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Abstract

Cartesian Genetic Programming (CGP) literature repeatedly
reports that crossover operators hinder CGP search compared
to a 1 + λ strategy based on mutation only. Though there
have been efforts in making CGP crossover operators work,
the literature is relatively evasive on why the phenomenon is
observed at all. This contrasts with what happens in Linear
Genetic Programming (LGP), where we know that crossover
works well. While both CGP and LGP individuals can be
represented as directed acyclic graphs (DAGs), changing a
single connection gene in a CGP individual can drastically
alter the activeness of nodes in the entire graph, as opposed to
LGP where crossover changes are much more beneficial. In
this contribution, we demonstrate the phenomenon and show
that LGP evolution produces children that are far more similar
to their parents than in CGP. This lets us propose that the
design of LGP, namely the inclusion of steady-state memory
registers and program size regulation, serves to protect high-
fitness substructures from perturbation in a way that is not
provided for in CGP.

Introduction
Genetic Programming (GP) was first introduced by Koza to
evolve programs to solve symbolic regression and Boolean
problems by representing programs as trees (Koza, 1992,
1994a). Over the last three decades, we have seen the in-
troduction of new paradigms and methods in the search for
ever-better models. Two of these are Linear Genetic Pro-
gramming (LGP), where programs are represented as a se-
quence of instructions (Banzhaf et al., 1998), and Carte-
sian Genetic Programming (CGP), where a program is rep-
resented as a Directed Acyclical Graph (DAG) (Miller et al.,
1999; Miller and Harding, 2008).

Though both structures can be drawn as a DAG and are
thus comparable in structure (Wilson and Banzhaf, 2008),
the rule of thumb is that traditional crossover operators are
detrimental to CGP exploration (Clegg et al., 2007), whereas
it is mandatory for LGP. Although CGP crossover tech-
niques beyond the standard one-point or two-point crossover
have been proposed (Clegg et al., 2007; Kalkreuth, 2020),
it still remains standard practice to run CGP using (1 + λ)
strategies with mutation only. Though the phenomenon has

been repeatedly noted – and replicated in this paper – re-
searchers are not quite sure why this performance discrep-
ancy exists.

We posit that one- or two-point crossover in CGP is detri-
mental because introducing an entirely different set of con-
nections in the CGP graph is likely to activate a set of introns
(genetic material that did not contribute to the output until
then) that may have been undergoing some form of changes,
as well as de-activating high-fitness structures, which has the
combined effect of drastically changing the graph trace. In
LGP, on the other hand, the presence of registers allows the
graph to “anchor” substructures so that if one substructure is
perturbed by crossover or mutation, the other substructures
are less likely to be damaged. LGP also benefits from not
fixing the genotype size as it happens in CGP; this likely
allows crossover to better protect substructures from ampu-
tation.

We first discuss related work in the field of CGP crossover
before introducing details about CGP and LGP. We then ex-
plain our experimental method, discuss our results, and con-
clude with our main takeaways.

Related Work
Most work in CGP crossover focuses on developing working
crossover operators. Clegg et al. developed a crossover tech-
nique for CGP using real-valued parameters after demon-
strating that one-point and single-gene crossover are in-
effective operators (Clegg et al., 2007). Da Silva and
Bernardino used elitism to select the best individuals to
serve as parents, thus potentially preserving good subgraphs
(da Silva and Bernardino, 2018). Torabi et al. designed a
crossover technique that aligns parents to encourage their
similarity in order to decrease destructiveness (Torabi et al.,
2023). Kalkreuth has published a number of contributions
on CGP crossover, with several newly developed methods
such as phenotype diversity measurement (Kalkreuth et al.,
2015), swapping only active nodes in the form of sub-
graphs (Kalkreuth, 2020, 2021), and modularization (Husa
and Kalkreuth, 2018).

