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Abstract

We analyze an artificial economy model designed to handle
severe non-equilibrium situations. This agent-based model
is intended to allow innovation in the form of new technolo-
gies, producers and consumers entering (and leaving) the sys-
tem. Here we examine a disruption of consumption patterns
akin to the economic crisis brought about in the real econ-
omy through the corona virus and the following Covid-19
pandemic.

Introduction
Classical economics was developed on the basis of the idea
that systems tend toward equilibrium, and that they are thus
predictable, since the equilibrium state is in some sense sta-
ble. In particular, contemporary microeconomic theory is a
static equilibrium theory, formulated as a set of linear equa-
tions. The basic question it is designed to answer is how
Adam Smith’s legendary invisible hand manages to achieve
a stable set of prices and quantities of goods in the absence
of any global coordination. In this approach change is nor-
mally addressed by comparative statics. However, in the real
economy innovation in the form of new products and pro-
cesses means that the economy is continually transforming
itself, and so the equilibrium state is a goal that is contin-
ually displaced. Consequently, static theory is of little use
(Schumpeter, 1961; Gualdi and Mandel, 2019) in helping us
to understand the unfolding of major economic events like
the long term economic consequences of the current pan-
demic crisis.

Fortunately, with advances in methods for treating self-
organising and far from equilibrium systems, it has become
possible to model the self-organising dynamics and struc-
tural evolution of economic systems. To that end, we de-
velop an artificial economy as an agent-based model of an
economy consisting of producers (firms) and consumers, as
well as a set of algorithms that capture the behaviour of these
economic agents (Holland and Miller, 1991; Farmer and Fo-
ley, 2009). The system undergoes continuous endogenous
fluctuations, but also grows and changes because of innova-
tion. In previous work we have studied the ability of such an

Figure 1: Bi-partite graph representing the structure of a
simple economy consisting of technologies T1 ... T5 and
products P1 ... P7 produced through these technologies.

economy without innovation to return back to equilibrium
values during simulations (Recio et al., 2020a). The general
tendency in such a system will be toward increasing com-
plexity, as well as increasing efficiency when less produc-
tive technologies are replaced by more effective ones. These
fluctuations and trends represent the structural evolution of
the system (Recio et al., 2020b; Straatman et al., 2008).

Model of an Artificial Economy
An example of a very simple economy might look like that in
Figure 1. Note that we depict here the structure of this econ-
omy, with technologies and resulting products depicted, not
the actual agents (firms/businesses) that are in possession of
a technology and use it and its stock of materials to produce
a certain amount of products.

System structure
The structure of this economy can be represented by a pair
of von Neumann technology matrices (von Neumann, 1946)
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such as that shown in Table 1. The first matrix represents
inputs to the production process and the second matrix the
outputs, with each row representing a product and each col-
umn a technology. Thus, for example, Table 1 shows that
2/3 units of product 1 and 2/3 units of product 4 are used
by technology 2 (input matrix) to produce one unit of prod-
uct 5 (output matrix). We designate product 1 to represent
labour inputs, product 2 to represent money, and product 3
a waste product. At present, for simplicity, we restrict tech-
nologies to one target product, but in addition every technol-
ogy produces waste (this will allow us to incorporate aspects
of recycling or the circular economy later). Note that there
are some products defined as capital goods. For a manufac-
turing technology making use of these type of products the
capital good appears on both input and output matrices. The
difference on the input and output quantities of the capital
goods indicate depreciation, as shown in Table 1 by the net
amount of P5 (0.00844 = 0.07818 − 0.07036) used by T5
to produce P8.

The von Neumann technology matrices have two major
advantages over the standard Input-Output matrix. First,
they allow the possibility of having multiple technologies
producing the same product. This is particularly impor-
tant when modelling innovation, as we do here. Second,
they do not aggregate producers into sectors with a result-
ing loss of specificity. This facilitates an agent-based ap-
proach and is important in modelling innovation and evolu-
tion, where small individual differences may be the origin of
major structural changes.

System dynamics
The execution of economic activity is carried out by a pop-
ulation of agents of two types: producers and consumers.
Each producer is characterised by an identification number,
location, a stock of products, and a technology. (Currently
each producer is limited to a single technology, but this re-
striction is easily relaxed.) A producer decides how much
to produce on the basis of anticipated profit rate relative to
a ’normal’ rate, with higher anticipated profit rate leading to
greater production, as specified in equation 1.

