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Abstract

Catalytic Search is an optimization algorithm inspired by ran-
dom catalytic reaction networks and their pre-evolutionary
dynamics. It runs within an Artificial Chemistry in which
reactions can be reversible, and replication is not taken for
granted. In previous work one of us had shown that although
inherently slower than Evolutionary Algorithms, Catalytic
Search is able to solve simple problems while naturally main-
taining diversity in the population. This is a useful property
when the environment may change.

In this paper, we compare the performance of Catalytic
Search and a Genetic Algorithm in a dynamic environment
represented by a periodically changing objective function.
We investigate the impact of parameters such as tempera-
ture, inflow/outflow rate, and amount of catalysts. We show
that Catalytic Search is generally more stable in the face of
changes, although still slower in achieving the absolute best
fitness. Our results also offer some indications on how cat-
alytic search could either degenerate into random search, or
progress towards evolutionary search, although the lattertran-
sition has not been fully demonstrated yet.

Introduction

Artificial chemistries have been used to understand the ori-
gin of evolution from a pre-evolutionary, random initial state
(Fontana and Buss (1994); Dittrich and Banzhaf (1998)), to
devise bottom-up chemical computing algorithms for emer-
gent computation (Banzhaf et al. (1996); Dittrich (2005)),
and to build new optimization algorithms (Banzhaf (1990);
Kanada (1995); Weeks and Stepney (2005)), among other
usages. The motivation for the present work lies at the
intersection of these three application domains. We are
interested in exploring the emergent computation proper-
ties of artificial chemistries for the construction of beamed
search schemes able to optimize solutions to user-defined
problems. Instead of a top-down, pre-designed optimiza-
tion algorithm, optimization could be regarded as a compu-
tation task to emerge from the bottom up, as an outcome
of molecule interactions. In this context, it is worth deter-
mining the conditions for the emergence of optimization, of
which evolution is only one example.

Bagley and Farmer (1991) showed that primitive
metabolisms calledautocatalytic metabolismscan emerge
in an artificial chemistry where polymers undergo reversible
polymerization reactions. One of the conditions for the
emergence of such metabolisms is to drive the system out of
equilibrium by a constant inflow of molecules from the food
set, accompanied by a non-selective dilution flow. In this
case, some reactions may be boosted bycatalytic focusing:
starting from a random soup of molecules, the system ends
up focusing most of its activity and mass into a few types
of molecules, self-organizing into autocatalytic reaction net-
works that consume food molecules to produce longer poly-
mers. The molecules taking part in this autocatalytic core
can be regarded as primitive metabolisms.

In previous work, Yamamoto (2010) proposedcatalytic
search, an optimization scheme inspired by catalytic focus-
ing. Catalytic search is based on a pre-evolutionary chem-
istry (Nowak and Ohtsuki (2008)), where reactions might
be reversible, and replication is not taken for granted. The
reaction energy functions are assigned such that reactions
towards fitter products are favored. The selective pressurein
catalytic search comes from the differences in reaction rates
for different molecules in the reactor. These differences can
be amplified selectively by catalysts: some reactions can
be accelerated by catalysts that decrease the activation en-
ergy barrier necessary for them to occur. Due to the absence
of direct replication, the performance of such scheme lies
between that of a random search, and that of an evolution-
ary algorithm. In spite of such apparent weakness, catalytic
search and related chemical schemes have many interesting
properties, as pointed out by Weeks and Stepney (2005): the
potential to undo wrong computations or to decompose bad
solutions through reversible reactions; the ability to steer the
reaction flow towards the production of good products by
shifting the equilibrium distribution of molecules; a certain
robustness to noisy fitness feedback; and the prevention of
premature convergence through a natural tendency to gen-
erate and maintain diversity in the population. This paper
focuses on the latter property.

1



Catalytic Search
In this section we summarize the catalytic search algorithm
by Yamamoto (2010), and introduce our own modifications:
an improvement of the original enzyme binding scheme, and
its adaptation to run continuously in dynamic environments.

