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Abstract Recombination is a commonly used genetic operator
in artificial and computational evolutionary systems. It has been
empirically shown to be essential for evolutionary processes.
However, little has been done to analyze the effects of recombination
on quantitative genotypic and phenotypic properties. The majority
of studies only consider mutation, mainly due to the more setious Keywords
consequences of recombination in reorganizing entire genomes. Recombination, robustness, epistasis,
Here we adopt methods from evolutionary biology to analyze a evolvability, genotype network, genetic
simple, yet representative, genetic programming method, linear programming

genetic programming. We demonstrate that recombination has less
disruptive effects on phenotype than mutation, that it accelerates
novel phenotypic exploration, and that it particularly promotes
robust phenotypes and evolves genotypic robustness and synergistic
epistasis. Our results corroborate an explanation for the prevalence
of recombination in complex living organisms, and helps elucidate
a better understanding of the evolutionary mechanisms involved in
the design of complex artificial evolutionary systems and intelligent
algorithms.

I Introduction

Mutation and recombination are the two major sources of genetic variation, and are essential com-
ponents of evolution. Although the majority of genetic variations may be deleterious, complex living
systems are able to harness these evolutionary forces to generate long-term phenotypic innovation
and adaptation. Mutation and recombination are, however, very distinct from each other in effecting
genetic variations. One of the main forms of mutation, referred to as point mutation, changes a single
nucleotide in a genome. In contrast, recombination reuses and reorganizes units of two genomes, and
is potentially better at preserving well-adapted modules while creating more innovative phenotypic
traits.

Recombination is ubiquitous in more complex organisms, evidence of its evolutionary success
[3, 24]. However, explanations for its benefits are still largely under debate in evolutionary biology
and population genetics [12, 38, 52]. Given the high cost of sexual recombination in living individuals
and populations, sexual organisms must derive significant benefit from recombination to explain its
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petvasive existence. It has been conjectured that recombination generates new beneficial alleles faster
than sequential mutations by bringing together different individuals, resulting in a speedup of adaptive
evolution [14, 36]. Moteover, recombination may accelerate the elimination of deleterious mutations
[24, 37]. When the joint negative effects of multiple mutations are stronger than the sum or product
of individual effects, recombination helps impose a strong selection pressure towards removing those
deleterious mutations. Based on mathematical models developed earlier, more recent empirical studies
have investigated the effect of recombination on genetic robustness and epistasis, in order to explain the
essential benefits and mechanisms of sexual reproduction/tecombinaton [1, 5, 30, 43].

Robustness is a pervasive property of natural organisms, and is used to understand the resilience of
evolutionary systems when confronted with environmental and heritable perturbations [9, 31, 49].
Robustness enables living systems to remain phenotypically intact in the face of constant genetic
variations, by allowing genetic variants to expand in neutral spaces. These neutral spaces are geno-
typic regions in which mutations do not change the phenotype or the fitness of an individual and
are the consequence of a redundant genotype-to-phenotype mapping [51]. Such neutrality then aug-
ments evolvability, by accumulating genetic variations that might be non-neutral under changes of the
environmental context [11, 19, 26, 32, 51, 53].

Epistasis is another ubiquitous property of living organisms [6, 34, 35, 39, 40, 47]. Given the
complexity of many phenotypic traits of living organisms, the phenotypic expression of one gene
very likely depends on other genes. This dependence, or interaction, among multiple genes or
genetic components is described by epistasis. Epistasis can be either synergistic (i.c., the joint effect
of multiple genes is stronger than the total individual effects) or antagonistic (i.e., individual genes
mitigate each othet’s effects). Synergistic epistasis amplifies the joint phenotypic effects of cumula-
tive individual mutations, especially when they are negative, and thus is subject to a strong selection
pressure towards removing those mutations [8, 10, 37].

