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Abstract

How to facilitate the evolution of cooperation is a key ques-
tion in multi-agent systems and game-theoretical situations.
Individual reinforcement learners often fail to learn coordi-
nated behavior. Using an evolutionary approach for selec-
tion can produce optimal behavior but may require significant
computational efforts. Social imitation of behavior causes
weak coordination in a society. Our goal in this paper is to
improve the behavior of agents with reduced computational
effort by combining evolutionary techniques, collective learn-
ing, and social imitation techniques. We designed a genetic
algorithm based cooperation framework equipped with these
techniques in order to solve particular coordination games in
complex multi-agent networks. In this framework, offspring
agents inherit more successful behavior selected from game-
playing parent agents, and all agents in the network improve
their performance through collective reinforcement learning
and social imitation. Experiments are carried out to test the
proposed framework and compare the performance with pre-
vious work. Experimental results show that the framework
is more effective for the evolution of cooperation in com-
plex multi-agent social systems than either evolutionary, re-
inforcement learning or imitation system on their own.

1. Introduction
A multiagent system (MAS) which consists of multiple in-
teracting intelligent agents and their environment, is a com-
puterized system for solving problems that are difficult or
impossible for an individual agent to solve. Cooperation
which has a long history in the application of game theory
(Axelrod and Hamilton, 1981) assumes great importance in
the field of multiagent system. In multiagent societies, co-
operation represents an interaction among agents that can be
evolutionarily advantageous to improve the performance of
individual agents or the overall behavior of the society they
belong to. Therefore, one of the main goals in multiagent
societies is to achieve efficient cooperation among agents to
jointly solve tasks or to maximize a utility function.

In order to realize such cooperation, some techniques
developed in the field of machine learning have been in-
troduced into various multiagent systems (Kapetanakis and
Kudenko, 2002). Machine learning has been proven to

be a popular approach to solve multiagent system prob-
lems because of the inherent complexity of these problems.
Among machine learning techniques, reinforcement learn-
ing has gained much attention in the field of multiagent
systems since it learns by trial-and-error interaction with
its dynamic environment and can be used easily. How-
ever, several new challenges arise for reinforcement learn-
ing in multiagent systems. Foremost among these is that the
performance of reinforcement learning is unsatisfactory in
many real world applications. The learning algorithm may
not converge to an optimal action combination. Some re-
searchers showed that an adaptive strategy, called evolution-
ary reinforcement learning, which combines reinforcement
learning with a genetic algorithm, could reach better per-
formance than either strategy alone (Ackley and Littman,
1991). Some new forms of learning, e.g., observational,
imitational, and communication-based learning (Taylor, et
al. 2006, Savarimuthu, et al. 2011), also significantly pro-
mote information proliferation (Dittrich and Banzhaf, 2002)
in more complex environments and can be used to solve
complex distributed multiagent problems better than pure
reinforcement learning approaches. Furthermore, ensem-
ble methods are used to combine the advantages of multiple
learning algorithms to obtain better performance than what
could be obtained from any of them alone (Polikar, 2006).
More recently, Yu et al. (Yu, et al. 2017) studied the role
of reinforcement learning, collective decision making, so-
cial structure, and information diffusion in the process of
the evolution of cooperation in the networked society.

Although previous work provided a strong basis to study
the mechanisms behind the evolution of cooperation, exist-
ing work in this area has drawbacks. Individual reinforce-
ment learners often fail to develop global coordinated be-
havior and can be trapped in local sub-optimal dilemmas.
Using an evolutionary approach for strategy selection can
produce optimal behavior but may require significant com-
putational efforts. Behavior imitation always causes weak
local coordination in a society, leading to local interactions
between agents. This study is significantly different from
other frameworks for the evolution of cooperation in previ-



ous studies, because of the hybrid policy of decision making
of agents. Here we design a genetic algorithm based co-
operation framework, which takes into account evolutionary
selection, collective learning, and imitation, in order to solve
some particular non-cooperative games in complex multia-
gent networks, overcome previous shortcomings, and pro-
duce an acceptable tradeoff in convergence rate and compu-
tation effort.

