229 0.092 0.914 

t=12.50 0.761 0.110 -0.056 -0.080 
0.111 1.023 --0.038 0.292 

-0.051 -0.038 0.882 0.106 
-0.082 0.293 0.107 0.971 

C t= 0.00 t= 1.39 t= 2.78 t= 8.33 t= 12.50 

Fig. 2. a The pattern to be learned simultaneously, b Time 
evolution of the vectors Vk, k = 1 .... ,4. The initial state was chosen 
random, e Time evolution of the vectors v~-, k = 1 ..... 4. The 
initial state was chosen as v ;  = Vk r 

learns three pat terns  offered to it. The  pa t te rn  vectors  
are represented here as two-d imens iona l  arrays which 
al lows us at the same t ime to visualize the work ing  of  
the a lgor i thm.  As is seen here, the whole  formal ism 
works  very well with vectors  having  60 x 60 pixles. 
This  is cer ta inly  no m o r e  a toy problem.  F igure  2a -c  

and  Tab le  2 present  our  results for the s imul taneous  
learn ing  of  four  patterns.  T w o  of the faces are repro-  
duced by their  negatives,  which is a l lowed by our  
formal ism.  Finally,  Figs  3a--c and Table  3 show our  

results when  noisy pa t te rns  are offered. These results 

Table 3. Time evolution of the matrix elements gkk" 

(1, 1) (1, 2) (1, 3) 
(2, 1) (2, 2) (2, 3) 
(3, 1) (3, 2) (3, 3) 

t = 0.00 1.000 0.000 0.000 
0.000 1.000 0.000 
0.000 0.000 1.000 

t = 2.50 0.937 0.085 - 0.013 
0.084 0.907 0.010 

- 0.018 0.018 0.925 

t = 5.00 0.942 0.155 -0.053 
0.155 0.873 0.040 

-0.056 0.046 0.857 

t=15.00 1.041 0.318 -0.050 
0.318 1.035 0.102 

- 0.049 0.102 0.945 

t = 22.50 1.097 0.390 - 0.027 
0.390 1.105 0.130 

-0.027 0.131 0.972 

demons t ra te  how our  formal ism can be used for the 
recons t ruc t ion  of  noisy patterns.  

As jus t  ment ioned,  the a lgor i thm al lowed us to 
de termine  the p ro to type  vectors  s imultaneously.  The  
formal ism can also be appl ied to a sequential  learning. 
Here  for instance first a series of  a single noisy pa t te rn  



b t= 0.00 t= 2.50 t= 5.00 t= 15.00 t= 22.50 

C t=  0.00 t=  2.50 t=  5.00 t.= 15.00 t=  22.50 

Fig. 3. a Noisy patterns offered to the computer. Upper part: 
noiseless patterns. Lower part: a typical noisy pattern, b Time 
evolution of vk. e Time evolution of v~- 

is given a n d  only  one v is used. Then  in the  next  s tep 
one we m a y  offer the  c o m p u t e r  the  same  v aga in  a n d  a 
new set of  noisy  pa t t e rn s  which  are  s u p p o s e d  to  be long  
to a new class so tha t  a new add i t i ona l  vec tor  v2 is 
de te rmined .  In  this  way  we m a y  p roceed  stepwise.  O u r  
a p p r o a c h  can  be genera l ized  in va r ious  ways,  e.g. we 
m a y  requi re  a m i n i m u m  angle be tween  the p r o t o t y p e  
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vectors  or  prescr ibe  a l imi ted  n u m b e r  of  v's in o r d e r  to  
pe r fo rm a classif ication.  The  results  of  this  analys is  will 
be pub l i shed  elsewhere.  
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