Catalytic search works as follows: initially, a random
soup ofmonomers(letters from an alphabetΣ) is generated.
These monomers later concatenate intopolymers(strings of
symbols fromΣ). Each polymer represents a candidate so-
lution to the problem to be solved. At every time step, two
molecules (monomers or polymers) are chosen for collision.
They react with a probabilityk, which is also thekinetic
coefficientof the reaction. If they react, acrossoverof the
two molecules is produced, and the two resulting molecules
are injected into the soup. The educts are consumed in the
process. The collision is elastic with probability(1− k).

A crossover reaction can be written as follows:

A+B
kf

⇀↽
kr

C +D (1)

whereA, B, C andD are strings from an alphabetΣ, kf is
the coefficient of the forward reaction, andkr is the coeffi-
cient of the reverse reaction. An example for strings from
Σ = {a, b, c, d} is:

abdba+ ccbdd
kf

⇀↽
kr

abdbdd+ ccba (2)

Crossover is a mass-conserving operation, i.e. it con-
serves the total number of symbols before and after the re-
action. Concatenation occurs as a special case of crossover
where the crossover points are the beginning and end of each
string, respectively.

Figure 1: Potential energy changes during catalysed and un-
catalyzed chemical reactions. From Yamamoto (2010).

Once the molecules have collided, the reaction only oc-
curs if they have sufficient kinetic energy in order to over-
come theactivation energy barrier(Ea) needed for the re-
action. Acatalystis a substance that participates in a chem-
ical reaction by facilitating it without being consumed in the

process. Its effect is to lower the reaction’s activation energy
peak, thereby accelerating the reaction, while leaving the
initial and final states unchanged. This acceleration comes
from the fact that the coefficientk decreases exponentially
with the activation energy, following theArrhenius equation
from chemistry:

k = Ae−
Ea
RT (3)

whereA is the so-calledpre-exponential factorof the reac-
tion, Ea is its activation energy, T is the absolute tempera-
ture, andR is a constant.

Figure 1 shows the energy diagram for a typical reversible
reaction, where the effect of catalysis is highlighted witha
red dotted line. The difference in potential energy before
and after the reaction is given by∆G:

∆G = Gp −Ge (4)

whereGe is the potential energy of the educts, andGp that
of the products. In Figure 1,Ge = GX , Gp = GY , and
∆G > 0 if the reaction moves from left to right (i.e. in
the direction fromX to Y , the forward reaction); in the
direction of the reverse reaction (fromY to X), we have
Ge = GY , Gp = GX , and∆G < 0. In this figure, the re-
verse direction is favored since it leads to more stable prod-
ucts (i.e. ∆G < 0), while the forward direction is unfa-
vored (∆G > 0). The reverse direction sees a lower acti-
vation energy than the forward direction (Ea(Y → X) <
Ea(X → Y )) therefore it will be faster on average. Catal-
ysis further reduces this barrier, accelerating the reaction
in both directions (E′

a(Y → X) < Ea(Y → X) and
E′

a(X → Y ) < Ea(X → Y )).
In order to steer the system towards the production of fit-

ter solutions, in catalytic search the potential energy of a
molecule is mapped to the fitness of the solution that it repre-
sents. The fitness function must be designed such that lower
values indicate better fitness, for instance, a shorter distance
to the optimum, or a lower cost of the solution. The educt
and product energies are calculated as the sum of the fitness
of the molecules involved:

Ge = f(A) + f(B) (5)

Gp = f(C) + f(D) (6)

wheref(i) is the fitness of solutioni. In this way, fitter so-
lutions have a lower potential energy and are therefore more
stable. The production of fitter solutions (i.e. with lower
potential energy) is favored (∆G < 0), whereas the produc-
tion of poorer solutions is unfavored (∆G > 0), which is the
desired effect.

