
A Spatial Artificial Chemistry
Implementation of a Gene
Regulatory Network Aimed
at Generating Protein
Concentration Dynamics

Abstract Gene regulatory networks are networks of interactions
in organisms responsible for determining the production levels of
proteins and peptides. Mathematical and computational models of
gene regulatory networks have been proposed, some of them rather
abstract and called artificial regulatory networks. In this contribution,
a spatial model for gene regulatory networks is proposed that is
biologically more realistic and incorporates an artificial chemistry to
realize the interaction between regulatory proteins called the
transcription factors and the regulatory sites of simulated genes. The
result is a system that is quite robust while able to produce complex
dynamics similar to what can be observed in nature. Here an analysis
of the impact of the initial states of the system on the produced
dynamics is performed, showing that such models are evolvable and
can be directed toward producing desired protein dynamics.

Iliya Miralavy
Michigan State University
Department of Computer Science

and Engineering
BEACON Center for the Study of

Evolution in Action

Wolfgang Banzhaf*
Michigan State University
Department of Computer Science

and Engineering
BEACON Center for the Study of

Evolution in Action
banzhafw@msu.edu

Keywords
Gene regulatory network, artificial
chemistry, artificial regulatory network,
modeling, complex network, evolutionary
computation

1 Introduction

A biological system is a network of interactions between natural entities that operate with a specific
purpose (Muggianu et al., 2018). For example, the lungs, trachea, nose, and related muscles work
together to form the respiratory system in humans. But biological systems are not limited to the
compounds of different organs. An ant colony is another example of a complex regulated system,
in this case, made of a population of organisms serving the purpose of survival of the colony. Among
the means of their organization is the spatial distribution of individuals in the ecosystem (Theraulaz
et al., 2002). Most biological systems are adaptable and robust and exhibit complex dynamics. They
work in a spatially organized world, partially reflecting the hierarchical order of numerous spatial
and temporal scales on which cause–effect relationships play out.

1.1 30 Years of the Journal Artificial Life

1.1.1 Simulation
In the last 30 years, the journal Artificial Life has dedicated itself to the study of life and its origin,
evolution, and diverse expression. According to the original idea of Christopher Langton (1986), the
field of Artificial Life was “to study Life as it could be,” beyond existing life on Earth, which has its
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own discipline of biology. The argument was to try to construct living systems, either in the medium
of computation or in matter, as a way to understand the phenomenon of life. Continuing this
pursuit, Artificial Life has developed ways to synthesize lifelike behaviors in computational models,
thereby teasing out the universal aspects of life. This synthetic approach not only augments our
grasp of biological principles but also broadens the scope of inquiry to include the vast possibilities
of life-as-it-could-be, revealing life’s potential variations and capabilities (Langton, 1989/2019).

1.1.2 Modeling
There has been substantial progress in modeling biological and physical systems throughout the
literature (Deakin, 1990; Villaverde et al., 2019; Wilkinson, 2009). In general, it is possible to classify
biological models into three types: static, comparative static, and dynamic (Hannon & Ruth, 1997). A
static model is a snapshot of a process or event, for example, a map of pandemic intensity in dif-
ferent regions of the world at a certain time. A comparative static model comprises several snapshots
of a process or event at different times that can be used to compare and retrieve meaningful data
without modeling the process itself. Finally, a dynamic model aims to model a sequence of processes
and events by representing the changes in the state of a system over time. For example, a differ-
ential equation showing and predicting the spread of a pandemic over time is a dynamic model
(Mohamadou et al., 2020). However, dynamic models are not limited to mathematical modeling
approaches. Depending on the system and its potential for discretization, methods such as discrete-
event modeling (Wainer, 2017) and agent-based modeling (Holcombe et al., 2012) have become
important. This followed the realization that mathematical modeling can only go so far without the
execution of these models in algorithms. Although mathematical models can be easily formulated,
as soon as real-world spatial and temporal aspects come into play, there are limits to what is solv-
able without simulation.

1.1.3 Cellular Automata
Cellular automata (CAs), the subject of Langton’s examination, have a venerable history. Long be-
fore the field was named, they were used for studying self-replicating systems. When Johann von
Neumann became interested in self-reproducing systems, he hit on them as the vehicle for his ex-
amination of these phenomena. His proof that self-reproducing automata are possible, published
posthumously by his collaborator Arthur Burks, is to this day a classic in the literature of Artificial
Life (von Neumann, 1966). But CAs are not only a means to study self-reproduction; they have
been used for studies of emergent phenomena (see, e.g., Bilotta & Pantano, 2005) and also have
become a tool to model partial differential equation dynamics and other dynamical systems (Toffoli,
1984). They served even as an inspiration for computer hardware, as is testified by the success of the
series of famous connection machines from thinking machines (Tucker & Robertson, 1988). One
of the most useful aspects of the CA paradigm is its natural ability to model discretized spatial phe-
nomena. This will be a critical component of the study undertaken here, where we examine spatial
interactions in an agent-based system.

1.1.4 Artificial Life
In a seminal article by Bedau et al., published in 2000, 14 important problems were listed for re-
searchers in Artificial Life to tackle. They were grouped into three categories worth mentioning
again:

1. How does life arise from the nonliving?

2. What are the potentials and limits of living systems?

3. How is life related to mind, machines, and culture?

To examine these questions, all kinds of techniques have been used, some of which are applied here.
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1.1.5 Artificial Chemistries
Concomitant with the open problems for Artificial Life question, a discussion ensued in the pages
of this journal about the “right stuff ” (Nehaniv & Wagner, 2000). In the words of the editors of
this special issue of Artificial Life, we are

looking for “the right stuff,” that is, appropriate mathematical and computational tools
and models for describing, studying, building, or understanding fundamental aspects of
natural living systems or living systems as they could be (whether carbon-based, digital, or
otherwise) as opposed to inanimate systems. (p. 1)

This question inspired one of the authors of this article and his then students to argue for artificial
chemistries (ACs) as the appropriate tool for this undertaking. Our manuscript came too late for
the special issue in 2000 but was later published as stand-alone article (Dittrich et al., 2001). This
is the second aspect of the current work: an agent-based system of extreme simplicity. The agents
under discussion are intended to represent molecules, with multiple agents/molecules of the same
type interacting with other agents/molecules of the same or different types. The agent interaction
is based on simple rules that resemble chemical reaction rules. These types of systems have been
coined artificial chemistries and have turned out to offer a useful perspective on many complex systems
(Banzhaf & Yamamoto, 2015).