Using simulated gene regulatory network models, studies have shown that recombination can create
novel phenotypes more efficiently and with less disruption than mutation can [30, 52]. Moreover, it
is reported that sexual reproduction/recombination results in stronger selection for genetic robustness
than asexual reproduction, causing synergistic epistasis as a by-product of this selection pressure [1, 16,
28,29, 46, 55]. Using a digital organism system, it is also reported that sexual reproduction influences the
evolution of modularity and epistasis [33]. The genomes of sexual organisms were found to be more
modular and to evolve weaker antagonistic epistasis than asexual ones. Such observations strengthen
the hypothesis that recombination results in high genetic robustness and synergistic epistasis, and
consequently accelerates generating new adaptive phenotypes and eliminating negative mutations.

In this study, we use a genetic programming method, linear genetic programming [4], to investigate
the effect of recombination on evolution and its interplay with mutation. Linear genetic programming
is a branch of the evolutionary computation family of algorithms. Recombination is a commonly used
genetic variation operator in evolutionary computation algorithms [18, 25]. In the literature, recom-
bination has long been the center of the discussion about effective genetic operators. Various recom-
bination operators have been proposed to accommodate specific algorithmic representations and to
improve optimization and search performance [15, 17, 22, 41, 42, 45].

Similar to many natural and artificial evolutionary systems, linear genetic programming has a
redundant genotype-to-phenotype mapping, where many mutational variants of a genotype yield
identical phenotypes. This redundant mapping creates robustness at both the genotypic and pheno-
typic levels. That is, a genotype is robust when randomly mutating its alleles does not alter its
phenotypic outcome, and a phenotype is robust when it has a large number of underlying genotypic
variants. This property provides a suitable framework for recombination and robustness analysis.
The specific model used in this study has a fixed-length genome for the representation, which allows
us to define finite and compact spaces for genotypes and phenotypes. This separates the effect of
code growth (i.e., program size increase as evolution proceeds) on robustness, which was previously
reported as an important element responsible for the increasing robustness in genetic programming
[2, 44], from robustness generated by the genotype-phenotype map in certain regions of the search
space. We use a linear genetic programming system to investigate the distribution of robustness at
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both genotypic and phenotypic levels, the effect of recombination on evolution (specifically on ro-
bustness and epistasis), and how recombination interacts with mutation duting evolution.

The primary goal of this study is to bring new perspectives developed in evolutionary biology to
artificial and computational evolutionary systems so as to help us better understand the mechanisms
of essential evolutionary system components. This could greatly benefit the future design of com-
plex attificial systems and intelligent algorithms [20]. Additionally, as argued in the community of
evolutionary biology and population genetics, many of the proposed hypotheses on recombination
greatly rely on specifications and restrictions of evolutionary models. Therefore, testing a simple,
yet representative, computational evolutionary model may help elucidate the general role that
recombination plays in evolution.

2 Methods

2.1 Evolutionary Program Model in a Boolean Search Problem

The artificial evolutionaty system we used in the current study is linear genetic programming (LGP).
Evolvable individuals are represented as executable linear computer programs. Each program consists
of a set of L instructions, which are structurally similar to those found in register machine languages.
Each instruction has an operator, a set of operands, and a return value. In the current study, we restrict
the LGP model to a Boolean search problem where each instruction consists of an operator drawn
from the Boolean function set {AND, OR, NAND, NOR}, two Boolean operands, and one Boolean
return value. The inputs, operands, and return values ate stored in registers with differing read/write
permissions. Specifically, Ry and R; ate calculation registers that can be read and written, whereas R,
and Rj are input registers that are read-only. Thus, a calculation register in an instruction can serve
as an operand or a return, but an input register can only serve as an operand. An example program of
length . = 3 is given as follows:

Rl - R2 AND R3
Rp=R, OR R
R =R; NAND R,

Instructions are executed sequentially from top to bottom. Prior to program execution, the values
of Ry and R; are initialized to FALSE. Registers R, and R3 read two Boolean input values. After
program execution, the final value in Ry is returned as output.

2.2 Implementation of Mutation and Recombination

As is common in the evolutionary computation literature, in this study we employ two major genetic

variation operators, point mutation and recombination. Their implementation in the LGP represen-

tation is straightforward. Point mutation can be applied to any of the 4 X L loci of an individual, and

the mutant locus randomly takes a new allele from the set of all compatible alleles at that locus.
To keep a fixed length of individuals, we use symmetric single-point recombination (see Figure 1).