The activation energy for a reaction is further mapped to
the estimated computation cost of producing a solution: so-
lutions that are more difficult to compute must overcome a
higher energy barrier, hence will be less likely to occur. This
leads to a form of double-objective optimization scheme that
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seeks to improve the fitness of the solution as well as the
efficiency of its computation; these two objectives can be
balanced via a proper choice of energy functions.

An increase in activation energy∆Ea corresponding to
the cost of the operation is then added on top of the high-
est potential energyG. ∆Ea corresponds to the portion
Ea(Y → X) in Figure 1.

The activation energies of the forward and reverse reac-
tions,Eaf andEar respectively, are:

if ∆G ≤ 0

{

Eaf = ∆Ea

Ear = ∆Ea −∆G
(7)

if ∆G > 0

{

Eaf = ∆Ea +∆G

Ear = ∆Ea

(8)

The coefficientskf andkr follow a simplified form of the
Arrhenius equation:

kf = e−αEaf/T (9)

kr = e−αEar/T (10)

whereα is a configuration parameter of the algorithm (cur-
rently set toα = 1), andT is the temperature of the reactor.

This scheme is able to steer the flow of production of can-
didate solutions towards better ones, without explicit repli-
cation, and without an explicit memory of which molecules
produced good solutions. The search process is guided by
the differences in reaction rates to move from one pair of
candidate solutions to another.

Enzymes
The energy-based reaction steering scheme described above
is further complemented with an “enzymatic” step: reac-
tions may be catalysed by “enzymes” (especially encoded
strings) that decrease the needed activation energy. In bi-
ology, enzymes are proteins with catalytic function. In this
paper, we use the word “enzyme” as a metaphor for our cat-
alytic agents, without any specific biological meaning, so the
words “enzyme”and “catalyst” will be used interchangeably.

In nature, catalysts act on both forward and reverse sides
of the reaction, therefore the equilibrium concentrationsdo
not change. In contrast, the enzymes used in catalytic search
only facilitate the forward reaction in the direction of fitter
products. This fallback solution is far from ideal since it
violates the laws of chemistry, but was adopted due to the
difficulty to obtain the focusing effect in a stochastic setting,
as will become apparent later in the results section.

Enzymes are kept in a separate pool. When two molecules
collide, if the reaction results in∆G < 0, i.e. in better fit
products, then an enzyme might be created for this reaction,
with a probabilitypc proportional to the amount of improve-
ment |∆G|. The next time similar molecules collide, the
enzyme can be used to facilitate their reaction, by lowering
the corresponding∆Ea.

In the original catalytic search scheme, only exact match
between enzyme and substrates was supported. In this paper,
we extend the matching scheme such that enzymes bind to
their substrates with a certain affinity, proportional to how
well their strings match. With this scheme, an enzyme may
accelerate similar reactions, and a reaction may benefit from
the combined catalytic effect of similar enzymes. For this
purpose, we have modified the format of the enzymes in the
original catalytic search scheme in order to take into account
the strength of matching between enzyme and substrates. In
our scheme, enzymes are built from chemical reactions as
follows. A generic crossover reaction between two educt
stringss1 ands2 can be written as:

s1as1b + s2as2b → s1as2b + s2as1b (11)

wheresij are the substrings insi separated by the chosen
crossover points. An enzyme for this reaction is a string of
the form: “s1a|s1b|s2a|s2b”, with the vertical bar “|” indicat-
ing the crossover points. The enzyme uniquely identifies the
reaction, and can therefore be used to represent it in molecu-
lar form, constituting a memory of past successful reactions.

We use the similarity between the enzyme and the con-
catenated substrates as the affinity metric. The similarityis
the number of matching positions in the alignment between
the two strings. For the example of Reaction (2), the cor-
responding perfectly matching enzyme is “abd|ba|cc|bdd”.
If another reaction between similar strings with similar
crossover point happens, say, one described by enzyme
“abb|a|cc|bd”, then the similarity between the two corre-
sponding enzymes is high (10 over a maximum of 11 in this
example), leading to a higher catalytic enhancement. The
binding strength is then scaled to the length of the short-
est string. More exactly, the binding strength function be-
tween two stringss1 and s2 is defined asbind(s1, s2) =
similarity(s1, s2)/min(length(s1), length(s2)).