To recap quickly, an AC can be denoted as a triple (S, R, A), in which S is a set of available
molecules, R is a set of all possible interaction rules, and A is an algorithm that describes the system
and how the molecules or objects interact with each other (Dittrich et al., 2001). In case molecules
can move, an AC generally allows for rich and more complex interactions to emerge in the system
(Hutton, 2002).

The AC of this contribution is set to act in a discrete spatial grid that can be described as a lattice
network of cells that can hold molecules. Molecules can move randomly within the spatial grid and
interact with each other, forming bonds that control the system. The AC formalism is used to define
these rules of interaction.

1.1.6 Gene Regulatory Networks
The third aspect of this work, and the actual target of the modeling and simulation effort proposed
here, comprises gene regulatory networks (GRNs). After the spectacular realization that higher-level
organisms are not as different genetically as their morphology and behavior would suggest, it did
not take a long time to realize that the main differences between different species must lie in the
timing and intensity of expression of their genes rather than in their expressed sequence differences
(King & Wilson, 1975).

Gene expression involves various regions, including promoters, enhancers, and inhibitors that
influence protein production. For example, the promoter region determines the starting point of
a gene to be transcribed. In transcription, RNA polymerase binds to the promoter region of a
gene, separates the two DNA strands, and transcribes one of them to create RNA molecules. In
translation, ribosomes use RNA codons as templates to create sequences of amino acids. A complete
sequence of amino acids forms a protein (Calladine et al., 2004; Watson & Berry, 2009). Enhancer
and inhibitor regions are other regulatory sites located upstream or downstream of the promoter
region of a gene (Pennacchio et al., 2013). A special class of regulatory proteins called transcription
factors (TFs) can bind to the enhancer or inhibitor region of a gene, increasing (or decreasing) the
likelihood of its transcription. Besides the protein end products, intermediate products of RNA
molecules also serve as regulators in this system, creating feedback loops and forming a network of
interactions between genes. This complex network of interactions that control the cell production
is called a GRN (Levine & Davidson, 2005).

GRNs help to differentiate cells to form varied biological tissues, control cell metabolism,
influence cell signal transduction, and determine the body shapes and behaviors of complex
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organisms. Unraveling the complexities of these networks is important for better understanding
how DNA governs life and can have applications such as identifying and curing genetic disorders
(Gnanakkumaar et al., 2019). Modeling GRN dynamics in abstract frameworks has been used to
study these networks and also was applied to solve various computational problems. However,
these models are often mathematical abstractions of their biological counterparts, not accounting
for the stochastic nature of their building blocks (Arias et al., 2014), which can be a shortcoming of
many such models (Hannon & Ruth, 1997).

1.1.7 Artificial Regulatory Networks
This article focuses on modeling GRNs: complex networks of interactions between genes in a cell
responsible for regulating, among other things, the metabolic flux of matter. Our study builds on the
artificial regulatory network (ARN) proposed by Banzhaf (2003). Specifically, we investigate a GRN
model in which the deterministic mathematical structure of ARNs previously used for formulating
gene interactions is replaced with a stochastic spatial approach. We aim to verify our hypothesis
that introducing stochastic elements to the system through the movement of artificial entities in a
2D grid will result in protein dynamics that are robust to changes in most of the initial states, but
also malleable to the forces of evolution. We investigate the robustness of the proposed system and
explore potential approaches to utilize this model as an evolvable problem-solving tool. It turns out
that spatial properties play a crucial role in generating its produced dynamics.

The ARN model introduced by Banzhaf (2003) is inspired by natural gene regulation, utilizing
interactions in genomes represented by bit strings to form GRN networks. In our study, genes and
regulatory sites are also represented by bit strings. Furthermore, we incorporate an AC in a spatial
representation to build an agent-based model with spatial aspects. Refining the rules of interaction
for the system with spatial properties makes it less abstract and allows us to account for the stochas-
ticity caused by random movements of simulated molecules in a 2D space. Inclusion of space in
bio-inspired computational models has previously proved effective in many instances, showing how
such models represent biological systems more accurately. For instance, Hickinbotham et al. (2021)
shows that modeling a Stringmol automata chemistry with spatial positioning enhances the model
by allowing for the formation of spatial patterns that prevent extinction by parasitism. In nonspatial
models, parasites can easily overtake the system, leading to extinction. However, in spatial mod-
els, the formation of chaotic wave fronts allows replicators to invade new spaces and outcompete
parasites at the back of these waves, thus preserving the replicating population and enabling the
evolution of complex behaviors and ecosystems. Allen et al. (2015) examine how asymmetric spatial
population structures can influence the rate of neutral genetic mutations, affecting the molecular
clock used to time evolutionary events. Additionally, incorporating a 2D space facilitates the visual-
ization of the model, allowing us to observe the spatial patterns that emerge in such systems.

The rest of the article is organized as follows. The next section explores the previous literature
for modeling GRNs. Then, the methods and algorithms used to define the proposed model are
explained. Next, we show the results for the dynamics produced by the proposed system based on
different initial conditions. Finally, we discuss our results and point out possible future directions
of the current research.

2 Related Literature

In essence, this work introduces a model that more closely resembles biological systems for rep-
resenting ARNs by incorporating an AC in a 2D space. We predominantly study the dynamics
produced by such a representation and explore its application. In this section, we review previous
models of GRNs found in the literature and provide details for each study.

Logical and discrete models are the most straightforward approaches to modeling GRNs
(Karlebach & Shamir, 2008). In these methods, GRNs are considered to have discrete states and
time steps. States define the conditions or the configuration of a system entity at a given time step.
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In each time step, the system updates according to regulatory functions, which might result in a
change of state.

Boolean networks (BNs) (Glass & Kauffman, 1973) and probabilistic Boolean networks (PBNs)
(Shmulevich et al., 2002) are the most common logical techniques to model GRNs. In BNs, each
gene has only two possible states, expressed and not expressed. The state of each gene in the current
time step is determined by the state of other genes in the previous time steps and the regulatory
functions of the PBN comprise a subset of BNs that accounts for the stochasticity in dynamic
systems and gives insights into the biological GRNs. A substantial increase in the number of states
in BNs and PBNs makes analyzing such systems difficult.