The final decision of an agent is influenced by three kinds
of processes:

1) Evolutionary Selection (with inheritance and muta-
tion): A population of agents plays a game with their neigh-
bors (i.e., the agents which are directly connected with the
focal agent) on the network for several iterations. The off-
spring generation will be reproduced from the parent gen-
eration according to the cumulative payoff distribution, and
the most successful agents will pass on action to their off-
spring. Mutation will occur with a small probability during
the inheritance process to create novelty.

2) Collective Learning: Agents on the network improve
on their parents’ actions and their original actions through a
collective reinforcement learning algorithm with exploration
and exploitation.

3) Imitation: Agents update the cumulative payoff, com-
pare their cumulative payoff to neighbors, and adopt the ac-
tions of more successful agents as their own actions with a
particular probability.

These three processes interact with each other, and can
cause significant influence on the evolution of cooperation
in the entire society.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces multiagent societies and the evolution of
cooperation. Section 3 describes the proposed framework in
multiagent societies. Section 4 presents experimental stud-
ies. Finally, Section 5 concludes the paper with some direc-
tions for future research.

2. Multiagent Societies and the Evolution of
Cooperation

This section gives a description of multiagent societies and
the evolution of cooperation.

Definition 1. A Multiagent Society can be represented
as a networked undirected graph G = (E,R), where E =
{e1, ..., en} is a set of entities in the society (agents), and
R ⊆ E × E represents a set of relationships, each of which
connects two agents.

Definition 2. Given a multiagent society (E,R), the
Neighbors of agent i, denoted asN(i), are a set of agents so
that N(i) = {ej | 〈ei, ej〉 ∈ R} with 〈ei, ej〉 symbolizing a
connection.

This paper adopts two typical topologies to represent a
multiagent society, small-world networks and scale-free net-
works (Yu, et al. 2017). We use SW k,ρ

N to represent a small-
world network, where k is the average size of the neighbor-

hood of a node, ρ is the re-wiring probability to indicate the
evolvability of small-world network, and N is the number
of nodes. We use SF k,γN to represent a scale-free network,
in which the probability that a node has k neighbors roughly
equals to k−γ . N is the number of nodes.

In this paper, we adopt the “Rules of the Road Game”, a
typical coordination game as an example to study the evolu-
tion of cooperation (Young, 1996). Consider two carriages
meeting on a narrow road from opposite directions, having
no context to decide on which side of the road to pass the
other. If they choose differently, it will cause a head-on colli-
sion between them, and they receive a negative payoff. Only
if they choose the same way, they can avoid a collision and
receive positive payoff. To abstract from this realistic sit-
uation to virtual multiagent societies, agents are striving to
establish a convention/law of coordinated action by choos-
ing from an action space without any central controller. The
payoff matrix is shown in Table 1.

Table 1: Payoff matrix of an n-action 2-player coordination
game.

Action 1 Action 2 ... Action n
Action 1 1,1 -1,-1 ... -1,-1
Action 2 -1,-1 1,1 ... -1,-1

... ... ... ... ...
Action n -1,-1 -1,-1 ... 1,1

There are multiple Nash-equilibria in this diagonal situa-
tion. Both of two players choose the same action, i.e., coor-
dinated action. However, even purely rational players cannot
choose the specific coordinated action without negotiation
because they have no information to differentiate between
strictly the same multiple equilibria. In realist, people can
survive such social dilemma because there are laws or social
norms for them to refer to. Our goal in this paper, is to train
agents of a virtual society to choose the cooperative action
without upper level steering and regulation.

3. The Proposed Framework
The overall proposed cooperation framework is shown in Al-
gorithm 1. It constitutes a genetic algorithm (GA) based co-
operation framework for MAS with collective decision mak-
ing, learning and imitation to facilitate the evolution of co-
operation used in some particular coordination games. This
framework is set in a network structure such as a small-
world network or a scale-free network. A population of
agents plays the coordination game with their neighbors re-
peatedly and simultaneously in the network for several gen-
erations. Offspring generation io will be reproduced from
parent generation ip according to their cumulative payoff
Ei distribution. The most successful agents pass on be-
havior to their offspring io, and mutation will change this
behavior with a small probability η during inheritance, de-
scribed in Subsection 3.1. The society information regarding