That is, for two parent programs with the same length I, a recombination point is randomly selected

Parents Offspring

Ri=R2 AND Rs Ri=R: NOR Rs Ri =Rz AND Rs Ri=R: NOR Rs

Ro=R:f[0R Ri]  Ri=Re[iOR Ri — Ro=R; 0R"Ksi Ri=R: [OR R

Ri=Ri NOR Rs| Ro=Ri OR Rq “Ro=Ri"OR Rsi [Ri=Ri NOR R»
Ro=RsNANDR¢ : Ro=Ro AND R;: i Ro=Ro AND R;: Ro = Rs NAND Ro

Figure I. An example of symmetric single-point recombination for programs with length L = 4. The recombination point is
chosen randomly at any of the possible loci, but it needs to be the same for both parents. Then the two parent programs
(left) swap their fractions after the recombination point with each other to form two new offspring (right).
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Figure 2. Schematic description of the LGP phenotype. (a) The input and output of a LGP program. Registers R, and R read
the input values, and the final value stored in register R, is returned as a program’s computational outcome. (b) The
phenotype of a LGP program is defined as the Boolean relationship it encodes, represented as the four-digit output of
the ordered two-variable inputs.

with a uniform probability and the two parents swap the code fragments after the recombination point
to form two new offspring. This operation allows all resulting offspring to have the same length
as their parents, and thus helps, for the current study, to limit recombination dynamics to a finite
genotype space.

2.3 Genotype and Phenotype Networks

A genotype in our LGP model is a program with a unique set of alleles at a total of 4 X L loci. In the
specified system, since the return register can be chosen from {Rg, Ry}, the two operand registers
can be chosen from {Rg, Ry, Ry, R3}, and the operation can be chosen from {AND, OR, NAND,
NOR}, the total number of different instructions is 2 X 4 X 4 X 4 = 2" and the total number of
possible genotypes is 27",

The binary Boolean relationship f: B> — B, mapping inputs Ry, Rs into outputs Ry that a program
encodes (where B = {TRUE, FALSE}), is defined as its phenotype. As shown in Figure 2, when all four
possible combinations of two Boolean vatiables are input into a LGP program, the output can be
regarded as a four-digit binary string representing one of the sixteen possible binary Boolean functions.
For instance, the output string “0000” represents the FALSE function, and the output string “0001”
represents the AND function.

Genotypes can be transformed from one to another through single-point mutations. We use the
notion of a genotype network [50] to characterize the neighborhood structure of genotypes. For instance,
in the genotype network of Figute 3a, each vertex denotes a genotype, and two genotypes are con-
nected if a single-point mutation can change the genotype to another. An edge can stand for ecither a
neutral point mutation (i.e., the phenotype is retained for the two genotypes) or a non-neutral one (i.c.,
the point mutation leads to a phenotypic change). For a particular genotype, its neutral neighbors in-
clude those genotypes that share the same phenotype, and its non-neutral neighbors are all the other
neighbors that have different phenotypes.

On top of the genotype network, we consider the phenotype network to describe the connectivity
among various phenotypes. In the phenotype network of the LGP system with a fixed length I = 4
(see Figure 3b), each vertex corresponds to a unique phenotype, and the size of the phenotype is
proportional to the total number of genotypes representing it. Our particular LGP system has 16
different phenotypes, shown as the 16 vertices in the network. Two phenotypes are connected by
an edge if there exists at least one single-point mutation that can transform genotypes of the two
phenotypes into each other. The thickness of an edge is proportional to the total number of single-
point mutations that can change one phenotype into the other. As seen in the graph, for that
particular LGP system, the phenotype network is fully connected, that is, each phenotype can be
reached from any other phenotype by mutating their genotypes. The vertex size is highly hetero-
geneous, however, ranging from a minimum of 24,832 genotypes (phenotypes XOR and EQUAL) to
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a maximum of 60,393,728 genotypes (phenotype FALSE) that occupy from << 1% up to 23% of
the entire genotype space, respectively. Moreover, edge widths are also heterogeneous, indicating
the connectivity among phenotypes is not evenly distributed. For instance, phenotype NOR is more
likely to be mutated to phenotypes !y, !x, and FALSE than to other phenotypes.