Once two molecules collide and their crossover points are
decided, a small number of enzymes (subsetB) are drawn at
random from the enzyme pool, and their matching strengths
are calculated with respect to the perfect enzymec for the
reaction. The contributions of all enzymes are added up to-
gether: sc =

∑

b∈B bind(b, c). The sum of the strengths
is then used to calculate the reduction in activation energy
contributed by the enzymes. Ifsc ≥ 1, the new activation
energy becomes:

∆E′

a =
∆Ea

sc
(12)

else∆Ea remains unchanged.
In order to make sure that the enzyme pool is periodically

refreshed and does not grow unbounded, enzymes are sub-
ject to a non-selective dilution flow beyond the maximum
capacity of the enzyme pool,Cmax.

We have further modified the algorithm to run continu-
ously, not stopping when a solution is found, in order to run
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it in dynamic environments. The updated algorithm is shown
in Algorithm 1.

Algorithm 1 Catalytic Search Algorithm
1: S: multiset of candidate solutions
2: C: pool of enzymes (catalysts)
3: Cmax: maximum capacity ofC
4: initialization:
5: S = random soup ofN monomersm ∈ Σ
6: C = ∅
7: while true do
8: expel two random moleculese1 ande2 out ofS
9: (i1, i2) = random crossover points withine1 ande2

10: (p1, p2)← crossover(e1, e2, i1, i2)
11: Ge = fitness(e1)+ fitness(e2)
12: Gp = fitness(p1)+ fitness(p2)
13: ∆G = Gp −Ge

14: Ea = (|e1|+ |e2|)/2
15: if ∆G > 0 then
16: Ea ← Ea +∆G
17: else if ∆G < 0 then
18: c = enzyme(e1, e2, i1, i2)
19: B ← drawnc enzymes fromC
20: sc =

∑

b∈B bind(b, c)
21: if sc ≥ 1 then
22: Ea ← Ea/sc
23: end if
24: pc = |∆G|/Ge

25: add another instance ofc toC with probabilitypc
26: while |C| > Cmax do
27: destroy a random catalyst fromC
28: end while
29: end if
30: kf = e−αEa/T

31: if dice(kf ) then
32: inject new productsp1 andp2 into S
33: else
34: inject eductse1 ande2 back toS
35: end if
36: end while

Catalytic search steers the flow of chemical reactions by
acting primarily on the rate coefficients rather than on the
concentrations. Therefore it has a natural tendency to keep
a diversity of molecules in the reactor, some of which are
rarely used because of a slow reaction speed, but neverthe-
less stay present at some concentration. These molecules
could become useful in the future, for instance when the en-
vironment changes. This provides a simple way to keep a
pool of alternative solutions in the population, and to switch
to different solutions by preferentially choosing different re-
action pathways to construct alternative solutions using the
elements in the pool. In this paper we perform experiments
to support this claim.

Genetic Algorithm in a Chemistry

For comparison purposes, a Genetic Algorithm (GA) is im-
plemented within a similar artificial chemistry. This GA was
briefly introduced in (Yamamoto (2010)). Here we describe
it in more detail for completeness. It is a variation of a
Steady-State Genetic Algorithm (SSGA) based on tourna-
ment selection. SSGA is a non-generational evolutionary
algorithm in which at each time step, individuals are se-
lected for evaluation and reproduction, without a synchro-
nized generational loop (see Lozano et al. (2008) for a sur-
vey).