Algorithm 1: The proposed cooperation framework

1 Initialize multiagent network and parameters;
2 for each step t (t=1,...,T) do
3 for each agent i (i=1,...,n0) do
4 for each neighbor j ∈ N(i) of agent i do
5 Agent i plays the game with neighbor agent

j and receives corresponding payoff rji ;
6 end
7 Agent i calculates the cumulative payoff Ei;
8 Offspring generation io will be reproduced from

parent generation ip according to Ei;
9 end

10 for each parent agent ip (ip =1,...,n0) do
11 Parent ip passes on behavior to the offspring io;
12 Mutation will change it with a small probability

η during inheritance;
13 end
14 The society information regarding nodes and edges

will be updated;
15 for each agent i in a new network do
16 for each neighbor j ∈ N(i) of agent i do
17 Agent i improves the behavior with a

collective learning method with exploration
and exploitation regarding neighbor j;

18 Agent i and neighbor j update the
cumulative payoff E

′

i and E
′

j ;
19 Agent i imitates the action of neighbor

agent j with a probability W ;
20 end
21 end
22 end

nodes and edges will be updated regularly. Then agents will
improve their actions (including inherited action and origi-
nal action) through a collective reinforcement learning algo-
rithm with exploration and exploitation, described in Sub-
section 3.2. This will often cause later generations to con-
verge to optimal behavior in the coordination game (McGlo-
hon and Sen, 2005). After collective reinforcement learning,
there is an imitation phase. Agents update and compare their
cumulative payoffs with neighbors, and imitate their neigh-
bors’ actions with a probability W , more detail in Subsec-
tion 3.3.

3.1. Selection, Inheritance and Mutation
This subsection describes the process of payoff-distribution
based reproduction (i.e., selection), inheritance, and muta-
tion.

Definition 3. Given a multiagent society (E,R), the Ac-
tion Space of this society, denoted as Na, is a set of ac-
tions available to choose from for all agents, so that Na =
{a0, a1, ..., aτ}. τ is the number of available actions.

In Algorithm 1, we first initialize the multiagent network
and parameters. Each agent will take an action from action
space Na chosen randomly. Agent i plays the game with
neighbor agent j repeatedly and receives a corresponding
payoff rji according to Table 1. Agent i calculates their cu-
mulative payoff Ei. When agents are chosen to reproduce,

their fitness is based on the relative cumulative payoff distri-
bution Pi shown in Equation 1 (McGlohon and Sen, 2005).

Pi = E(i)/

n0∑
j=1

E(j) (1)

The probability θi of agent i being chosen to reproduce
(i.e., fitness function) is shown in Equation 2.

θi =



Pi if E(i) ≥ 0 ∧
n0∑
j=1

E(j) > 0,

1/n0 − Pi if E(i) > 0 ∧
n0∑
j=1

E(j) < 0,

0 if E(i) < 0 ∧
n0∑
j=1

E(j) > 0.

(2)

The situation for E(i) < 0∧
∑n0

j=1E(j) < 0 is complex.
We set |Ei| as the absolute value of Ei. For E(i) < 0 ∧∑n0

j=1E(j) < 0, the probability θi of agent i being chosen
to reproduce is given in Equation 3.

θi =


Pi if |E(i)| < |

n0∑
j=1

E(j)|,

0 if |E(i)| > |
n0∑
j=1

E(j)|.
(3)

Equation 2 and 3 are inspired by win-stay, lose-shift, a
simple but insightful social strategy (Nowak and Sigmund,
1993). Here winning means a positive payoff, and loosing
means a negative payoff. Winning individuals in a global
losing environment should be given more chance to repro-
duce. Ordinary individuals just reproduce the ordinary num-
ber of offspring. Furthermore, loosing individuals should be
punished in a positive society. We use fitness proportionate
selection. Notice that there is no crossover or recombination
in our model. Offspring io will be reproduced from parents
ip according to the fitness function. Notice:

1) If the cumulative payoff of the entire population is 0,
i.e.,

∑n0

j=1E(j) = 0, we will reinitialize the experiment;
2) If θi > 1, we set θi = 1.
After reproducing offspring based on fitness, parents sim-

ply pass on their behaviors to offspring. In this process,
mutation will change the behavior of offspring with a small
probability η. In this case a random behavior will be chosen
rather than the inherited behavior. We set η = 1% (McGlo-
hon and Sen, 2005).