It is interesting to note that what Kaufmann calls “the adjacent possible” [23] finds a natural rep-
resentation in this network: It is all the next nearest neighbors to a particular phenotype as encoded
by the edges of the phenotype network. This assumes a definition of the adjacent possible on the
phenotypic level, which is probably what Kaufmann envisioned. In our particular LGP example,
the complete phenotype network indicates that all phenotypic changes are adjacent possible.

2.4 Genotypic and Phenotypic Robustness

Similar to many evolutionary systems, either natural or artificial, our LGP system has a highly redun-
dant mapping from a large genotype space (2" genotypes) to a relatively small phenotype space
(16 phenotypes). The redundant genotype-to-phenotype mapping generates robustness, which means
that altering some alleles on a genotype does not change its phenotype. We investigate this robustness
at the genotypic and phenotypic levels.

For a genotype g, we define its genotypic robustness R,(g) as the fraction of its neighbors in the
genotype network that are neutral neighbors. This measures the probability of tetaining g’s pheno-
type after applying single-point mutations, and thus captures the resilience of the genotype g; in the
face of mutational perturbations.

At the phenotypic level, we define the phenotypic robustness R,(p;) of a phenotype p; as the total
number of its underlying genotypes. The indication is that the more a phenotype is represented
among genotypes, the more robust it is. This phenotypic robustness is reflected as the vertex size
in the phenotype network (see Figure 3b).

IX AND y
y 4
5 3 )"
xXORy6 2)xAND ly
xORy( 7 ig %;g 1 )xANDy
I xNORy( 8 0  JraLsE

‘ I x==y(9 15
TRUE

10 14
x NAND y

X>=y 2 X<=y

Ix

(a) (b)
Figure 3. The genotype and phenotype networks. (a) In the genotype network, each vertex represents a LGP genotype, and
its grayscale encodes its phenotype. Two vertices are connected by an edge if the two genotypes can be transformed from
one to another by a single-point mutation. Two connected vertices are neutral neighbors if the single-point mutation does
not change the phenotype; otherwise, they are non-neutral neighbors. (b) In the phenotype network, |6 vertices are the
16 distinguishing phenotypes of the two-input, one-output Boolean system. Phenotypes are numbered from their four-digit
binary string and are labeled using the Boolean relationships they represent. The size of a vertex is proportional to its
phenotypic robustness, and the edge thickness is proportional to the total number of mutational connections between
the two phenotypes.
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2.5 Measuring Epistasis for Genotypes

In general, the mutational effects on phenotypes are expected to be positively correlated with the
total number of mutations. When mutations co-occur, their total phenotypic effect depends on the
interactions between them. Without any interactions, mutations are regarded as independent and act
on a phenotype individually. A departure from independence could lead to either reinforcing or
mitigating the accumulation of mutational effects on a phenotype. Epistasis describes this interaction
effect, or the departure from independence.

It is commonly estimated in the evolutionary biology literature that the average fitness at a
mutational distance £ from a given reference genotype decays approximately exponentially with
increasing £ [10, 13, 27, 54]. We adopt this estimate in our LGP system. Let’s define the genotypic
distance D, as the total number of differing loci between two genotypes. The phenotypic distance D,
is defined in our example as the Hamming distance between two Boolean relationships, or pheno-
types, which come in the form of four-digit binary strings (see Figure 2(b)). For instance, the
phenotypic distance between phenotypes FALSE (0000) and AND (0001) is 1. The average fitness
w, calculated as (4 — D,)/4 for our LGP system, of a mutational genotypic distance £ = D, is
modeled by the relationship

—kP
w(k) =¢ (1)
where a and  are constant parameters. This relationship can also be written as

log[~log(w(#))] = log(et) + Plog(#). (2)

The parameter (> captures the extent to which the accumulation of multiple mutations amplifies or
mitigates individual mutational effects, and expresses the dependence among multiple mutations,
that is, epistasis. The value of B indicates the direction of epistasis. If 3 > 1, we observe negative
(synergistic) epistasis, where multiple mutations amplify individual effects on the phenotypic level. If
B <1, we observe positive (antagonistic) epistasis, where multiple mutations cancel out each others’
harmful phenotypic effects. If multiple mutations are independent of each other, then p = 1. In
general, a larger value of B implies a stronger synergistic interaction among mutations. In our
implementation of this epistasis measure, both » and 4 are directly observable, and we use linear
regression on Equation 2 to estimate [3.