There has been little discussion of why crossover is a hin-
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Figure 1: Directed graph depiction of an LGP individual where only effective (non-intronic) instructions are shown. The output
R0 is shown as a blue square, the input R1 as an orange square, and constants in yellow. The operator % signifies the analytic
quotient.

drance to CGP in the first place. Cai et al. (2006) proposed
that one of the reasons for this failure is that the phenotyope
is dependent on the position of genes in the chromosome.
Cui et al. (2023) build off Cai et al. (2006) by claiming that
the directed requirement forces a non-uniform probability
for connection mutation, which they call “positional bias”.
They argue that nodes closer to the input have a higher prob-
ability of being active causing new nodes closer to the out-
put to connect to previously inactive nodes and making them
overly destructive to the graph structure. However, LGP and
Tree GP have similar ordering issues as they are step-by-
step algorithmic procedures too. Wilson and Banzhaf have
shown that the main point of divergence between LGP and
CGP is the nature of input connection restrictions: while
CGP forces acyclicity, LGP has to rely on registers to store
memory Wilson and Banzhaf (2008).

LGP and CGP
LGP
In LGP, individual programs read from and write to a set of
registers rn ∈ R where some are read-only (input or con-
stant) values and the remaining registers are read-write, ini-
tialized to zero at the outset. In conventional implementa-
tions of LGP, the output is stored in r0, multi-dimensional
input is stored in ri ∈ [r1, ..., rj ], and the results of inter-
mediate calculations are stored in registers rc ∈ [rj+1, rk].
An individual instruction (a gene) is thus composed of four
items: A destination register d ∈ r0 ∪ rc, an operator o, and
some operands, which are drawn from a ∈ R. Hence, an
LGP instruction directs the program to read values from any
i registers, perform an operation, and store the result in any
valid register. Note that memory cells we call registers can
also hold more complex data structures like vectors or matri-
ces (with corresponding operations applied in instructions),
as Real et al. (2020) point out.

In this contribution, LGP encoding takes the form

p ∈ P =


d0 o0 a0,1 a0,2
d1 o1 a1,1 a1,2
... ... ... ...
dm om am,1 am,2

 (1)

where program p in the population P is a two-dimensional

matrix with m ≤ n instructions. LGP conventionally al-
lows programs to be of variable size, and unless explicitly
mentioned, we follow suit in this paper.

Crossover and mutation are relatively simple operations.
Standard one- and two-point crossover cuts between instruc-
tions, as does macro-mutation, while micro-mutation edits
the internals of an instruction. In addition to those methods,
we also test uniform crossover, where half of an individ-
ual’s instructions are chosen at random for recombination
(Oltean et al., 2004). Crossover in particular is conducted
instruction-wise rather than point-wise as it would be with a
one-dimensional vector.

The phenotype of a LGP individual can be seen as a di-
rected graph using the method described in Brameier et al.
(2007) to remove non-effective instructions. An example
individual phenotype is shown in Figure 1 trained on the
Nguyen-4 problem (Uy et al., 2011) which takes one con-
stant value and the input value, and after four instructions
returns a result, which is then linearly scaled because of our
correlation-based fitness measurement.

LGP individuals often feature instructions in the genotype
that contribute nothing to the phenotype; these are called in-
trons. Introns generally make up a significant proportion
of instructions in an individual. Though such instructions
do not affect the calculation, they are stilluseful to provide
new genetic material as they can be activated in future gen-
erations, and are considered generally beneficial to search
(Sotto et al., 2022).

CGP
A CGP individual is an encoding of a directed acyclic graph
(DAG). Each instruction is encoded as a “node”, which usu-
ally contains two connections (which point to the output of
previous nodes) and a single operator. There are also final
output nodes which can reference any node or input. The
acyclic character of the graph is enforced in evolutionary op-
erations by preventing connections from pointing to nodes
further forward than the current node. However, instead of
reading to and writing from steady-state registers, nodes take
the output of previous nodes as input.

Like LGP individuals, a CGP program can be represented
with a linear vector of genes, so basic crossover and muta-
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Figure 2: DAG depiction of an CGP individual where only active (non-intronic) nodes are shown. The input node I 0 is shown
as an orange square, constants as yellow squares, the output node O 0 as a blue square, and scaling as green diamonds.

tion methods are easy to implement. However, due to the
known crossover problems, the standard practice is a (1+λ)
approach, where normally λ = 4 (Clegg et al., 2007; Cui
et al., 2023). Intronic nodes, which are not called in the
graph trace, are labelled inactive nodes that can be activated
(and active nodes can be disabled) by evolutionary opera-
tors.