3.2. Collective Learning
As shown in Algorithm 2, collective learning is proposed
to improve the behavior (both inherited and original) in an
extending network. All agents in the society interact repeat-
edly and simultaneously with their neighbors. In each time
step, an agent uses a reinforcement learning algorithm to
choose a best-response action for each neighbor. The best-
response actions for all neighbors are then aggregated into



an overall action using collective voting methods, which will
be described in details in 3.2.1. Local and global exploration
and exploitation will be discussed in 3.2.2. The agent then
plays the overall action with all of its neighbors and receives
a corresponding payoff according to Table 1. The learning
information for each neighbor is updated by the overall ac-
tion and the corresponding payoff. The entire process of this
algorithmic framework is shown in Figure 1. Here we just
focus on the neighbors of agent i.

Algorithm 2: The collective learning framework

1 for each step t (t=1,...,T) do
2 for each agent i (i=1,...,n) do
3 for each neighbor j ∈ N(i) of agent i do
4 Agent i has a Q function for each of its

neighbours j;
5 Agent i chooses a best-response action

ai→j regarding neighbor j using a
Q-learning algorithm;

6 //Local exploration;
7 end
8 Agent i aggregates all the actions ai→j into an

overall action ai using ensemble learning
methods;

9 //Global exploration;
10 end
11 for each agent i (i=1,...,n) do
12 Agent i plays action ai with its neighbors and

receives corresponding payoff rj
′

i for each
interaction;

13 Agent i updates learning information towards

each neighbor using action-payoff pair (ai, r
j′

i );
14 end
15 end

3.2.1. Collective Decision Making

After reproduction, in this new extending society, all
agents first interact with their neighbors. We adopt a
widely used reinforcement learning algorithm, Q-learning,
to model this interaction. Its one-step updating rule is given
by Equation 4. Here α ∈ (0, 1] is a learning rate, and
λ ∈ [0, 1) is a discount factor.

Q(s, a)← Q(s, a)+α[R(s, a)+λmax
a′

Q(s′, a′)−Q(s, a)]

(4)
As shown in Equation 4, an agent has a set of states and

a set of actions. An agent performs an action a, transitions
from state s to another new state s′ and receives immediate
reward R(s, a). Q(s, a) is the expected reward of choos-
ing action a in state s at time step t. During the interac-
tion, agents want to maximize the expected discounted re-
ward Q(s′, a′) to make decisions in the new state s′ at time
step t+ 1. The Q-function is learned during an agent’s life-
time inherited to choose a best-response action based on the
Q-value regularly.

Figure 1: The entire process of our proposed framework.
Agent i first plays the game and receives payoff r1i and
r2i from two neighbors, respectively. After reproduc-
tion, agent i interacts with new neighbors, and chooses
the best response action-reward pair {ai→1, Q1(s, a)} and
{ai→2, Q2(s, a)}. Then agent i aggregates ai→1 and ai→2

into an overall action ai. Agent i keeps action ai to play with
neighbors and receives payoff r1i

′ and r2i
′. The cumulative

payoff Ei, E′1, and E′2 of agent i and neighbors is updated.
Agent i imitates neighbors according to the new cumulative
payoff.

Each agent needs to aggregate all the best-response ac-
tions regarding its neighbors into an overall action. This
is inspired by the opinion aggregation process in that peo-
ple usually have seek for the suggestions from many other
people before making a final decision. The opinion aggrega-
tion process can be realized by an ensemble learning method
which combines multiple single-learning algorithms to ob-
tain better performance than what could be obtained from
any of them alone (Polikar, 2006).

The foremost method of collective voting is inspired by a
simple political principle, majority rule. Consider that in a
simple society (e.g., a undirected simple graph which repre-
sents the multiagent network we adopt in this paper), human
beings are more keen to decide as the majority of their neigh-
bors. So in this paper, when agents make final decisions,
they consider the action which quantitatively dominates in
the best-response action pool. More complex and realis-
tic methods to make a final decision consider the weight of
each neighbors, such as performance-based weighted vot-
ing method and structure-based weighted voting method.



For structure-based weighted voting, the weight of each
neighbor is related to the degree of each neighbor. The focal
agent will give higher weight to a neighbor with more con-
nections. For performance-based weighted voting, the focal
agents will consider previous interaction experience and will
give higher weight to neighbors they trust. More detailed de-
scription of these collective voting methods can be found in
(Yu, et al. 2017). In this study, we adopt majority voting as
the opinion aggregation method.