2.6 Population Evolution
In addition to characterizing the static genotype and phenotype spaces of this LGP system, we
perform a dynamic study by using a population to investigate the interplay between mutation and re-
combination and the population dynamics during evolution. As the target phenotype we choose one
of the least-represented phenotypes, XOR, in order to allow evolution to proceed over a longer time.

A non-overlapping generational evolution model with fixed population size |P| is used in our
simulation. First we initialize a population of LGP programs of fixed length L. = 4 for a given starting
phenotype by randomly sampling | P| genotypes underlying the starting phenotype. This allows us to
focus on a finite genotype space for our quantitative study of the genotype and phenotype networks,
and to look into the influence of the initial phenotype’s properties on evolution. Then new generations
of offspring are produced sequentially. In the mutation-only scenario, we randomly choose an indi-
vidual with replacement, mutate according to a certain mutation probability, and place it into the next
generation. This process is repeated |P| times until the next generation of the population is complete.
When both mutation and recombination are applied, for each generation, we randomly choose two
individuals with replacement, perform a crossover based on a certain recombination probability by
randomly choosing a recombination point, mutate them wit‘h‘ a certain mutation probability, and place

. . . « . P! . . .
both offspring into the next generation. This is repeated 5 times until the next generation of the
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population is complete. The evolutionary process is terminated once the target phenotype is reached,
that is, at least one genotype from the target phenotype is found.

3 Results

3.1 Epistasis and Genotype Complexity

To model the relation of the mutational effect w(£) to the number of mutations £ for a given
genotype, we applied consecutive five-step point mutations (ie., £ = 1, 2, ..., 5) to the genotype,
and recorded the phenotypic distance from the original reference phenotype after each mutational step.
Recall that the phenotypic distance is the Hamming distance between two phenotypes in the form
of four-digit binary strings. The value of »(£) ranges from 0 to 1. We repeated this measurement
100 times and obtained the average values to model w(£), £ =1, 2, ..., 5. Then the epistasis indicator
[ was estimated by applying a linear regression to log[—log(u(#))] and log(#) (Equation 2).

By randomly sampling genotypes from the entire genotype space, we observed epistasis with all
three possible directions: p > 1, p = 1, and < 1. This indicates the variation of epistasis in our
LGP program system. It is interesting to see this diversity in such a simple artificial evolutionary
system.

We also looked into the distribution of epistasis for programs with various lengths. From length
L = 3 to L = 15, we randomly sampled 10,000 genotypes of each length and depicted their
distributions of epistasis in Figure 4. Most genotypic epistasis observed in our LGP system is
antagonistic (3 < 1); however, as the genome complexity increases, this antagonistic epistasis is
gradually alleviated and changes its direction to synergistic (R* = 0.978, p = 1.119 x 10 '%). This
observation is consistent with findings in a digital organism system [33]. Note that although different
from many previously discussed biological models where genotypic epistasis is mostly detected
as synergistic, our obsetvation is consistent with others” on the general trend towards a stronger
synergistic effect as the genome complexity increases.

3.2 Genotypic Robustness and Epistasis within Different Phenotypes
The notion of phenotype networks (Figure 3b) is a very useful vehicle for characterizing various
properties of different phenotypes and their intertwined connections. Besides the heterogeneity
of the phenotypic robustness and the mutational connectivity of phenotypes to each other, it is
useful to look into the distribution of genotypic properties among different phenotypes.