An example CGP individual is shown in Figure 2. Since
CGP cannot have cycles, each instruction is shown individ-
ually. Conventionally, a CGP individual with an arity of two
is encoded as a vector

p ∈ P = o0a0,1a0,2o1a1,1a1,2...onan,1an,2O0...Om, (2)

where program p is part of the population P and consists of
n, nodes, each containing some operator o and two nodes
to take as input an1 and an2, ending with a set of output
nodes O. While we use the one-dimensional vector for point
crossover, we use a two-dimensional matrix for other opera-
tions:

p =


o0 a0,1 a0,2
o1 a1,1 a1,2
... ... ...
on an,1 an,2

 ∪ [O0, Om−1], (3)

which is analogous to our LGP representation and is simply
easier to implement in Python 3.

Observation of the CGP Crossover
Phenomenon

To confirm that crossover is indeed a hindrance to CGP,
we tested five CGP methods and 3 LGP methods. Our
CGP methods included two mutation-only methods, stan-
dard CGP(1+λ) and also CGP(16+64), plus three methods
with crossover, CGP(40+40) with both one- and two-point
crossover, and Kalkreuth’s Subgraph Crossover method
(Kalkreuth, 2020). Our LGP methods used one-point, two-
point, and uniform crossover Oltean et al. (2004) with four

calculation registers. In addition, we tested LGP(1+λ) with-
out crossover, but the results were so poor that they are not
included in our analysis. We fix CGP individuals to 64 in-
structions, and impose a limit of 64 instructions on LGP. If
an individual ends up exceeding this limit, instructions are
then deleted at random.

We used the set of four arithmetic operators, addition,
subtraction, multiplication, and the analytic quotient (Ni
et al., 2012). Each algorithm was run 50 times for each prob-
lem described below (350 trials per algorithm, or 2800 trials
in total) for 10000 generations, and a tournament size of 4, a
mutation rate of 2.5% and a crossover rate of 50% where ap-
plicable. Each trial was run on MSU’s High-Powered Com-
puting Cluster (ice, 2024). Table 1 summarizes our notation
and operators used for these algorithms.

Notation Xover Mutation
CGP(1+4) None 4(µ = 100%)

CGP(16+64) None 4(µ = 100%)
CGP-1x(40+40) One-Point (50%) µ = 2.50%
CGP-2x(40+40) Two-Point (50%) µ = 2.50%

CGP-SGx(40+40) Subgraph (50%) µ = 2.50%
LGP-Ux(40+40) Uniform (50%) µ = 2.50%
LGP-1x(40+40) One-Point (50%) µ = 2.50%
LGP-2x(40+40) Two-Point (50%) µ = 2.50%

Table 1: Description of evolutionary parameters to demon-
strate the effects of crossover.

Instead of the conventional RMSE fitness function, we
use the correlation fitness function described in Haut et al.
(2023), where

fi = 1− r2, (4)

that is to say, the fitness f of individual i is dependent on the
Pearson correlation coefficient r. We use correlation rather
than RMSE because it has been shown to be more effective
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Algorithm Koza-1 Koza-2 Koza-3 Nguyen-4 Nguyen-5 Nguyen-6 Nguyen-7
CGP(1+4) 0.00054 0.01047 0.02448 0.00072 0.00044 0.00045 0.00001

CGP(16+64) 0.00012 0.00297 0.00321 0.00016 0.00004 0.00006 < 0.00001
CGP-1x(40+40) 0.00178 0.05296 0.09669 0.00245 0.00168 0.00136 0.00002
LGP-1x(40+40) 0.00105 0.01445 0.01850 0.00110 0.00075 0.00065 < 0.00001
CGP-2x(40+40) 0.00121 0.02355 0.1105 0.00277 0.00152 0.00141 0.00005
LGP-2x(40+40) 0.00040 0.00855 0.01325 0.00060 0.00015 0.00070 < 0.00001

CGP-SGx(40+40) 0.00362 0.02157 0.11874 0.00315 0.00106 0.00115 0.00011
LGP-Ux(40+40) 0.00265 0.01995 0.01795 0.00275 0.00060 0.00090 0.00020

Table 2: Median correlation fitness for each problem and algorithm after 50 runs. Algorithms that perform significantly better
than their counterpart are shown in bold.

in search since it takes into account the shape of the desired
function, not just local error. Linear coefficients are then
found to be able to scale predictions to match the range of
the training function.