3.2.2. Exploration and Exploitation

For pure greedy-learning, agents can be trapped easily in
local sub-optima, and thus fail to learn the optimal behavior.
During learning, an agent needs to strike a balance between
exploitation of learnt knowledge and the exploration of un-
explored environments in order to try more actions, escape
from local sub-optima, and learn optimal behavior. In this
paper, we propose Simulated-annealing Exploration for
dealing with exploitation and exploration during learning.

Simulated Annealing (SA) is a non-linear technique for
approximating the global optimum of a given function. We
adopt an SA and combine it with traditional exploration.
One step of SA exploration is given by Equation 5.

µt = µ0/ lg(1 + t) (5)

In Equation 5, µt is the exploration rate in the tth round
of simulation, and µ0 is the initial exploration rate. At the
beginning (t is small), exploration should be given higher
weight to explore the unknown environment. As the algo-
rithm continues (t increases), the probability of exploitation
(i.e., 1− µt) increases determining that the agent will focus
more on exploitation of learnt knowledge.

In Algorithm 2, during the interaction with neighbors,
agents need to find a best-response action regarding each
neighbor with a Q-learning method. At each time step t, re-
garding each neighbor j, agent i chooses the best-response
action with the highest Q-value with a probability of 1− µt
(i.e., exploitation), or chooses an action randomly with a
probability of µt (i.e., exploration). This occurs in the pro-
cess of local interaction with neighbors. We call this process
Local SA Exploration. When agents use specific ensemble
methods to aggregate all the best-response actions into an
overall action, agents choose the overall action under ensem-
ble methods with a probability of 1− µt (i.e., exploitation),
or choose an action randomly with a probability of µt (i.e.,
exploration). This occurs in the process of overall aggrega-
tion. We call this process Global SA Exploration. A small
average exploration rate (such as 10%) is kept throughout to
conserve a small probability to explore.

3.3. Social Learning and Imitation
Social learning theory is connected with social behavior
and learning and proposes that new behavior can be ob-

tained by observing and imitating others’ behavior (Bandura
and Walters, 1977). In real life, people not only can learn
through their individual trial-and-error experiences (i.e., in-
dividual Q-learning to determine best-response actions), but
also seek suggestions or advice from others in a society (as
mentioned in opinion aggregation in 3.2.1). Furthermore,
they can also learn from the information directly provided
by others through communication, observation, and imita-
tion (Polikar, 2006).

We are inspired by social learning theory to add an imita-
tion process after learning to promote the evolution of coop-
eration. After reproduction and learning, there is a new pop-
ulation with better performance in multiagent societies. In
every time step, when agent i updates the cumulative payoff
E

′

i , agent i in this new population adopts neighbor agent j’s
behavior, replacing its heritable behavior, with a probability
W . Following Szabó and Tőke (Szabó and Tőke, 1998), we
set:

W =
1

1 + e−(E
′
j−E′

i)/K
(6)

Here, E
′

i and E
′

j are the cumulative payoff of agent i and
neighbor j after updating. K represents some noise which is
introduced to consider irrational choices. For K = 0 agent
i adopts neighbor j’s strategy if E′j > E′i. Here we set
K = 0.1.

4. Experimental Studies
The purpose of this experiment is to study the evolution of
cooperation in the proposed framework. The performance
standards are the asymptotic percentage of cooperative ac-
tions (i.e., how many agents in the society can reach a final
consensus, e.g., choose a specific action as coordinated ac-
tion from action space) and convergence time (i.e., the time
needed to reach such a consensus). We want to produce an
acceptable trade off in both of them.

4.1. Experimental Settings
We use the Watts-Strogatz model (Watts and Strogatz, 1998)
to generate a small-world network, and use the Barabasi-
Albert model (Albert and Barabasi, 2002) to generate a
scale-free network. In order to use the Barabasi-Albert
model, we start with 2 agents and add a new agent with
1 edge to the network at every time step. Because of the
re-wiring probability ρ, this approach generates a scale-free
network following a power law distribution with an expo-
nent γ = 3. We set the maximum number of edges to
1,000,000 for network evolution. Mutation rate η in inher-
itance is 0.01. Individual Q-learning rate α is 0.1. Aver-
age exploration rate in SA exploration is 0.1. The initialized
SA exploration rate µ0 is 0.144. Noise in imitation is set to
0.1. In this study, unless stated otherwise, we use the small-
world network as the default network topology because it



can evolve into many kinds of networks, and local SA ex-
ploration as the exploration mode. All results are averaged
over 100 independent time step.