In order to retain a finite genotype space, we have set a fixed length of I = 4 for all genotypes
throughout all our simulations. For each of the 16 phenotypes, we enumerated all possible genotypes
and calculated their genotypic robustness and epistasis. Figure 5 shows the distributions of genotypic

1.2

1.0

0.8

epistasis

0.6

0.4

3 6 9 12 15
program length L

Figure 4. Average genotype epistasis for LGP programs with increasing lengths. Epistasis is calculated and averaged over

10,000 randomly sampled genotypes for each of the given program lengths L. The points represent means, and the error
bars show the standard deviations.
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Figure 5. Average genotypic (a) robustness and (b) epistasis as a function of phenotypic robustness. The data in both plots
correspond to the average of all genotypes within a given phenotype, and the error bars denote their standard deviations.
The scales of measurement on both axes were chosen and displayed according to their best-fitting correlations.

robustness and epistasis as a function of ghenotypic robustness. Both genotypic robustness (R* =
0.958, p = 3.308 X 10~ '") and epistasis (R* = 0.851, p = 2.206 X 10”) are positively correlated with
their corresponding phenotypes’ robustness. This indicates that more robust phenotypes are also
composed of more robust genotypes, and that genotypes of more robust phenotypes tend to have
weaker antagonistic epistasis.

3.3 Recombination Has Less Destructive Effects on Phenotype

Recombination changes a genome in a very different way than mutation, by rearranging already
existing genetic components. To compare the effects of recombination and mutation on the pheno-
type is helpful because it gives us insight into how differently these two major genetic variation
operators behave. We randomly sampled 1% of the genotypes (=2.7 million) from the entire finite
genotype space, regardless of their phenotypes, and applied mutation and recombination to observe
the phenotypic outcome.

For mutation, we applied 7-point mutations with 7 ranging from 1 to 15 to a genotype and
repeated this 100 times for each genotype. We recorded the average phenotypic outcome—that
is, the phenotypic distance from the original phenotype, which allows us to uncover the relation
between genotypic distance 7 and phenotypic result. For recombination, we chose two parent
programs from the genotype pool with a uniform probability, and applied single-point crossover
at a randomly picked crossover point. We repeated this 10,000 times and recorded phenotypic
and genotypic distances between all four parent-offspring pairs to examine average phenotypic effect
related to the parent-offspring genotypic distance.

Figure 6 shows (a) the average percentage of retained phenotypes and (b) the average phenotypic
distance between a patent and an offspring if the phenotype is changed, either by mutation or by
recombination. It can be observed that, for the same amount of genotypic change, recombination is
more likely to retain a phenotype than mutation. In addition, whenever a genetic vatiation operator
changes the phenotype, recombination results in less phenotypic vatiation than does mutation. The
same findings were observed with the setting that recombination was restrained on parent programs
from the same phenotype (data not shown).

3.4 Recombination Accelerates Evolution and Elevates Robust Phenotypes

The simulation of evolutionary runs we report here was designed to help understand population
dynamics changes produced by recombination relative to those produced by mutation. In our
simulation, the population size is set to | P| = 100, and for each experimental setting we performed
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Figure 6. Comparison of mutational and recombinational effects. (a) The ratio of retained phenotypes after applying
mutation/recombination to a genotype as a function of the genotypic variation resulted by mutation/recombination.
(b) For mutation/recombination events that change the phenotypic outcome, we record the phenotypic variation as
a function of the genotypic variation. In both plots, data points are averaged values over a randomly sampled 1% of
the entire genotype space: 2.7 million sampled genotypes.

10,000 runs to provide a sufficient statistical support for observations. Following the convention on
parameter configurations in the evolutionary computation literature, the mutation probability is set to
0.1 and the recombination probability is set to 1. We compared two evolutionary scenarios: Scenario 1
is driven solely by mutation, whereas scenatio 2 is driven by both mutation and recombination. First
we examined whether recombination helps find the target of evolution faster. Figure 7a shows the
evolution time necessaty to reach the target with regard to the robustness of the starting phenotype.
For any starting phenotype, applying both mutation and recombination reduces the time to find the
target significantly.