Our algorithms are applied on seven univariate objec-
tive functions, three from Koza (1994b) (labeled Koza-
1/2/3) and four from Uy et al. (2011) (labeled Nguyen-
4/5/6/7), shown in Table 3, to match the test functions in
Kalkreuth (2020). These are relatively simple problems,
and testing on more complex problems deserves a more
in-depth investigation. Our training sets consist of twenty
randomly-chosen values from the domain of [-1, 1], except
for Nguyen-7, which has a domain of [0, 2]. Code is avail-
able at https://github.com/MarkKocherovsky/
cgp_crossover/tree/main.

Problem Function Domain
Koza-1 x4 + x3 + x2 + x [-1, 1]
Koza-2 x5 − 2x3 + x [-1, 1]
Koza-3 x6 − 2x4 + x2 [-1, 1]

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x [-1, 1]
Nguyen-5 sin(x2) cos(x)− 1 [-1, 1]
Nguyen-6 sin(x) + sin(x+ x2) [-1, 1]
Nguyen-7 ln(x+ 1) + ln(x2 + 1) [0, 2]

Table 3: Symbolic Regression Problems used in the exper-
iment. Each trial took 20 points at random from the given
domains.

Because we are interested in the relative performance
of our algorithms, we only consider results on trained
data, not on unseen test data. Table 2 shows the median
fitness for each algorithm applied to each problem. As
previously mentioned, LGP(1 + 4), with a median per-
formance of 1.0 on each problem, is not shown here.
Pairwise Mann-Whitney Test results can be found at
https://github.com/MarkKocherovsky/cgp_
crossover/tree/main/output/significance.
The mutation-only CGP(16+64) is clearly the best
performer in most problems. CGP without crossover

significantly outperforms all crossover CGP methods,
demonstrating that crossover is indeed harmful to CGP’s
search process, further substantiated by the full range of
statistics, shown in Figure 3. We also see that, as a whole,
CGP tests with different crossover operators tend to be
significantly outperformed by their LGP counterparts. In
summary, CGP without crossover significantly outperforms
CGP with crossover. Therefore, we have successfully
replicated the CGP Crossover Phenomenon.

Even CGP-SGx seems to be underperforming compared
to CGP(1+4), which contradicts Kalkreuth (2020). We spec-
ulate that this is caused by our usage of correlation fitness
rather than RMSE and Kalkreuth’s measure of iterations to
convergence rather than our method of checking fitness after
10,000 generations. This warrants further study.

Explanation of Phenomenon
We used an alignment scoring algorithm to measure how
much the best parent out of two parents matched their best-
performing child (Aygün and Ecer, 2017), where higher sim-
ilarity scores indicate more similar individuals. In Figure
4, we can see that overall, LGP methods tend to produce
children that are far more similar to their parents than CGP
methods. At first, this seems intuitive: Changing only a
single connection gene in CGP can completely change the
graph trace, and in one- or two-point crossover recombi-
nation provides ample opportunity for changes. However,
changing instructions in LGP can also disable or enable in-
structions, yet we do not see the same destructiveness in
LGP. This is likely due to two factors, the primary factor be-
ing the presence of calculation registers, and the secondary
being the variable length of LGP individuals.

To test the effect of registers on LGP, three new experi-
ments were conducted using the Koza-3 problem, chosen be-
cause it seems to be the most difficult problem out of the set.
We used three new pairs of LGP-1x configurations, where
there were four, two, or no calculation registers, and either
fixed-length or variable-length individuals.

We posit that an LGP program with no calculation regis-
ters is essentially a feedforward graph; the source registers
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Figure 3: Fitness statistics of each algorithm. Data points outside of 150% of the interquartile range are not shown.
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Figure 4: Similarity between best parents and best children within each pair of parents over time.

can only be R0 (output), R1 (input), or a constant, where
R0 can hold intermediate results as the program executes. A
CGP program (also of fixed size) can also only call from an
input node, constants, or an intermediate instruction node.
However, the linear and graph natures of the two paradigms
seems to play a distinct role in search, as we will see.