The initial population in the “chemical GA” is also a col-
lection of monomers, as in catalytic search. At every itera-
tion, r individuals (the tournament size) are chosen at ran-
dom and placed in a “catalyst pocket”C. The two best indi-
viduals (winners of the tournament) producer − 2 children
by crossover and mutation. These children replace the other
r − 2 individuals who have lost the tournament. The full
algorithm is shown in Algorithm 2.

Note that in contrast with catalytic search, the GA is
not mass-conserving: the new individuals might have com-
pletely different sizes from those they replaced. This is done
in order to keep the chemical version of the GA as close as
possible to a normal GA.

Algorithm 2 Steady State Genetic Algorithm in a Chemistry
1: S: multiset of candidate solutions
2: r: tournament size
3: pc: crossover probability
4: pm: mutation probability
5: initialization:
6: S = random soup ofN monomersm ∈ Σ
7: while true do
8: C: set of tournament members
9: expelr random molecules out ofS and inject them

intoC
10: expel the two fittest moleculese1 ande2 out ofC
11: for i = 1 to r/2 − 1 do
12: if dice(pc) then
13: (p1, p2)← crossover(e1, e2)
14: else
15: p1 = e1, p2 = e2
16: if dice(pm) then
17: p1 ← mutate(p1)
18: end if
19: if dice(pm) then
20: p2 ← mutate(p2)
21: end if
22: end if
23: injectp1 andp2 into S
24: end for
25: end while
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Experiments
Yamamoto (2010) compared catalytic search, GA and a ran-
dom search to solve instances of the OneMax problem, ex-
tended to arbitrary target strings from a given alphabetΣ.
The OneMax problem consists in maximizing the number
of ones in a binary string, which is a special case of finding
a hidden sentences ∈ Σ+, made of a sequence of letters
from Σ. The optimum solution to this problem is known to
be easy to find, facilitating the comparison of the algorithms
under ideal conditions.

Yamamoto (2010) had already shown that catalytic search
is able to solve simple problems, but in a slower manner than
a GA. She had also shown that while catalytic search moves
steadily towards the goal, a purely random search not only
does not find the optimum but also diverges.

In this paper we focus on comparing catalytic search and
GA under a changing environment, simulated by a target ob-
jective that is periodically modified. Furthermore, we in-
vestigate the influence of several parameters on the behav-
ior of catalytic search, namely, the size of the enzyme pool,
the amount of inflow/outflow, and the temperature. Two in-
stances of the hidden sentence problem are used: one with
binary strings with a target of all ones (OneMax), and an-
other with an alphabetic sentence. They are shown in Table
1, where “id” is the identifier of the instance (subsequently
labeled as “case 1” and “case 2” on the plots), andss is the
size of the search space for each instance, when considering
only sentences of length up to|s|.

The∆Ea cost function is set to the average length of the
reacting strings, as in (Yamamoto (2010)). Fixed parameters
set to default values are shown in Table 2.

id Σ |Σ| target sentences |s| ss
1 01 2 1111111111111111 16 131070
2 a-z 26 catalyticsearch 15 1.744e+21

Table 1: Problem instances used

size of the initial population of monomersN0 = 100
number of enzymes drawn from the
enzyme pool for each catalysed reaction |B| = 10
GA tournament size r = 4

Table 2: Fixed parameter values

Results
We measure the obtained fitness and the ability to maintain
diversity in the presence of changes. For catalytic search,
we investigate the impact of the amount of inflow/outflow,
the temperature and the size of the enzyme pool. Diver-
sity is measured using a multiset diversity metric (Mattiussi
et al. (2004)). It measures the fraction of unique elements
(molecules) over the total size of the multiset (population
size).

The target string changes 3 times during a run, att =
25, 50, 75 (in units of 100 iterations). The target string is
modified simply by applying the same mutation operator
used in GA, with a given mutation probability per symbol
of µt. All the results shown reflect the average of 10 runs.
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Figure 2: Average diversity and average best fitness for the
genetic algorithm with changing target strings.

First of all, we compare GA and catalytic search for tar-
get mutation valuesµt varying from 0.1 to 1.0, representing
slight to severe environmental changes.