Q = Qmin + (Qmax −Qmin)

(
1

1 + e−α(π−π0)

)
(1)

The estimated profit rate is the ratio of the value of a unit
of output to the cost of inputs required to produce it. Thus,
as shown in Figure 2, π = 1 is the break-even point. How-
ever, the agent evaluates profit against an expected or normal
level, π0, where it is frequently the case that π0 6= 1. Equa-
tion 1 gives the desired level of production, but the agent
may not be able to acquire the necessary inputs to achieve
it, either because of insufficient money to buy the inputs, or
because they are not available in the system. Also, because
the plan is based on observed prices, actual profit once the

Input matrix
T1 T2 T3 T4 T5

P1 1 2
3

1
2

1 0.25
P2 0 0 0 0 0
P3 0 0 0 0 0
P4 0 2

3
0 0 0.9

P5 0 0 1
2

0 0.07818
P6 0 0 0 1 0
P7 0 0 0 0 0
P8 0 0 0 0 0

Output matrix
P1 0 0 0 0 0
P2 0 0 0 0 0
P3 0.01 0.01 0.01 0.01 0.01
P4 1 0 0 0 0
P5 0 1 0 0 0.07036
P6 0 0 1 0 0
P7 0 0 0 1 0
P8 0 0 0 0 1

Table 1: Technology matrices of a typical manufacturing
economy. The economy being modelled here consists of
eight products and five technologies.

production plan is executed will in general differ from what
was estimated because prices will have changed since the
plan was made. If an agent fails to achieve at least 30 % of
the normal profit level, π = 0, for five consecutive iterations,
it will risk being removed from the system.

Each consumer is defined by an identification number, a
location, and a stock of consumable products. When more
than one consumer good is produced in the system, each
consumer has an individual profile of desired consumption.
Consumer agents are required to consume a certain amount
at each iteration; this comes from current purchases, or to the
extent that that is not possible because of insufficient money,
from a reserve of consumable goods that each consumer is
required to maintain. If the reserve is below the required
level, then in addition to current consumption the agent is
required to add to the reserve to the extent that cash is avail-
able. If a consumer agent is unable to consume the required
minimum for five iterations, it also risks being eliminated
from the system. Agents do not buy from and sell into a gen-
eralised market; rather they search out other agents that can
fulfill their needs, or respond to requests from other agents.
Each agent interacts with the closest agents that can satisfy
their needs. Update is sequential rather than simultaneous.
Agents further down the update list may find it impossible
to fulfill their requirements either for inputs or sale of out-
put. In order to eliminate this phenomenon as a systematic
bias, at each iteration a new update list is established in ran-
dom order. At each iteration, the price of each product is
adjusted on the basis of the ratio of the actual current stock
of the product to the desired stock, which is a running aver-
age of stock levels over the past five iterations, adjusted for
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Figure 2: Production function Q(π), i.e., the amount of pro-
duction Q over profit π used to simulate producer agent be-
haviour. A profit level of 1 represents the break-even point,
where costs are equal to revenue. Qmin=0, Qmax=1.5,
α = 10, and π0 = 1.

the number of producers. Prices are adjusted according to
equation 2 that gives the sigmoidal function shown in Fig-
ure 3 when the following parameters are used:
x0 = 0.15, ∆pm = 0.2, ∆pa = −

(
∆pm

1+e−αxo

)
+ ∆pm.

∆p =

{ −∆pm
1+e−α(x−(1+xo))

+ ∆pm −∆pa if x ≤ 1
−∆pm

1+e−α(x−(1−xo)) + ∆pa if x > 1
(2)

System evolution
The model as described so far generates the dynamics by
which an unperturbed economic system would move to equi-
librium. In that sense it is a fully dynamic analog of standard
microeconomic theory, similar to that in (Straatman et al.,
2013). However, as previously emphasized, modern eco-
nomic systems are profoundly innovative; that is, they trans-
form themselves through the addition of new agents, new
products, and new technologies (Arthur, 2009). In order
to model these transformations we continually add agents,
products, and technologies. Every change in the structure
of the system will add or remove rows or columns of the
von Neumann matrix describing the system. These may
be adopted, in which case the system is structurally trans-
formed, or they may be rejected. In the very long run most
entities will be replaced by newer ones. Introductions oc-
cur irregularly, however, with the per-iteration probabilities
of an introduction being specified as modifiable parameter
values, so that the effect of varying rates of innovation can
be investigated. If the system is not at its equilibrium size
in terms of numbers of agents, and only new agents are in-
troduced, it will approach its equilibrium size and oscillate
around that size.