Second, we investigated whether the acceleration effect of recombination varies with different
starting phenotypes. Figure 7b shows the reduced evolution time, obtained by taking the differ-
ence of the total evolution times with and without recombination, as a function of the robustness

@
. 2000 g oI S
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Figure 7. Comparison of evolution time for two evolution scenarios: with mutation only and with both mutation and
recombination. (a) The total required time to reach the target as a function of the starting phenotype’s robustness.
(b) Evolution acceleration (i.e., reduced evolution time) by adding recombination as a function of the starting phenotype’s
robustness. The straight line is the best linear-log fit to the data and provides a guide for the eye. The inset shows
the correlation for starting phenotypes on the upper right corner, that is, excluding the one data point with the lowest
robustness.
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of the starting phenotype. We observed a clear positive correlation (R* = 0.830, p =1.447 x 107°),
which indicates that the acceleration effect of recombination is more prominent when a popula-
tion starts from a more robust phenotype. Due to the large heterogeneity of the distribution of
phenotypic robustness, shown in the gap between the lower left single data point (phenotype
EQUAL) and the upper right cluster of other data points, the inset zooms in and depicts the cor-
relation of the reduced evolution time and phenotypic robustness for only the upper right cluster
of data points (Figure 7b inset). A significant positive correlation is still observable (R* = 0.428,
p = 0.011).

3.5 Recombination Evolves Genotypic Robustness and Epistasis

Since we have seen now that recombination accelerates evolution and particularly promotes robust
phenotypes, it is intriguing to see whether recombination has any influences on genotypic properties.
To investigate this, we evaluated all genotypes of the population at the end of evolution and checked
if they differ between the two evolutionary scenatios. We calculated the average genotypic robust-
ness evolved in the final population, and examined its relation to the starting phenotypic robustness
(Figure 8a). We can see that populations where both recombination and mutation were applied consist
of more robust genotypes at the end of evolution, and this observation is persistent with all starting
phenotypes.

Figure 8b shows a comparison of average genotypic epistasis at the end of the runs with and
without applying recombination. It can be stated that no matter which phenotype was used to start
from, applying recombination with mutation led to an evolved population with higher genotypic
epistasis. In other words, recombination selects for genotypes with decreasing antagonistic epistasis
during evolution.

To further investigate the population dynamics with and without recombination, we use another
two sets of runs, again applying either mutation only or both mutation and recombination, where we
let the populations evolve for a relatively long period (100,000 generations), and check if populations
reach an equilibtium status and how this status correlates with the starting phenotype’s propetties.
Figure 9 shows the equilibrium robustness and epistasis as a function of the starting robustness and
epistasis. Equilibrium robustness (epistasis) is calculated as the average genotypic robustness (epis-
tasis) across all 100,000 generations. Given the long evolution time, such a calculation provides a
good estimate of the population dynamics in a stable equilibrium state. As seen in the figure, apply-
ing mutation alone leads a population to the same average genotypic robustness and epistasis, inde-
pendent of the starting phenotype. However, applying both mutation and recombination seems to
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Figure 8. Recombination effects on evolving genotypic robustness and epistasis. Average genotypic (a) robustness and

(b) epistasis in the final population after evolution by applying mutation only (triangles) and both mutation and recombi-
nation (solid circles) for different starting phenotypes (x axis).
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Figure 9. Recombination effects on genotypic robustness and epistasis on the long term of evolution. Equilibrium geno-
typic (a) robustness and (b) epistasis as a function of starting phenotypic properties. Lines represent function y = x and
are to provide a visual guide.

retain the starting phenotypic properties while generally improving robustness and epistasis over
(long) evolutionary runs (data points stay mostly on the left side of the line y = x).

4 Discussion

Utilizing a genetic programming system, this study has described the general role that recombina-
tion plays in evolution, specifically in relation to accelerating the search for novel phenotypes and
promoting genetic robustness and epistasis.

The LGP system used in this study has a fixed-length genome representation to define finite and
compact genotype and phenotype spaces. This enabled us to exhaustively enumerate all genotypes
and phenotypes and to characterize their intertwined connections using networks. It also allowed us
to separate other possible elements from the analysis of recombinational effects on evolution. For
instance, we showed here that the increasing genome complexity (i.e., code growth) accompanies a
change in the directional genotypic epistasis (Figure 4). This indicates that more complex genomes
might be better at alleviating the antagonistic epistasis and thus impose a stronger pressure removing
deleterious mutations.