Figure 2 shows the behavior of the GA under this sce-
nario. As expected, bigger changes (represented by a higher
µt) disturb the optimization process to a greater extent.
For case 1, the amount of worsening in fitness corresponds
roughly to the amount of target mutation added. For ex-
ample, forµt = 1.0 (the target string changes entirely) the
search restarts from scratch, with the best fitness going back
to its initial value. Forµt = 0.1 (the target string changes
slightly) the best fitness jumps to around 10% of its ini-
tial value, and so on. For case 2, the fitness also presents
the characteristic sawtooth, but the recovery after changes is
slower due to the higher difficulty of the problem.

The diversity of the population in GA displays a curious
behavior under higher target mutation values. This is es-
pecially visible on case 1: soon after the target changes,
the diversity jumps nearly to the maximum, and then de-
creases as the system approaches the optimum. The latter
decrease in diversity is a well-known phenomenon in evolu-
tionary computation, however the spontaneous jumps seem
more surprising.

Figure 3 (left) shows the behavior of catalytic search un-
der the same situation, for the case of no catalysis (empty
enzyme pool), no inflow/outflow, and temperatureT = 1.
Naturally, the GA is much faster than the catalytic search
at finding the optimum, which is an expected outcome. A
more surprising result is that the behavior of catalytic search
is qualitatively distinct from the GA: a small amount of tar-
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Figure 3: Average best fitness for catalytic search,
with/without inflow/outflow.

get mutation does not seem to affect the system so clearly as
it does for GA: sometimes, it even seems to help the search,
such as aroundt = 25 for case 1 andµt ≤ 0.5.

Figure 3 (right) shows what happens when we introduce
a small amount of inflow/outflow. This is represented by
a decay parameterpd = 0.1, meaning that at every itera-
tion, with probabilitypd, a negative tournament with sizer
is executed:r = 4 individuals are extracted at random from
the population; their fitness is evaluated, and the one with
the worst fitness (the loser of the tournament) is destroyed.
It is then replaced by its length in new randomly generated
monomers. In this way we ensure a mass-conserving in-
flow/outflow mechanism that combined with a negative se-
lection mechanism makes sure that worse individuals are re-
placed with a higher probability. Here two types of behavior
can be distinguished:

• for high target changes (µt ≥ 0.5) the behavior is quali-
tatively different from that with no inflow: it looks more
like a GA (the fitness jumps when the target changes) al-
though quantitatively (in terms of absolute fitness values)
it still cannot optimize as fast as GA.

• for low target changes (µt ≤ 0.25) the behavior looks like
the catalytic search with no inflow/outflow.

Increasingpd does not seem to help: it floods the system
with new monomers that cannot be consumed on time, and
also causes the search to become more random.

Figure 4 compares the diversity of the population for cat-
alytic search with and without inflow/outflow, for both cases
studied. In contrast to the GA, the diversity in catalytic
search is unaffected by the mutation of the target string.
All mutation values produced similar figures, so we chose
to plot only the results forµt = 0.5.

At the beginning, the population is made entirely of
monomers, therefore the diversity is at most|Σ|/N , i.e. 0.02
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Figure 4: Average diversity for catalytic search, with and
without inflow/outflow.

for case 1, and 0.26 for case 2, forN = 100. It then in-
creases progressively as new solutions are built by concate-
nating monomers. The fact that the diversity is close to the
maximum for the case of no inflow/outflow (pd = 0 on Fig.
4) means that in this situation, every individual in the pop-
ulation is nearly unique; there is no visible catalytic effect
fostering the production of selected individuals.

For the case with inflow/outflow (pd = 0.1 on Fig. 4) a
lower diversity is observed. This is explained by the constant
inflow of new monomers: since the size of the alphabet is
small compared to the population, the monomer population
necessarily contains a lot of copies of the same molecule.
This is more evident for case 1, which uses a binary alpha-
bet. There, the inflow causes the diversity to decrease much
more prominently than in case 2.