If new technologies and products are introduced, these
will change the equilibrium system size; therefore, as long
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Figure 3: Price adjustment function ∆p(x) used to adjust
prices as a function of the balance ratio x of actual vs. target
stocks. Note that in the neighbourhood of the equilibrium
point at (1,0) price adjustments vanish.

as introductions continue the system will chase a continu-
ally shifting equilibrium. A more significant consequence
of the product and technology introductions is that they will
force the elimination of some existing agents that are not
able to compete; and since producer agents host products
and technologies, occasionally, when all agents using a par-
ticular technology or producing a particular product disap-
pear, so, too, will the technology or product tied to it.

In terms of system dynamics, the structural evolution
driven by these introductions is equivalent to an exogenous
perturbation. But now the perturbation is generated by the
model itself. A thorough investigation of these phenomena
will be published in (Recio et al., 2020b). However, the sys-
tem may still be subject to exogenous events, just as our ac-
tual economy is currently (2020) being perturbed in a major
way by the Covid-19 pandemic. Here we examine the effect
of such a perturbation on the evolution of the system.

Counterfactual Experiments
One major issue with complex systems like the model of
the economy under examination here is that different instan-
tiations of these complex systems tend to behave in com-
pletely different ways. That is, whether a new product or
technology, or even a producer or a consumer is introduced
or removed at iteration i or at iteration j can make a large
difference in the further development of the system dynam-
ics. Since our model is abstract and does not have prescribed
moments for the introduction of structural change, we have
to consider them random events happening at externally de-
termined rates.

In order to understand the effects of such random events
on the development of the dynamics, one is left with histor-
ical contingencies which are not easy to disentangle. The
social sciences have for a long time struggled with such sys-
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tems (Wenzlhuemer, 2009), but the phenomenon is present
in all fields where system history plays an important role.
Even evolutionary and developmental biology, and the life
sciences in general fall into this category.

Counterfactual strategies ask the ’what if’ question. What
if, in the course of a system’s dynamics, at a certain point a
certain perturbation would have happened? How would the
system behaviour deviate from the ordinary behaviour of the
system had it not been perturbed in this way?

Here we adopt this strategy by running our economic sys-
tem simulation for a number of iterations (1, 000, in this
case), and then run it again from the same initial conditions,
with an intervention partway through the dynamics. Thus
the dynamics of the two systems will be identical until the
perturbation (we use the same seed for the random number
generator), but after that both system dynamics and the very
structure of the system will be different.

We consider the differences in system behaviour in order
to understand what different kinds of responses a complex
dynamical system may exhibit. In order not to fall for anec-
dotal evidence, an artificial economy like the one we exam-
ine here offers the advantage that we can repeat experiments
and at least cluster the outcomes qualitatively into different
behavioural categories.

Central to our attempts is the hypothesis that such a com-
plex system will not be able to return to its previous struc-
tural state, but will instead be driven by the disruption (and
its consequent system response) to a completely different
system structure. This should put to rest the idea that our real
economies can return to the status-quo-ante if given enough
time.

There is a deep connection between this hypothesis about
the behaviour of complex systems and our understanding
of the nature of time (White and Banzhaf, 2020). Essen-
tially, what we are saying is that a system like this complex
artificial economy, as well as other complex systems, can-
not ”time-travel” back to its previous state, once it has ven-
tured into a different direction. Due to the contingencies of
changes it suffered, it can only travel forward in time as a
different system. Thus, the dynamics of such systems is not
reversible, a fact that – given the ubiquity of complex sys-
tems in our world – sheds some harsh light on the idea of
time reversibility that is so prevalent in simple systems tra-
ditionally examined in physics.

Experimental Protocol
Inspired by recent events in the real world – the spread of the
corona virus in the covid-19 pandemic – with its accompa-
nying severe disruption to economies world-wide, we study
a treatment of our systems that mimics severe disruption.

In this investigation we examine the difference between
run pairs of 1, 000 iterations, a normal (control) run and
another one with a treatment of disruption. Under treat-
ment conditions we first run the unperturbed model for 250

Input matrix
T1 T2 T3 T4

P1 1 2
3

1
2

1
P2 0 0 0 0
P3 0 0 0 0
P4 0 2

3
0 0

P5 0 2
3

0 0
P6 0 0 1

2
0

P7 0 0 0 1
P8 0 0 0 0

Output matrix
P1 0 0 0 0
P2 0 0 0 0
P3 0.01 0.01 0.01 0.01
P4 0 0 0 0
P5 1 0 0 0
P6 0 1 0 0
P7 0 0 1 0
P8 0 0 0 1

Table 2: von Neumann technology matrices used in current
experiments. Products are as follows: 1=labour; 2=money;
3=waste product; 4=raw material; 5-7=intermediate prod-
ucts; 8=consumption good.