A Petri net (PN) is a nondeterministic mathematical modeling approach that has been used to
represent GRNs (Chaouiya et al., 2011). PNs are made of transitions, places, and arcs. In each place,
there can be zero or more tokens. An arc is an entity that connects a transition to a place, or vice
versa, and has a weight. In a PN, a transition is enabled if there are sufficient tokens, that is, a number
equal to or greater than the arc weight. A transition of a PN may fire if it is enabled, in which case,
it consumes the tokens and creates tokens in the output. In biological modeling of GRNs using PNs,
places represent molecules, transitions represent reaction rules, and tokens represent concentration
levels (Cussat-Blanc et al., 2019). Stochasticity of PNs occurs when multiple transitions are enabled
to the same place. In such cases, transitions may fire in any order. This uncertainty makes PNs
similar to PBNs.

Fractal GRNs are models that use fractal proteins and pattern matching interaction rules to repre-
sent GRNs. In Bentley (2003), fractal proteins are defined as a finite square subset of the Mandelbrot
set that can exist in an environment or an artificial cell. Apart from cell fractal proteins, a cell contains
cytoplasm, a genome, and some behaviors. A receptor gene in the cell works like a mask that allows
for specific protein patterns to enter the cell area. Proteins interact through their fractal shapes and
the genetic markers of the genome’s regulatory sites to form a network of interaction.

An example of an AC has been previously used by Astor and Adami (2000) to model a reg-
ulatory network for the evolution of artificial neural networks (ANNs). These authors utilized a
hexagonal grid in which each cell could have a concentration of substrates produced by neurons.
These substrates can be different types of proteins or neurotransmitters. In their system, proteins
diffuse based on differential equations, and genes are expressed if there are enough chemicals of
certain types in the cell’s cytoplasm. The hexagonal grid they incorporated for their work could be
characterized as a CA. CAs have provided an excellent framework within which to model GRN al-
gorithms in other works as well. For example, Chavoya and Duthen (2008) use a genetic algorithm
(GA) to evolve an ARN to solve the French Flag problem on a cellular automaton grid.

Some work focuses on the dynamic analysis of GRNs. Cussat-Blanc and Pollack (2012) analyze
the complex patterns generated by the dynamics of ARNs by generating pictures and videos from
the changes in the concentrations of proteins. They evolve ARNs to produce patterns by asking
human users to rate the fitness of the produced images. Bentley (2004), Bongard and Pfeifer (2003),
and Joachimczak and Wróbel (2009) used GRN models to perform morphogenesis. An interest-
ing characteristic of using GRN models for this purpose is the emergence of repetitive patterns,
rather than chaotic ones, in the evolved shapes.

GRN models have also been used in applications like agent or robot control, showing com-
parable performance with other artificial intelligence methods (Asr & Majd, 2013; Sanchez &
Cussat-Blanc, 2014). Finally, indirect encoding has been a topic of interest for applying GRN
models (Wróbel et al., 2012; Wróbel & Joachimczak, 2014). The compact and evolvable represen-
tation of GRNs can produce massive networks of interactions of entities, which makes them good
candidates for indirectly encoding other systems, such as ANNs.

3 Methodology

The extended model proposed here accounts for the protein–gene interactions in a single artificial
cell to produce protein concentration dynamics. We construct GRNs from linear DNA sequences
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Figure 1. A snapshot of the 2D grid of the model showing four different genes and their transcription factors (TFs) in
three different simulation stages. Different colors code for different genes and TFs. Triangles represent the enhancer
regions, circles represent the inhibitor sites, and small squares illustrate the different TFs that move around the grid
and can bind to the regulatory sites of genes other than their producing genes.

represented by string sequences of bases. A DNA sequence can have a number of genes that are
identified by promoter and terminator regions. Each gene codes for a specific type of protein,
which then functions as a regulatory agent (TF) controlling the transcription rates of other genes
by binding to their regulatory sites. These regulatory sites are enhancer and inhibitor regions that
in nature are located downstream or upstream of a promoter sequence. Binding to the enhancer
region of a gene increases the protein production rate of that gene, whereas binding to the inhibitor
region reduces this rate. Biologists determine the locations of these regulatory sites by genome-wide
location analysis (Jin et al., 2011). We simplify this step by determining their location here as being
right after the promoter sequence.

An individual is built from a single DNA sequence. First, the genes and their regulatory sites
are identified and placed randomly close to the center of a 2D grid. To initialize the dynamics, an
equal number of TFs for each gene1 are positioned in a corner of the cell grid. In each regulatory
time step of the system, these TFs can randomly move on the grid. In nature, TF binding happens
with various patterns. TFs might locate the target site and directly bind to it in 3D space. It is also
possible for TFs to slide on a DNA sequence in a 1D manner or to hop from site to site until a
target regulatory site is found (de Jonge et al., 2022). The 1D search for regulatory sites is usually
faster than a 3D approach because it reduces the dimensions of the problem search space. However,
modeling all of the binding patterns significantly increases the complexity of the computational sys-
tems and therefore we consider only a 2D binding in this work. That means that if the location
of a TF is within a threshold distance of a regulatory site of a gene, it may bind to that site. TFs
stay bound for a certain number of regulatory cycles, depending on the binding strength, and are
subsequently removed from the cell once they detach. When a TF protein is removed, it is replaced
by another TF from the gene with the highest protein concentration in that cycle. Because all TFs
are proteins in nature, replacing detached TFs with those from genes with the highest protein con-
centration ensures that the correlation between the protein concentrations and the number of TFs
is maintained within the system. TFs are the unique product of genes in the system and are repre-
sented in a discrete form. The continuous concentration value for each gene is directly proportional
to the number of TFs associated with it at any stage of the regulatory system. In the system studied
here, an additional restriction is enforced: A TF cannot bind to the regulatory sites of its producing
gene; otherwise, the dynamics stabilize to constant values too quickly due to self-coupling. Figure 1
comprises three snapshots of this system in three stages of the simulation.

1 Each TF corresponds to a unique gene, identified by its source of creation as its producing gene.
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The model’s AC is configured by applying the frequently used techniques explained by Banzhaf
and Yamamoto (2015), such as defining entities and rules of the AC, measuring time, pattern match-
ing, and a spatial topology.

2D space. Spatial properties play an important role in the biological factories of a cell. In
our study, we incorporate a 2D discrete space in the form of a grid to add spatial dynamics
to our system. The 2D grid represents an artificial biological cell. Utilizing a 2D space
enables us to introduce a spatial topology, to measure distances between entities,2 and
allows entities to move around the grid while not being too computationally expensive.
Entities might overlap in the same grid cell, and grid borders are wrapped around, meaning
that if an entity moves out of one side, it will return to the grid on the side of the opposing
border, continuing the move in the same direction.