Catalysis is expected to decrease diversity, by focusing the
mass of the system into fewer species when the system is out
of equilibrium. This phenomenon has not been observed in
our system: the plots forCmax = 100 andCmax = 1000
closely resemble Fig. 4. This result indicates that the way
catalysis is implemented in this system is not sufficient to
modify the concentration pattern significantly when out of
equilibrium, and focus most of the mass of the system into
fewer, selected species. Catalysis does have a moderate ef-
fect on the performance, as will be shown in Figures 5 and 6.
However, this effect is probably achieved primarily by accel-
erating a few reactions selectively by increasing their kinetic
coefficients, and not by a significant concentration change.
Even if faster, the enzymatic reactions do not succeed to fo-
cus sufficient mass, since the amount of possible reactions is
not restricted: random crossover points are chosen at every
time step, leading to different outcomes. This issue deserves
further investigation. Actually, it is not straightforward to
design an artificial chemistry to exhibit the focusing effect
reported by Bagley and Farmer (1991), and it is even more
difficult to cause it to spontaneously produce autocatalytic
networks, which could later lead to the emergence of a GA-
like scheme. On the other hand, the fact that catalytic search
is able to keep diversity under a wide variety of conditions
is a good property worth exploring.

We now look at the influence of the temperature and of the
amount of enzymes in the catalyst pool. We takeµt = 0.5
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Figure 5: Influence of temperature and catalysis, no in-
flow/outflow

as an example (other values ofµt produced similar results).
The temperature makes all reactions faster, non-selectively,
while the enzymes selectively speed up a few matching reac-
tions. Figure 5 compares the best fitness of catalytic search
for varying temperatures, with and without explicit cataly-
sis, and no inflow/outflow (pd = 0). We first look at the
results without catalysis (left side). For case 1, increasing
the temperature to moderate values improves the search: the
optimum temperature is around2 ≤ T ≤ 4. For case 2,
increasing the temperature does not seem to help: the best
fitness does not improve. This can be explained by the fact
that the energy barrier for case 1 might be too high, exces-
sively penalizing the longer solutions necessary to solve this
problem. Case 2 suffers from the same problem, but has
a much larger search space, so merely increasing the tem-
perature, a global parameter affecting all individuals, isnot
sufficient to improve the search.

Very high temperatures (for example,T ≥ 12 for case 1,
T ≥ 8 for case 2, Fig. 5 (left), without catalysis) introduce
more noise in the system, which becomes closer to a random
search and hence tends to diverge.

Figure 5 (right) shows the effect of catalysts, for a to-
tal capacity of the catalyst pool set toCmax = 1000 en-
zymes. Catalysts help to improve the search and sometimes
also help to stabilize the system: for lower temperatures,
the system with catalysts moves faster towards the optimum;
for higher temperatures, sometimes the catalysts prevent the
search from becoming random, as forT = 12 in case 1.

When combining catalysis with inflow/outflow (Cmax =
1000 andpd = 0.1) the effect of catalysis becomes barely
noticeable (Figure 6). This could be due to the fact that indi-
viduals that could be recognized by the enzymes are then se-
lected for destruction, while new individuals for which there
are no ready-made catalysts are created at a higher rate. Fig-
ure 6 also shows that the temperature has little impact on the
performance (except for case 1 forT = 1 vs. other values
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Figure 6: Influence of temperature and catalysis, with in-
flow/outflow

of T ). More importantly, the system with inflow/outflow no
longer tends to diverge to a random search when the tem-
perature increases, which is a positive aspect. The sawtooth
pattern reminding us of GA appears here again, as in Figure
3 (right).

Related Work
This work was inspired mainly by Bagley and Farmer
(1991), Banzhaf (1990), Kanada (1995), and Weeks and
Stepney (2005).