iterations and then stop consumer behaviour for 25 itera-
tions so that from iterations 250 to 275 no final consump-
tion occurs. Since final consumption ultimately provides
the entire demand that drives the economy, a progressive
absence of incentive to produce cascades through the sys-
tem, starting with consumer good producers and spreading
to suppliers and suppliers of suppliers, and so on. While
consumption stops immediately and completely, production
contracts more gradually, as determined by the price adjust-
ment mechanism (equation 2) and the production function
(equation 1). Consumers, who also provide labour, lose in-
come but are not otherwise affected; they retain their re-
serves of money and consumables and are initially not at risk
for being removed from the system. When the intervention
period is over at iteration 275 they resume normal activity,
but may now experience reduced income and begin to run
down their reserves, and some may ultimately be removed.

For this experiment all runs are made starting with the von
Neumann matrices shown in Table 2 as initial condition. The
per-iteration probabilities for the introduction of new agents,
technologies, and products are shown in Table 3. The val-
ues shown here provide the growth characteristic of the sys-
tem. For the executions used in this work, these parameters
were arranged to allow general growth of the system with a
constant (probabilistic) introduction rate. A removal of en-
tities takes place due to economic indicators, mainly based
on ceasing activity – production or consumption.

Fifteen pairs of runs were executed in OCTAVE in two
sets. The first run of each pair was unperturbed. The sec-
ond run was subjected to the perturbation in which final con-
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Type of Dynamics Probability
Producer agent: 0.075
Consumer agent: 0.02
New technology for an existing product: 0.005
New technology for new consumable goods: 0.001
Inactive agents are subject to removal in 5 iterations
Technologies are subject to removal when not being used

Table 3: Per-iteration probabilities for the introduction of
new agents, technologies and products into the system dy-
namics, resulting in varying numbers of those entities.

sumption was halted from iteration 250 to 275. Both runs in
a pair used the same seed for the random number generator,
so that output was identical up to the beginning of the per-
turbation. After that, while the sequence of random numbers
is the same, the two runs of the pair are in different states, so
the random numbers lead to different effects.

For reproducibility purposes we divided the runs, one set
of 5 runs was done under GNU OCTAVE v3.8.2 on MacOS
Catalina, v10.15.3. The other set of 10 runs was done un-
der GNU OCTAVE v4.0.3 on MacOS Sierra, v10.12.3. Our
data and the code for all runs discussed here will be made
available on GitHub.

Results
Output for each run includes, for each iteration, the number
of producer agents using each technology, number of con-
sumer agents, price for each product, profit for each technol-
ogy, and available supply of each product. The best global
indicators of system behaviour are number of consumers
and total number of producers. These measures, aggregated
over the 15 pairs of runs, show the system to have, on aver-
age, a well behaved dynamics: the normal runs show steady
growth, but at a decreasing rate, in both number of producers
and number of consumers; while the disrupted runs show a
sharp drop in the number of producers followed by a steady
recovery after the crisis. The number of consumers is not im-
mediately affected by the crisis since their number is frozen,
but after the intervention, while the economy is still in recov-
ery mode, the loss of employment income leads to a slower
net increase in their numbers compared to the normal (un-
perturbed) case (Fig. 4).

While the means are very well behaved, the very large
standard deviations show that the underlying systems ex-
hibit a wide variety of behaviour. We therefore look next
at individual pairs of runs. These can be classified into four
categories in terms of the overall behaviour during the run:

Category 1 Ten of the 15 pairs show relatively consistent
growth in both the unperturbed system and the perturbed
one – with of course a temporary collapse following the
perturbation (Fig. 5). In other words, the system is rel-
atively robust since it typically recovers from the severe
perturbation.

Figure 4: Mean number (lines) and standard deviation
(shaded areas) of producer and consumer agents for 15 un-
perturbed normal (N) and perturbed or disrupted (D) runs.
Color shades are indicating 1 standard deviation for each
class of runs.

Figure 5: Sample runs of category 1, total number of pro-
ducer and consumers, normal conditions (top figure); dis-
rupted conditions (bottom figure). Both runs exhibit growth
behaviour.
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Figure 6: Sample runs of category 2, total number of pro-
ducer and consumers, normal conditions (top figure); dis-
rupted conditions (bottom figure). Major decline in dis-
rupted system after a long delay.

Category 2 In one case the unperturbed system grows, but
when perturbed it ultimately experiences a major decline
(Fig. 6).

Category 3 In three cases, the unperturbed system de-
clines or stagnates, whereas the perturbed version grows
strongly, i.e., the perturbation in some sense ’cures’ an
unhealthy system (Fig. 7).