Time measurement. We use the notion of a cycle to determine regulatory time steps in the
system. In each cycle, the ARN goes through a movement phase in which TFs perform a
random walk with a limited number of steps on the 2D grid. This process is followed by a
regulation phase in which the outcome of the movement phase enables nearby entities to
interact with one another and provides the basis for change in the system dynamics.

Pattern matching. We use pattern matching as the interaction rule between different
entities in the system. This technique is similar to its biological counterpart and is explained
in detail when we discuss the system’s rules of interaction.

3.1 Set of System Entities (S)
The studied system models entities positioned on a single DNA molecule. The artificial entities in
S are defined as follows.

3.1.1 DNA
A DNA molecule is modeled as a linear sequence of bases (A, G, C, and T). DNA is randomly
initialized at the very start, determines the structure of the network of interactions, and consists of a
number of genes and nonexpressed code segments. In biology, DNA is made of two complementary
strands; however, here we simplify to model only one strand. This sequence is not modeled spatially
on the 2D grid and serves only as the genome representation of individual GRNs. Once genes are
identified from the DNA, their regulatory sites will have random immutable positions in the 2D
space to enable TFs to interact with them.

3.1.2 Gene
A gene is a subset of DNA that starts and ends with a unique pattern of bases. The four-base pat-
terns AGCT and TCGA are chosen to determine the start and the end of all genes, respectively,
which play the role of the promoter and terminator regions in biological genes. The probability of
finding an arbitrary four-base pattern in a sequence is 0.39%, whereas that of a three-base pattern is
1.5%. In the experimental setup here, a four-base pattern was chosen that reduced the number of
genes identified in a sequence. This approach aimed to control the number of genes and their lengths
in the artificial DNA molecule. However, employing three-base patterns, while having longer DNA
sequences, would yield similar outcomes. The proposed system allows for specifying various start
and stop “codons” with different patterns and lengths. Gene identification happens in the system
after the DNA is initialized and results in identifying genes of different lengths. Genes code for
proteins and have two regulatory sites of enhancer and inhibitor regions that regulate the protein pro-
duction of the artificial cell. They are arbitrarily positioned in order (first enhancer, then inhibitor)

2 Distance refers to the spatial distance between two entities on the 2D grid. The distance between two base pairs in a sequence is
referred to as the base distance.
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Figure 2. An identified gene in a DNA sequence. The promoter sequence (green) determines the gene’s starting point,
and the terminator sequence (purple) specifies the end point. Genes have enhancer and inhibitor regulatory sites that
are upstream of the promoter sequence (brown and yellow).

immediately following the promoter region of the DNA. In our computational case, aimed at gen-
erating protein concentration dynamics, no explicit functions could correlate with these regulatory
site sizes. Thus an arbitrary decision was made to embed this size in the DNA sequences of each
model. The length of these regions depends on the gene’s length. Genes with longer sequences have
larger regulatory sites, and vice versa. The sequence of bases between the inhibitor and terminator
patterns of a gene determines the genetic marker of the TF class produced by that gene (Figure 2).

The size of the regulatory sites, including the inhibitor, enhancer, and protein, is the same and is
calculated using the following equation:

size = �√L�

where L is the length of the sequence between the promoter and the terminator sequence. Note that
unlike enhancer or inhibitor regions, proteins are not directly coded into a gene. Instead, a protein
sequence is computed from the protein coding region of the gene, which usually is longer than the
regulatory sites.

3.1.3 Protein
Proteins are the end products of genes. Genes with higher transcription rates have higher produced
protein concentrations. Each gene codes for a specific protein sequence. TF proteins are modeled
in the proposed system and are responsible for regulatory actions. The presence of proteins in the
system is indicated by both a discrete and a continuous value. The discrete value indicates the count
of TFs spread in the 2D grid at each time step (cycle), and the continuous value indicates the protein
concentration level produced by a gene. These two values are correlated, meaning that the number
of available TFs on the 2D grid created by each gene is proportional to the protein production level
of that gene. In each cycle, TFs do random walks in a cell and bind to the regulatory sites of genes
when their distance is below a certain threshold value. As the system updates, the concentration
levels of proteins will vary based on the network of interactions between genes. This causes the
interesting dynamics we observe in the system.

To maintain simplicity and avoid generating excessively long protein sequences, protein lengths
are adjusted to match those of other regulatory sites (enhancer and inhibitor regions). Similar to
patterns in nature, the length of the resulting proteins correlates with the length of the gene exons.
The genetic marker of proteins is determined using a majority rule based on the protein coding
region located between the inhibitor and the terminator regions. Figure 3 illustrates how the protein
sequence is determined. In our simulations, the length of the region between the promoter and the
terminator sequences is L = 33, and therefore the size of the regulatory regions is S = �√33� = 5.
The protein coding region (surrounded by a dashed rectangle in Figure 3) has a size of 23. First,
this region is divided into S chunks with the size of ≥N using the following formula:

N = � (L − 2 × S)

S
�
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Figure 3. An example for calculating the protein sequence of a gene. The last chunk can be larger, if necessary.

where N is the length of each chunk, except for the last one; S is the size of the regulatory sites; and
L is the total length of the gene sequence between the terminator and the inhibitor regions. The
majority rule applies to each chunk in such a way that in each case, the nucleotide with the highest
frequency of occurrence gets selected as a base in the protein sequence. In the case of a tie, the
base with the highest frequency that occurs first in the chunk gets selected. Following the preceding
formula, each chunk will have a size equal to N, except for the last chunk, which can have all the
remaining bases of a protein coding region. However, the size of the last chunk will always be less
than 2 × N.