Farmer et al. (1986) identify a critical probability of
catalysis, near which the spontaneous emergence of self-
sustaining autocatalytic networks becomes highly proba-
ble. Bagley and Farmer (1991) then show the spontaneous
emergence of autocatalytic metabolisms, together with fur-
ther conditions for their emergence. However, their results
were based on a random assignment of catalytic efficien-
cies. Methods still lack for designing a proper structure-
to-function mapping in a string-based chemistry, that would
lead to a critical catalysis probability in the range neededfor
such emergent phenomenon to occur and persist. Hintze and
Adami (2008) showed the evolution of metabolisms using a
string-based chemistry with binding affinity and specificity.
However, their design already assumes a whole cell structure
with interacting genes and proteins.

Suzuki et al. (2003) enumerate minimal conditions for the
evolution of artificial life forms, however they do so in a
qualitative way. The quantitative conditions for the emer-
gence of life subsystems (including metabolism) in an artifi-
cial environment are still not entirely understood, and meth-
ods for designing emergent algorithms based on these prin-
ciples are still lacking. Designing algorithms inspired by
such thin border between life and inanimate chemistry could
help to understand such conditions and to devise correspond-
ing methods in an iterative way.

The Molecular Travelling Salesman by Banzhaf (1990) is
7



an optimization algorithm based on an artificial chemistry in
which molecules representing candidate solutions are pro-
cessed by machines that float in the reactor. These machines
perform variation and selection, and are therefore closer to
our version of GA in a chemistry.

In the Chemical Casting Model (CCM) by Kanada (1995),
reaction rules modify and select molecules (candidate solu-
tions) such as to drive the system towards a more ordered
state (with lower entropy) in which molecules encode better
solutions. The fitness mapping in CCM is similar to cat-
alytic search: CCM seeks to maximize order by minimizing
entropy (which is a macroscopic quantity), whereas catalytic
search seeks to improve the fitness by moving towards lower
energy levels at the microscopic level.

In the Artificial Catalysed Reaction Networks by Weeks
and Stepney (2005), molecules encode partial solutions that
are constructed via reversible polymerization reactions.Fit-
ter products are rewarded by catalyzing their own produc-
tion, therefore each molecule is potentially an autocatalyst,
in contrast to our work where autocatalysis is not assumed.

A lot of work has been done on improving evolutionary
computation for dynamic environments (see Jin and Branke
(2005)). However, the potential of pre-evolutionary schemes
in such context remains to be explored.

Summary and Conclusions
Our results reveal interesting aspects and point to many is-
sues to be investigated. First of all, the behavior of catalytic
search in the presence of changes is qualitatively different
from that of an evolutionary algorithm. Evolution is capable
of fast optimization, but is also more severely affected by
changes. Catalytic search, on the other hand, is slower but
also less sensitive to changes, and able to maintain a diverse
pool of individuals in the population.

The behavior of catalytic search can be steered by pa-
rameters: a higher temperature, for instance, can cause the
system to degenerate into a random search. Such degra-
dation can be slowed down by the presence of catalysts,
which have a stabilizing effect provided that the amount of
inflow/outflow is very small or none.

Perhaps the most interesting phenomenon that could be
expected from such a system would be a spontaneous tran-
sition to an autocatalytic or collectively autocatalytic stage,
which could become a bridge towards a further transition
to an evolutionary stage. So far however, we were not able
to demonstrate such transitions in an emergent way. One
of the major improvements needed in the current system is
to ensure a larger impact of catalysts, in order to exhibit
the focusing phenomenon that could enable such transitions
to occur spontaneously. This would require a carefully de-
signed structure-to-function mapping reflecting the required
catalysis probabilities. It would also require a more effi-
cient stochastic collision algorithm able to take into account
a large number of possible reactions with rates differing by

several orders of magnitude. Another major improvement
needed is to make the system more tolerant to a continuous
inflow/outflow, which is one of the primary conditions nec-
essary for catalytic focusing to succeed.
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