Figure 5 shows that CGP(1+4) and LGP-1x(40+40) with
four registers significantly outperform the other tested meth-
ods. When comparing pairs of fixed and variable length,
LGP-1x with two registers performs significantly better
when the individuals are of fixed size, and LGP-1x with-
out registers does not perform significantly worse when the
length is variable. However, with our “standard” four reg-
isters and variable length, LGP-1x performs far better than
if the four-register population’s length is fixed. Having four
registers is significantly more effective than having two or
no registers of either individual length configuration. The
population of two-register individuals with fixed length per-
formed significantly better than either zero-register strategy,
but the varied length counterpart did not perform signifi-
cantly differently. It is also clear that children in fixed-length

variants are much less similar than those in variable-length
runs except where there are zero registers. Finally, we ob-
serve that having more calculation registers is vital for simi-
larity.

These results clearly show that the number of registers
matters in evolving solutions to symbolic regression prob-
lems. This supports our hypothesis that registers act as
“anchors” to prevent the destruction of substructures dur-
ing crossover. LGP is not designed to act as a feed-forward
mechanism and thus needs to rely on the ability to store and
recall intermediate results. This ability means that if one
substructure is perturbed by an operation, other substruc-
tures are more likely to remain intact by virtue of lack of in-
teractions with the registers relevant to the former substruc-
ture, even if their instructions are activated or deactivated.

It is also evident that even with an adequate number
of registers, LGP individuals should not be fixed to a
certain length. We conjecture, following Banzhaf and
Bakurov (2024), that allowing programs to change size
through evolutionary operators allows the population to self-
regulate complexity, particularly by avoiding “amputation”
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Figure 5: Statistics of runs on Koza-3 with register and length ablation testing.

of highly-fit substructures. A fixed-size representation, on
the other hand, may be more likely to destroy good substruc-
tures due to a lack of flexibility in choosing the crossover
point.

Discussion and Further Work
In this paper we have made several relevant observations:

• Conventional crossover methods are not effective for pro-
gram search using Cartesian Genetic Programming, but
are effective in Linear Genetic Programming.

• When comparing the best individuals from a pair of par-
ents and their respective children, LGP methods produce
children that tend to be more similar to their parents than
CGP methods.

• LGP needs a sufficient number of calculation registers
and the ability to regulate individual size to help search
progress.

These observations lead us to propose that

• Registers in LGP act as anchor points for a program’s
overall structure, granting program substructures robust-
ness against the alteration of other substructures. As reg-
isters are not present in conventional CGP, the graph’s
structure is too vulnerable to operator-caused destruction.

• The ability to regulate program size allows LGP to dis-
card or add harmful or helpful instructions and/or sub-
structures, respectively, even if all the affected nodes are
intronic, thus allowing changes to be more cohesive and
thus possibly more effective. CGP lacks this ability, and
thus leaves itself more vulnerable to the transfer of incom-
plete modules.

These observations and conclusions allow us to make a
third contribution: proposing new avenues for the study of a
hitherto only weakly explored phenomenon:

• Studies pertaining to the actual properties of the graphs
and their substructures to determine what encourages (or
discourages) the usage of a particular substructure over
others, possibly using insights and methods described in
Hu and Banzhaf (2018).

• Graph studies to empirically ascertain registers’ use as an-
chor points and to directly observe their effects on pro-
gram similarity: measures and metrics that detect and
track substructures through generations might give insight
into relevant common properties.

• Studies on the effects of variable versus fixed-length indi-
viduals on LGP.

• Tests of different mutation and selection operators to see
if they contribute to this phenomenon.
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• Creation of new CGP variants and CGP-LGP hybrids
which would allow us to study the direct effect of reg-
isters and length-variability on crossover.

• Studies of different encodings of CGP and LGP pheno-
types and their treatment by evolutionary operators.

• Measurement of the effect of program similarity on
search.

• Testing on more complex problems, such as the Ackley
(1987) and Griewank (1981) functions.
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