3.2 Set of System Rules of Interaction (R)
Entirely modeling the transcription and translation process computationally seems unnecessary. So
in each cycle of the regulation, first, the transcription rates of genes update with regard to the num-
ber of TF proteins bound to that gene’s regulatory sites. The next step is the moving phase, during
which all TFs can move around in the artificial cell by a random walk. Next, TFs that are within
the binding range of regulatory sites can bind to those sites. The binding strength is calculated by
counting the number of base–base bindings of the regulatory site’s sequence and the TF’s sequence.
Here base A binds only to T and base G binds only to C. To simplify the measurement of binding
strengths, we exclude weak bindings. If the two sequences are not of the same length, any extra
bases in the longer sequence are ignored. If the binding strength is zero, meaning that no AT,
TA, GC, or CG base–base binding could be found, binding simply does not happen. The binding
strength indicates for how many cycles the bound TF alters the transcription rate of the gene until
the binding expires. Figure 4 illustrates the AC binding method used in the proposed system. Also,
TFs cannot bind to their producing gene. If no binding occurs, each artificial gene produces proteins
at a minimal rate. However, in the case of binding, the transcription rate or protein concentration
produced by that gene might vary during that cycle, depending on the site (enhancer or inhibitor)
to which the TF is binding. Multiple TFs can bind to the same regulatory site.

Figure 4. Binding between TF and regulatory sites of two genes. These artificial bindings occur similarly to DNA
nucleotide hydrogen bindings. The number of base–base bindings determines the binding strength. On the left side, TF
1 is connected to the enhancer region of gene A with a binding strength of 4 that lasts for four cycles. TF 2 is connected
to the inhibitor region of this gene with a binding strength of 2 that lasts for two cycles. The ending of gene A is not
depicted in the figure.
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The impact of the TF-enhancer and TF-inhibitor bindings on the translation rate of the respective
gene is calculated using the following formulas:

Ri,t+1 = Ri,t + 1
N

N∑

j =1
eβ×(Si, j−Stotal−1)

(TF-enhancer)

Ri,t+1 = Ri,t − 1
N

N∑

j =1
eβ×(Si, j−Stotal−1)

(TF-inhibitor)

where R i,t refers to the transcription rate of gene i at cycle t, N is the total number of bindings to
gene i, β is an arbitrary parameter, and Si, j and Stotal is the binding strength between the regulatory
site of gene i and TF j and the strongest binding strength witnessed in the cycle, respectively.

At the end of the regulation cycle, protein concentrations update with the following formula:

Ci,t+1 = Ci,t + δ × Ci,t × Ri,t

where Ci,t denotes concentration of protein i at cycle t, δ is an arbitrary parameter, and Ri,t is the
transcription rate of gene i at time t. After calculating the new protein concentrations, these values
for each gene are normalized by dividing them by the total concentration of all proteins to keep
the sum of the concentration levels equal to 1 at all times. The normalization step aims to simulate
the cell’s limited resources, inducing competition among concentration levels and giving rise to
intriguing system dynamics.

3.3 The Algorithm (A)
Before the regulatory cycles start, the grid is initialized, and the positions of all entities are deter-
mined. In each cycle, if a TF is bound (with binding strength > 0), the transcription rates of the
corresponding gene are updated based on the regulatory site to which the TF is connected. If a
TF is not bound, it randomly moves around the 2D grid during the movement phase. Next, the
distances between each TF and the regulatory sites of each gene are measured. If this distance is
smaller than a specified binding threshold, a binding between the two entities occurs. Finally, the
protein concentration of each gene is determined and normalized, and the count of TFs is updated.
Algorithm 1 summarizes these steps.

4 Results

A series of experiments are conducted using the studied GRN model to show the varying protein
dynamics produced by such systems as well as to study how the initial states of the system impact
the produced dynamics and how these dynamics can evolve. Different sets of initial parameters and
configurations are used to run these experiments and are described for each experiment separately.
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Algorithm 1. Algorithm of the proposed GRN model.
Data: TF_list, gene_list, binding_threshold
Result: Artificial Gene Regulatory Network
initialize_grid( )
cycle ← 0
while cycle < max cycle do

for TF in TF_list do

# Update Transcription Rates
if TF.binding_strength > 0 then

update_rate(TF.bound_gene)
TF.binding_strength ← TF.binding_strength - 1
if TF.binding_strength == 0 then

remove_tf(TF)
create_tf()

end

continue;
end

# Movement Phase
random_walk(TF)
# Binding Phase
for gene in gene_list do

if distance(TF, gene) < binding_threshold then
bind(TF, gene)

end

end

end

# Production/Translation Phase
for gene in gene_list do

update_concentration(gene)
end

cycle ← cycle + 1;
end

4.1 Varying Protein Dynamics
It is difficult to systematically quantify and classify the produced dynamics regarding their com-
plexity, similarity, or stability. Nonetheless, an attempt has been made to handpick and introduce a
few of the outstanding patterns observed during our experiments. These dynamics are handpicked
from a large pool of randomly generated GRNs and represent single replicates of an experiment.
Table 1 summarizes the parameters used for the experiments conducted in this section. The effects
of changing most of these parameters are studied in this article. However, the initial conditions are
selected experimentally in a manner that facilitates easier observation of the dynamics in 1,000-cycle
experiments.

Figure 5 illustrates generated protein concentration dynamics belonging to four classes of
patterns. In some cases, protein concentrations develop over time following simple patterns
(Figure 5(a)). A shared characteristic of such dynamics is the smooth development of protein con-
centrations to reach a stable state where the concentrations do not vary rigorously over time. Smooth
and oscillatory dynamics are the most predominant types of produced protein dynamics in the stud-
ied system. In Figure 5(a) a competition between production levels can be observed, with Protein
2’s concentration level slowly increasing over time, while this value decreases for Proteins 1 and 3.
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Table 1. Experimental parameters used for generating protein dynamics.

Parameter Value Description

Cycles 1,000 Regulation time cycles

Grid size 10 Size of the 2D grid, a size of 10 results in

a 10 × 10 grid space

Initial TF count 25 Indicates how many TFs for each gene;

initially put on the 2D grid to start the dynamics

Starting concentration 1 / number of genes Initial protein concentration value

value for each gene

Step size 5 Step size of TFs used for

randomly walking in the 2D grid

Beta 1 Arbitrary parameter to control production rates

Delta 1 Arbitrary parameter to control production rates

DNA length 3,000 Number of bases in the initial DNA

sequence used for identifying genes

Even though competing dynamics is a common behavior of the studied system, sometimes this
competition stabilizes in a way that no concentration level changes over time anymore.

Figure 5(b) shows an oscillatory dynamic in which one or more proteins produce a repeated
pattern of altering concentration levels. This is often accomplished by two TF types competing to
achieve higher production levels. The most apparent competing interaction to form the oscillatory
behavior of this figure is perhaps between Protein 8 and all the other proteins. Increasing levels for
Protein 8 often cause other protein levels to decrease. However, this competing interaction is not the
sole reason for the dynamics of Figure 5(b) to appear. For example, at approximately 200 time cycles,
the concentration level of Protein 7 (pink) increases, while all other protein concentration levels
(including for Protein 8) decrease. Unlike in the complicated case of Figure 5(b), there are times at
which oscillation can be explained with obvious competing concentration dynamics. Figure 6 shows
a case in which a somewhat chaotic oscillatory behavior is caused by only two competing proteins.