Using genotype and phenotype networks, it was shown that robustness is distributed unevenly
among both genotypes and phenotypes (Figure 3). This nonuniformity is a pervasive feature of natural
and attificial evolutionary systems, and calls for a quantitative analysis of the genotype-to-phenotype
map and robustness [7, 21]. Our particular LGP system exhibits a positive correlation between geno-
typic and phenotypic robustness (Figure 5a); in other words, it supports the intuitive observation that
more robust phenotypes are composed of more robust genotypes. In addition, more robust pheno-
types are also composed of genotypes that have weaker antagonistic epistasis and stronger synergistic
epistasis (Figure 5b). This corroborates the conclusion drawn from a previous experimental study
on yeast [48] that the robustness to mutations is not due to genetic redundancy but due to epistatic
interactions between genes.

Recombination changes the genetic content of an individual in quite a different manner from
mutation, by reusing and rearranging existing units of genomes. This leads to different effects on
phenotypes. Compared to mutation, the same amount of genotypic variation resulting from recom-
bination has a higher probability of retaining the phenotype or, if the phenotype is changed, does
not move away as much from the reference phenotype (Figure 6). This could be the result of the
fact that recombination preserves more well-adapted modules by reorganizing existing components
and has less disruptive effects than mutation does [52].
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Through evolution experiments, we found that applying recombination in addition to mutation
significantly accelerates the search for novel phenotypes (Figure 7). More interestingly, this acceler-
ation by recombination is more significant when a population starts from a more robust phenotype.
It is expected that more robust phenotypes have a wider-spreading neutral genotypic network,
and recombination is very effective in utilizing those vast cryptic genetic variations for further
phenotypic innovations. Having both recombination and mutation significantly enhances the ability
of evolutionary systems to explore novel phenotypes over having mutation alone. This could also
contribute to an explanation of why recombination evolved in the first place in more complex
organisms: Recombination benefits and enhances the evolvability of more complex evolutionary
systems.

Recombination not only benefits more robust phenotypes, but also produces genotypic robustness
and epistasis (Figure 8). A population subject to both recombination and mutation moves towards
genotypic regions with higher robustness and epistasis than a population subject to mutation alone.
Recombination evolving stronger synergistic epistasis suggests that it imposes a strong selection pres-
sure on purging deleterious mutation, a plausible explanation for the maintenance of recombination
in sexual organisms. Moreover, previous studies report that the evolution of mutational robustness is
usually accompanied by the evolution of epistasis [1, 43]. These two were also found associated in our
study. Mutational robustness is evolved in response to stabilizing adaptive organisms in the face of
constant environmental and genetic perturbations. The key mechanism supporting this robustness
is not the redundancy in mapping genotypes to phenotypes (traits), but the increased interactions
among genetic components and the underlying complex genetic architecture. More interestingly, using
a long-term evolution simulation, we observed that applying both recombination and mutation pre-
serves the starting phenotypic properties, in contrast with applying mutation alone, which led to a loss
of memory of the starting phenotypes (Figure 9). This result is intriguing but requires further study.

In summary, using a simple, yet representative, artificial evolutionary model, this study demonstrates
the effects of recombination in evolution. The findings of our study coincide with many observations
from evolutionary biology that use model organisms or simulated gene regulatory circuits. Our study
helps to elucidate the general effects of recombination in evolution. We hope that it can inform the
future design of genetic operators in artificial evolutionary systems by providing a theoretical foundation
to better understand evolutionary mechanisms.

This study also opens the door to several future research avenues. First, our analysis can be extended
to both larger-scale LGP systems and alternative evolutionary computation systems. This could help
generalize the findings we draw in the current study and support their application to a larger range of
problem instances. Second, larger-scale evolutionary systems will generate more complex genotype and
phenotype networks, and network topology analysis could then be adopted to explore the dynamics
of evolutionary populations. Varying network topology could also influence the evolutionary effects
of recombination. In particular, our LGP example has a very special complete phenotype network,
and looking into alternative systems without this property, perhaps better resembling real biological
systems, is important for our future explorations.
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