Category 4 In one case both the unperturbed and perturbed
systems fail to show consistent growth (Fig. 8).

These variations in the patterns are ultimately due to the
stochasticity of the evolutionary component of the model.
Some runs see more technologies and more products added
than others, and the particular diversity of technologies and
products in some systems may constitute a more effective
or efficient ecosystem than is found in others. This phe-
nomenon may lie behind the apparent ’cure’ provided by
the exogenous shock in the category 3 systems – after the
crash a less effective economic structure is replaced by a
more functional one.

Figure 7: Sample runs of category 3, total number of pro-
ducer and consumers, normal conditions (top figure); dis-
rupted conditions (bottom figure). Normal run does not ex-
hibit regular growth pattern and instead stagnates or even
declines, but is stabilized after the disruption into a consis-
tent growth pattern.

It is not possible at present to thoroughly analyse this phe-
nomenon, but indications may be found in the graphs for
the behaviour of individual technologies. In the case of the
category 3 example displayed in Fig. 7, we show in Fig. 9
the profit rate for each technology. The most striking differ-
ence between the two cases is the number of technologies
– 21 in the normal run and 12 in the disrupted case. But
the number of technologies is not the determining factor in
the relative success of the disrupted run; taking all 15 run
pairs together there is no relationship between number of
technologies and growth, and in another of the category 3
runs the more successful, disrupted, run has more technolo-
gies than the normal run. What seems commonly to be the
case is that a technology that consistently has a very high
profit level depresses the profits of other technologies and
this leads to decline of those sectors.

Thus, it seems that serious instabilities have developed in
that normal system over the course of its evolution, which
were in some sense prohibited by the disruption in the dis-
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Figure 8: Sample runs of category 4, total number of pro-
ducer and consumers, normal conditions (top figure); dis-
rupted conditions (bottom figure). Both normal and dis-
turbed runs do not exhibit regular growth patterns.

turbed system. This is corroborated by a look at the graphs
for the structure of these economies. Figure 10 shows the
structure of the economy before the disruption. This is the
same structure for both the non-treated control run as for the
treated (disrupted) run.

Figure 11 then shows the two different economic struc-
tures evolved over a further 500 iterations, the first without
experiencing a disruption, the second with experiencing a
disruption. Multiple loops have developed in the former that
are capable of driving instabilities. Some of them are con-
spicuously absent in the latter structure.

It should be noted that the runs we discuss here are all
enabling innovation to happen by the introduction and re-
moval of technologies and products. That is the reason why
the economic networks can look so different between runs
starting from the same structure: These economies have re-
sponded differently to the dynamics of agents (producers
and consumers) that acted on this structure.

We did a set of control runs in which the ability to pro-
duce innovation was turned off. Thus, no new products or
technologies were allowed into the system, and in turn, no
products or technologies could disappear. These runs never
resulted in a serious destabilization of the dynamics, from

Figure 9: Sample runs of category 3, profit for each product,
normal conditions (top figure); disrupted conditions (bottom
figure).

Figure 10: Sample runs of category 3, structure of the econ-
omy before potential disruption.
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Figure 11: Sample runs of category 3, structure of the econ-
omy without (top) and with (bottom) disruption. The situa-
tion is depicted at iteration 700, i.e., 500 iterations after the
disruption in the second run.

a normal growth economy, nor did they stabilize from an
unstable economy. Thus the transitions characterized with
categories 1-4 above do not exist in such simpler economic
systems.

Conclusions and Generalizations
The overall effect of a severe disruption of a complex sys-
tem modelling economic activity does not follow the same
playbook for all cases. It heavily depends on the structure of
an economy whether it recovers from the disruption, or re-
mains unstable and is ultimately doomed. In fact, we found
that even under normal conditions some of these artificial
economies crash, a testimony to the fact that these complex
systems are delicate and need to follow particular trajecto-
ries to remain stable.

One important aspect of the instabilities potentially devel-
oping in such systems is the necessity of innovation. With-
out innovation, the structure and the dynamics of these arti-
ficial economies remain separated and cannot influence each
other. Without such interaction, dynamics is limited to small
deviations from an otherwise prescribed way of working.

From a statistical point of view, average behaviour is only
of limited use in these systems. The individual behaviour of
these systems is so diverse and growing more diverse over
time that statements about averages are becoming statisti-
cally irrelevant after some simulation time has passed.

The way to examine such diverse behaviours is to attempt
to qualitatively cluster systems into different behavioural
classes and to compare individual runs with counterfactual
experiments.
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