Figure 5(c) illustrates a hybrid behavior in which both oscillation (concentration levels of Pro-
teins 4 and 6) and simple development can be observed. For approximately 170 cycles, a smooth
development is apparent in the system up until the concentration levels for Proteins 4 and 6 reach an
equal level. Crossing this junction triggers an oscillatory dynamic between the two proteins, defining
a hybrid class of regulatory dynamics.

Finally, Figure 5(d) shows a more chaotic dynamic behavior. Until around Cycle 230, the network
produces oscillatory dynamics between Proteins 3, 2, and 7 that seem to be stabilizing; however, the
dynamics change to a different type of oscillation after this cycle with ostensibly unique intervals.
Unlike Figure 5(c), the reason for the sudden change in the dynamic illustrated in Figure 5(d) is not
obvious.

Figure 7 gives an example of a simple development dynamic in which, after a certain number
of regulatory cycles, the concentration levels reach a steady state and do not change over time. In
this figure, protein levels compete for the first 100 time cycles, then remain constant after Protein 4
disappears.
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Figure 5. Different types of observed dynamics produced by the proposed gene regulatory network (GRN).

Figure 6. An oscillatory dynamic caused by competition between only two proteins.

Table 2 shows the distribution of the dynamics for each type defined in Figure 5(c) out of 50
randomly generated dynamics. Oscillatory dynamics are the dominant class, comprising 58% of the
total generated plots, followed by simple (20%), hybrid (12%), and then chaotic (10%). Only 6 out
of the 10 simple dynamics reach a steady state after 500 regulatory time cycles.
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Figure 7. A simple development dynamic in which all the production levels stabilize after a certain number of regula-
tory cycles.

Table 2. Distribution of each dynamic type in 50 randomly generated dynamics.

Dynamic Count Percentage

Simple 10 20

Oscillatory 29 58

Hybrid 6 12

Chaotic 5 10

Figure 8. Dynamics versus transcription rate. (a) A hybrid-produced protein dynamic. (b) Transcription rates produced
for Protein 5 over time.

Figure 8 illustrates the protein dynamics (Figure 8(a)) and the production rates/signals over time
responsible for regulating these dynamics of Protein 5 (Figure 8(b)). The production rate increases if
more and stronger TF binding happens in the enhancer region of the gene compared to the inhibitor
region. If no binding happens, the production rate will be close to zero. The first few bonds result
in a more intense increase/decrease in production rates because other TFs need also to move and
spread in the cell to start stabilizing the network of interactions (see the increase in the production
level of Protein 5 in Figure 8(b) during the first 10 cycles). In Figure 8(b), this is followed by a steady
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Figure 9. The impact of changing β on the produced dynamics. (a) Base dynamics. (b) Changes to Protein 1 for different
values of β.

no-production state for 100, cycles in which a drop in protein concentrations can be noticed in the
protein dynamics. No production signals or rates less than 0 can be considered equivalent to natural
genes not being expressed or turned off by repressors. After Cycle 150, a sudden switch occurs to
another regime: an oscillatory behavior for Protein 5 that correlates with the oscillatory patterns of
the production rates.

4.2 Impact of Initial States on the System Dynamics
In this section, the impact of the initial states and parameters of the system on the outcome of the
protein dynamics is studied. In each replicate of this experiment, a genome is randomly initialized
with the parameters described in Table 1, and its genes are identified. Using the same genome,
multiple GRNs are constructed in which a single initial state parameter is altered. We compare and
differentiate the protein dynamics produced by these GRNs. It is important to note that the random
movement of TFs plays a critical role in generating system dynamics. To keep the comparisons fair,
the random state for the movement of TFs is preserved in all cases. This experiment is conducted
for 50 replicates. Because it is not feasible to include the figures for all the replicates, we depict
only one GRN system for each case. In the event that we observe irregularities for any of the other
replicates, those irregularities are also discussed.3

4.2.1 Parameter β

Parameter β is a strength parameter that can be used to control the intensity of the inhibitory and
enhancing signals. The value of β is initially set to 1 for most experiments. Figure 9(a) shows a
protein dynamic selected as a base dynamic to compare the impact of changing this parameter.
Figure 9(b) illustrates how different β values change the dynamics for Protein 1. With an increase in
the β value, a time shift in the generated patterns can be seen in such a way that the same patterns
happen later in the regulatory cycles. In other words, increasing β expands the produced dynamics.

4.2.2 Parameter δ

This parameter controls the intensity of protein production and is multiplied by the production
signal in each development cycle. Similarly to β, the initial value of δ is usually a default of 1. We
use the same base dynamic depicted in Figure 9(a) and the result of comparing different δ values
and their impact on Protein 1 is depicted in Figure 10. As the value of δ decreases, a shift in time for
the generated patterns can be seen. In other words, lower δ values expand the produced dynamics,

3 Graphs associated with the rest of the replicates, along with code to replicate the results, additional design information, and experi-
mental parameters, can be found at https://github.com/elemenohpi/AC-ARN-ArtificialLife.
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Figure 10. Changes to Protein 1 for different values of δ.

whereas higher δ values shrink it. This impact is the opposite of the impact of β on the dynamics.
Unlike for β, the concentration levels do not seem to change as much, and the scale of the dynamics
remains closer to the original.

4.2.3 Initial Protein Concentration Levels
In the natural context, small, spontaneous expressions frequently initiate regulatory dynamics. In
this study, we initiated these dynamics by configuring the proteins’ initial concentration levels to
1/N (where N represents the gene count) for the majority of our experiments. Here an experiment
was conducted to see the impact of these initial conditions by trying 0 and random initial levels. For
the cases in which initial concentrations are set to 0 and 1/N, plot lines overlap and no changes to
the produced dynamics can be observed (Figure 11(a) and (d)). When setting initial concentration
levels to random values, usually, small transformations can be observed. However, that was not the
case for all the replicates. Figure 11(b) shows another base dynamic in which the initial concentration
levels for proteins are set to 1/N. Figure 11(c) depicts the same GRN but with randomly initialized
concentration levels. It is apparent that the oscillatory dynamic of Proteins 3 and 6 in the period
between 0 and 150 time cycles is gone and that the order of highest to lowest protein levels has
altered, portraying a different dynamic. Figure 11(d) shows how the change in concentration levels
impacts Protein 1 over time.