4.2. Results and Analysis

Influence of action spaces Here, we vary action space in
the set Na = {2, 10, 20} in network SW 12,0.8

100 to study its
influence on the evolution of cooperation. According to Ta-
ble 1, only when two agents choose the same action they will
receive a payoff of 1. Otherwise, they receive a payoff of -1.
Results in Figure 2 show that a larger number of available
actions causes a delayed convergence of coordinated action.
This is the result of learning and imitation regarding neigh-
bors. Because of a larger number of actions, agents need
more local interactions to learn an optimal behavior regard-
ing neighbors and choose the best behavior among this large
action pool to imitate neighbors. It may produce more var-
ied local distributed sub-coordination which emerges from
varied local interaction among agents and their neighbors,
leading to diversity across the society. It thus takes a longer
time for agents to overcome this diversity and achieve a fi-
nal coordination, and thus the evolution of cooperation is
prolonged in the entire society.

Figure 2: Influence of number of actions.

The Influence of Single Mechanism Broadly, given that
four very different mechanisms, i.e., genetic algorithm
(GA), reinforcement learning (RL), collective decision mak-
ing (CDM), and imitation, are being used, we want to give
some forms of direct comparison of what each mechanism
contributes to the dynamics and convergence properties in
order to understand the role that each mechanism plays in
this system and how they interact.

We fix the action space to Na = 10. The influence on the
evolution of cooperation under different mechanism combi-
nations is shown in Figure 3. Without GA situation means
that only collective learning and imitation occur in a fixed,

Figure 3: Evolutionary dynamics under different combina-
tions of mechanism.

static agent society; without CDM situation means that af-
ter choosing the best-response actions from neighbors, the
focal agent simply determines one action randomly as the
overall action; without imitation situation means that only
evolutionary selection and collective learning occur in an
extending agent society. From Figure 3, we can draw these
conclusions:

1) Collective decision making (opinion aggregation) and
imitation will significantly facilitate the evolution of coop-
eration, especially collective decision making.

2) Evolutionary selection does cause influence both on the
convergence speed and convergence rate, but not as dramatic
as collective decision making or imitation.

Notice that in Figure 3, we do not show the evolution-
ary dynamics in this system without reinforcement learning
(RL), i.e., the focus agent simply aggregates the original ac-
tion or inherited action of their neighbors into an overall ac-
tion without any RL-based improving. Since we could not
get any convergence curves in 100 generations during exper-
iments. We can say:

3) In this system, reinforcement learning to make better
decisions is the most important step to promote the evolu-
tion of cooperation. It is dominated by one of these four
modalities and contributes most to the rate at which cooper-
ation emerges.

Comparison of mutation and two types of exploration
As shown in Subsection 3.1 and 3.2.2, we should test the sin-
gle influence of mutation, local SA exploration, and global
SA exploration and compare them.

We test the situation under 4-action space, i.e., action
0,..., action 3 respectively. Figure 4 shows the asymptotic
percentage of cooperative actions (action 0) adopted by the
agents when cooperation evolves in the entire society. Ini-
tially, each agent randomly chooses an action from action
space, so there are about 25% of all agents to choose each



action respectively. As our framework moves on, the num-
ber of agents who choose action 0 as the cooperative ac-
tion finally reaches more than 90% in the situation with SA
exploration (both local and global). This result means that
more and more agents have reached a consensus on that ac-
tion 0 should be the cooperative action. From Figure 4, we
can see that the fraction of cooperators in the society using
collective learning with local SA exploration mode is almost
100% which means that almost all the agents have reached a
consensus on which action should be the cooperative action.
The framework works in the entire society.

Figure 4: Fraction of cooperators under different exploration
and mutation methods.

We further study Figure 4 and we can draw these conclu-
sions:

1) Local exploration is better than global exploration.
The fraction of cooperators using collective learning with

the global exploration mode is much lower than that using
collective learning with the local exploration mode. This is
because agents explore the environment with a probability
of 0.1. However, as agents using local exploration to ex-
plore the environment locally (i.e., choosing irrational action
during local interaction) and aggregate to an overall action
collectively, the randomness caused by the exploration can
be removed. In global exploration, agents explore globally
when they aggregate all best-response actions into an overall
action, the randomness will be kept.

2) Mutation is necessary.
The fraction of cooperators with mutation is higher than

that without mutation. Although sometimes mutation has a
bad influence, indeed, it is the source of novelty.

For both exploration and mutation, it seems notable that
removing mutations and switching between local and global
exploration does not seem to change the rate at which a con-
sensus action is discovered (i.e., the transient part of the
curve), but only shows up in the different asymptotic per-
centage of cooperators. It indicates these factors are helping
the system avoid getting stuck in a local optimum near the

completely converged state but can not show their roles on
promoting cooperation clearly. The reason we guess is that,
in this system, collective decision making causes the dra-
matic influence on convergence speed, as shown in Figure
3. So the weak influence of mutation and exploration on the
convergence speed can not be found very dramatically.

Comparison with Previous Work We mainly compare
the performance of our model with (Yu, et al. 2017). As
shown in Figure 5, we follow the previous parameter settings
(Na = 10), our framework has better performance than pre-
vious study. We additionally test other situations with dif-
ferent action space, the results show the same trends. It indi-
cates that our model works for the evolution of cooperation
in the entire society. It is indeed effective for the robust evo-
lution through combining evolutionary selection, individual
learning, collective voting, and social imitation.

Figure 5: Comparison with (Yu, et al. 2017). Yu’s work is
mainly based on collective reinforcement learning and infor-
mation diffusion (i.e., communication-based social learning,
agents sharing Q table to communicate).

Through our experimental analysis, we also find that there
is not much difference in the efficiency of the evolution of
cooperation in different sizes of agent population, different
opinion aggregation methods, and different network struc-
tures. To summarize, for robust cooperation evolving in net-
worked agent systems, the potential key factors are:

1) the way how agents interact with each other. This
is also called interaction protocol. For instance, interacting
randomly in a population or interacting with neighbors in a
network; what game-theoretical situations the interaction is
based on (as shown in the payoff matrix in Section 2).

2) the way how agents update their learning informa-
tion through interaction, i.e., what learning strategies (e.g.,
collective Q-learning, WoLF-PHC, and fictitious play) do
agents use to update their learning information?

3) the way how agents diffuse their learnt information,
e.g., communication-based social learning, imitation-based



social learning, and observation-based social learning.
4) whether the entire population evolves in a better

direction. Evolving to improve the entire fitness (e.g., re-
producing offspring with better performance to increase the
entire average fitness) represents an enhancement in the evo-
lution of cooperation.

5. Conclusion and Future Work
Evolution of cooperation has been extensively studied in
MASs. Existing work in this area, however, has some draw-
backs especially considering that evolutionary selection, re-
inforcement learning, collective decision making, and be-
havior imitation have dramatic influences on the evolution-
ary process. This paper proposes a genetic algorithm based
framework with collective learning and imitation in multi-
agent networks. The goal of this work was to investigate
whether cooperation can be facilitated by these factors, and
whether our framework has a better performance than previ-
ous studies. In this paper, we want to make an acceptable
tradeoff in both convergence speed and convergence rate.
Although other papers report a convergence to 100% of co-
operative actions in similar systems even when just a single
learning method, the extreme computing resource, e.g. long
term evolutionary generations, is not acceptable. Experi-
ments were carried out to test the proposed framework in dif-
ferent parameter settings and environments. Experimental
results show that our mechanism is indeed effective for the
evolution of cooperation in multiagent networks and that our
framework has better performance (both convergence speed
and rate) than previous work.

This paper is just an initial step for this research. The
long term goal is to design some robust mechanisms for
efficiently coordinated control of more realistic large scale
distributed system. To realize this goal, much work still
needs to be done. For example, the time-varying relation-
ships between agents, e.g., supervisor and subordinate, and
adaptive interactions, e.g., disconnecting punishment mech-
anism, can be added into existing network to generate dy-
namical hierarchical multiagent societies.
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