4.2.4 Initial TF Count
Another influential factor is the initial number of TFs per gene, impacting the resulting dynamics.
To explore this, we conducted two experiments. Initially, we assigned different numbers of starting
TFs to each gene (with an equal TF count for each gene). As visible in Figure 12, changing the TF
counts leads to shifts in both time and scale of the resulting dynamics. Importantly, unlike in the β
and δ cases, the time shift seems somewhat random, occurring in both directions.

Subsequently, we examined the effect of introducing a single TF molecule to the overall protein
dynamics of the system. Figure 13(a) illustrates the protein dynamics generated by a GRN where
each gene has only a single TF molecule in the spatial grid. Conversely, Figure 13(b) depicts a dis-
tinct dynamic generated by the same GRN, with an additional TF molecule produced by Protein 1
available in the system at any given time. The resulting dynamic differs notably from the original,
with altered sequences of protein concentration levels (Protein 3 now behaving completely differ-
ently). In Figure 13(b), the concentration levels of Proteins 1 and 4 are overlaid. Repeating this
experiment 50 times revealed that sometimes the change in dynamics is as subtle as a small time or
scale shift. However, when the extra TF is assigned to a gene with a low count in the system, the
impact is more pronounced.
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Figure 11. The impact of changing initial protein concentration levels on the produced dynamics. (a) Changes to Protein
1 for different concentration levels for the same protein dynamic as Figure 9(b). (b) Dynamics produced by another
GRN model with concentration levels equal to 1/N. (c) Dynamic of the GRN system of (b) when concentration levels
are randomly initialized. (d) Changes to Protein 1 for different concentration levels for the GRN of (b).

Figure 12. Changes to Protein 1 for different TF counts.
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Figure 13. (a) A GRN dynamic whereby every gene only has only a single TF molecule in the spatial grid. (b) Impact of
adding an extra TF produced by Gene 1 to the system.

Figure 14. Changes to Protein 1 for different sizes of the grid.

4.2.5 Cell/Grid Size
Similarly to the case for different TF values, a shift in time and scale can be seen for different grid
sizes (Figure 14). The randomness in the scale and time shift is due to the random movements of
the TFs. The larger the cell is, the longer it takes for the TFs to spread in the grid and help the
network to stabilize.

4.2.6 Changing Spatial Position of the Regulatory Sites
The proposed system displays robustness. Altering the initial states mostly maintains consistent
generated patterns, noticeable as shifts in time or scale. However, minor adjustments to the positions
of regulatory sites within the 2D grid can exert a noticeable influence on the resulting dynamics.
This suggests that the system’s robustness may be somewhat reduced when altering the spatial
positions of regulatory sites. Figure 15(a) shows the dynamic produced by a network with six genes.
In Figure 15(b), the position of the enhancer region of Gene 1 is slightly changed, resulting in a
different pattern of dynamic. In most cases, a small change in the spatial position of the regulatory
sites of a gene results in significant changes in the produced dynamics. However, instances arise
in which dynamics shift only slightly or remain unchanged. This occurs primarily because, in such
cases, the pattern of available TFs in the system does not match with the regulatory site that has
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Figure 15. (a) A GRN dynamic. (b) Impact of performing a spatial mutation on the enhancer region of Gene 1.

been spatially repositioned. As previously mentioned, the system’s random state is preserved even
when the spatial positions of the regulatory sites change. In other words, the TFs maintain the same
random movement routes in every scenario. When a regulatory site is relocated, it is no longer in
proximity to the same number of TFs, thus altering the total number of protein bindings at that site
and resulting in significant changes to the dynamics produced.

4.3 Evolution of Dynamics
So far, the nature of the proposed system has been explained, and the different dynamics produced
from random genomes generated from random seeds have been studied. However, to apply the
proposed ARN in other applications, it is essential for this system to be evolvable to achieve de-
sired dynamics. In this section, two experiments are conducted to evolve regulatory networks that
meet a specific dynamic criterion. To evolve these networks, a simple GA was used that alters the
initial DNA genotype of each individual. The utilized GA consists of a population of genomes,
point mutations, and a one-point crossover, with a tournament as selection mechanism. For both
evolutionary experiments, a population size of 20, a mutation rate of 0.15, and a tournament size of
3 are configured. Each experiment was run for 25 generations.

In Problem 1, the goal is for Protein 1 to reach a 0.085 concentration level at Cycle 100.
Figure 16(a) shows the evolutionary results for this problem. The x axis is time, and the y axis
is the deviation from the goal concentration in the form of absolute error. Therefore lower values
indicate a better individual. The depicted line represents the median fitness for the experiment’s 10
parallel runs, and the shaded areas represent the 75 and 25 quantiles. Figure 16(b) illustrates one of
the evolved solutions for solving this problem. Several proteins share the same concentration level.

In Problem 2, the goal is for Proteins 1 and 2 to alternate in concentration level every 50 cycles
so that in the starting period, if Protein 1 has more concentration than Protein 2, the individual will
be rewarded with 1 point. The individual receives another reward if, in the next period, Protein 2
has more concentration than Protein 1. The same level alteration process should continue for 10
cycle periods to achieve the maximum reward of 10. This is a more challenging task than Problem 1,
and the considered fitness function based on discrete rewards does not provide significant pressure
toward solving the problem. Figure 16(c) shows the evolutionary results for solving Problem 2.
Although the median of individuals does not solve the problem, some cases fully solve it in 25
generations. Figure 16(d) shows a perfect solution to the problem, achieved during evolution by
one of the runs with fitness equal to 10.

The next step is to look more closely at the solutions that can evolve in the system to address
the two respective problems. Figure 17(a) illustrates another solution for Problem 1 that consists
of fewer proteins. Unlike the previous solution, which comprised mostly simple developments of
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Figure 16. Evolution of dynamics. (a) Fitness (deviation) over generations for solving Problem 1. (b) A solution evolved
to solve Problem 1. (c) Fitness (reward) over generations for solving Problem 2. (d) A solution evolved to solve
Problem 2.

protein dynamics with subtle fluctuations, the dynamics of the solution in Figure 17 fluctuate more
rapidly, forming an oscillatory dynamic. Figure 17(b) and (c) show the enhancing and inhibitory
networks of interactions built from the solution’s genome, respectively. Each node represents a
gene, and the intensity of the color of each edge represents the inhibiting or enhancing impact of
the two connecting genes on one another. Specifically, the presence of Genes 1, 3, and 6 seems to
influence a higher enhancing impact on each other, while many genes show high inhibitory intensity
toward each other. Figure 17(d) shows the spatial positions of the enhancer and inhibitor regions
of every gene in the solution genome. Note that (5, 5) is the center of the 2D space. Each gene is
distinguished by a unique color. Triangles represent enhancing regions, whereas circles represent in-
hibiting regions. The enhancer regions of Genes 4, 5, and 6 (with Genes 4 and 5 having overlapping
enhancer regions) are notably closer to the edge of the 2D space representing the cell, where the
TFs are introduced into the system. It is evident that these three genes also exhibit higher protein
production compared to the rest. Such behavior is typical for the initial regulatory steps of protein
dynamics with more than a few genes in most of the produced networks. However, unlike what is
observed in Figure 17(a), the proteins that start with higher production values do not always remain
the most highly produced ones.

Figure 18 comprises four charts showing the dynamics, the enhancing and inhibiting networks of
interaction, and the spatial organization of another solution for Problem 2. This solution achieves
a fitness of 9. Figure 18(a) shows the dynamics produced by this solution’s genome. This GRN
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Figure 17. A different solution for Problem 1.

dynamic consists of only three proteins, which fluctuate nonstop during the 500 regulatory cy-
cles. Figures 18(b) and (c) illustrate the enhancing and inhibiting networks of interaction for this
genome. Although there seems to be a somewhat similar intensity of inhibition between any pair
of genes, Genes 1 and 2 appear to enhance each other’s production more. Figure 18(d) shows the
spatial organization of this genome. Notably, the three inhibiting regions overlap in the same spatial
location. Similar to earlier (5, 5) represents the center of the 2D space; therefore all of the regions
are located relatively close to the center of the 2D space. A solution for Problem 2 is expected
to be oscillatory and therefore the two solutions for this problem are of the same type. However,
the intensity of oscillation in the second solution, caused by the interaction of the three genes, is
more evident.

Last, we conduct an experiment in which an attempt is made to depict the impact of point mu-
tations on the outcome of the dynamics. Mutations occurring on different sites result in different
behaviors, and their impact highly depends on the rest of the expressed genome. A single point mu-
tation on the protein-coding site can sometimes completely change the system’s dynamics, whereas
at other times, it serves as a neutral mutation. In general, during the experiments, three significant
outcomes from mutations could be observed in the system: (a) a neutral mutation, (b) a complete
change in the dynamics, and (c) a shifts in the scale and time of the dynamics. Figure 19 shows
the concentration levels of Protein 1 of the GRN dynamic depicted in Figure 9(a) that is undergo-
ing zero to four point mutations on the regulatory sites of its expressed genes. In the case of only
one mutation, the concentration dynamic completely changes. The oscillatory dynamic of Protein
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Figure 18. A different solution for Problem 2.

Figure 19. A comparison between the impact of different numbers of mutations on expressed genes. Mutations 1 and
2 and Mutations 3 and 4 have overlapping dynamics.

1 turns into a simple dynamic. In the case of two mutations, no changes can be observed in the
protein dynamic, and the lines overlap. For the third mutation, a shift in concentration levels can
be observed. Finally, the fourth mutation is a neutral mutation. Needless to say, mutations on the
genome outside regulatory sites might change the total number of identified genes for a genome.
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5 Discussion and Conclusion

In this article, a spatial and biologically close model of GRNs was introduced based on the work of
Banzhaf (2003). A 2D grid was utilized to introduce spatial properties to the system. The rules of
interactions between proteins and regulatory regions were defined by an AC. The AC adds molec-
ular aspects to the system. Our results show that the protein dynamics produced are close to their
biological counterpart, and a classification of these dynamics was performed. The impact of initial
states on the produced dynamics and how they can help control the outcome were explored. An
interesting take on these experiments is the controllable heterochrony in the proposed system cre-
ated by the spatial implementation. Changing the number of TFs or the grid size causes a time shift
in the resulting dynamics because it impacts the probability of TFs binding to regulatory sites. The
results indicate that the proposed system is highly robust: Changing most of the initial states of the
system does not change the dynamics produced. However, a slight change in the spatial position of
the regulatory sites on the 2D grid or addition of a single TF molecule to the system can drastically
change these dynamics, which could be used as a means for providing inputs to the system. We
employed a standard evolutionary algorithm to solve two simple problems of state specification at
specific cycle periods. Our findings indicate that different types of solutions can be found for the
same problem. Finally, the impact of the mutation on the produced dynamics was studied, which
showed high evolvability of such a system. In the future, techniques like dynamic time warping and
compression-based dissimilarity measures will be used to analyze and differentiate the produced
dynamics systematically.

ARN representations were previously used as direct and indirect representations for genetic pro-
gramming. It would be worthwhile to try the representation studied here for genetic programming
to solve more sophisticated computational problems. Previously, special gene types were introduced
for inputs and outputs as the dominant approach to using such a system as a problem solver. We
believe that the spatial positioning of entities in this AC-ARN could serve as a novel method to
introduce I/O to the system. Although this work focuses primarily on producing and comparing
the protein dynamics of the system, performing a quantitative analysis on the dynamics’ evolution
using the proposed system presents an intriguing opportunity. Another possible future direction for
this research is to study the impact of DNA size and the number of genes on the complexity of the
dynamics. It would be interesting to test the following hypothesis: Regulatory networks with more
genes produce more complex dynamics. In the future, we aim to investigate in greater detail the
evolution of dynamics produced by the proposed representation. Analyzing such individuals could
yield valuable insights into using this representation for problem-solving applications, such as in the
form of genetic programming. Our results for a different genetic programming system (Miralavy &
Banzhaf, 2023), in which individuals are spatial and represented by a collection of computer pro-
grams distributed in a 2D space, show that the dimension of space can lead to higher structural
diversity, can cause program nodes to form spatially localized clusters, and does not impair per-
formance. Another instance in which space has proved to be beneficial in genetic programming is
presented by Dick and Whigham (2013), who showed that introducing a spatial population reduces
bloat in the system. It would be interesting to see how a spatial, biologically closer representation
would compare for this purpose.
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