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Abstract An Artificial Chemistry is an abstract model of a chemistry that can be
used to model real chemical and biological processes, as well as any natural or
artificial phenomena involving interactions among objects and their transformations.
It can also be used to perform computations inspired by chemistry, including
heuristic optimization algorithms akin to evolutionary algorithms, among other
usages.

Artificial chemistries are conceptually parallel computations, and could greatly
benefit from parallel computer architectures for their simulation, especially as GPU
hardware becomes widespread and affordable. However, in practice it is difficult to
parallelize artificial chemistry algorithms efficiently for GPUs, particularly in the
case of stochastic simulation algorithms that model individual molecular collisions
and take chemical kinetics into account.

This chapter surveys the current state of the art in the techniques for parallelizing
artificial chemistries on GPUs, with focus on their stochastic simulation and their
applications in the evolutionary computation domain. Since this problem is far from
being entirely solved to satisfaction, some suggestions for future research are also
outlined.
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1 Introduction

An Artificial Chemistry (AChem) [22] is an abstract model of a chemistry in which
molecules of different types (species) interact in chemical reactions, getting con-
verted into new molecular species in the process. Artificial Chemistries can be used
to model real chemical and biological systems, to perform computations [19], and
as heuristic optimization techniques [7, 37] akin to evolutionary algorithms, among
other usages. Moreover AChems can be combined with evolutionary algorithms to
evolve chemical reaction networks able to achieve desired goals [9, 40].

In comparison with evolutionary algorithms, the optimization process within an
AChem is open to a wider range of dynamics, of which evolutionary dynamics [52]
is only a special case. Furthermore, evolutionary behavior may also emerge sponta-
neously from carefully designed AChems [4, 5, 20, 22, 24]. In this context, AChems
have been used to understand the origin of evolution from a pre-evolutionary,
random initial state [20, 24], as well as to model evolutionary behavior [34, 49, 64].
The use of AChems for evolutionary optimization follows as a natural step from
here: for instance, in [7] machines analogous to enzymes operate on molecules
encoding candidate solutions, selecting them according to a fitness criterion, and
allowing the selected ones to reproduce. As a result, an evolutionary process guided
by enzymes takes place, leading to a parallel optimization algorithm whose amount
of parallelism is regulated by the amount of enzymes in the system. Another
example of AChems for optimization is [37], in which reaction rules select and
modify molecules, driving the system from a higher entropy (more disordered) to a
lower entropy (more ordered) state, in which molecules encode increasingly better
solutions. A related optimization chemistry has been proposed by some of us in [75],
where chemical reactions creating fitter solutions are energetically favored, and thus
occur with a higher probability.

Artificial chemistries are naturally parallel: several molecules may move, collide,
and react simultaneously. Moreover, algorithms for the simulation of AChems tend
to be computationally expensive: a large number of molecules may be present,
and many of them may react in a short time interval. Therefore the use of parallel
computer architectures for implementing AChem algorithms is reasonable and can
be extremely helpful to reduce computation time. In particular, with the advent of
affordable Graphics Processing Unit (GPU) hardware, and their general-purpose
programming, it has become attractive to implement such algorithms on top of
GPUs. However, the parallelization of AChems on GPUs is not straightforward in
general, mainly due to the mismatch between the synchronized processing in GPU
architecture based on the SIMD (single-instruction, multiple-data) design principle
and the typically fluctuating chemical dynamics where myriads of reactions may
occur at any time and place.

In this survey we review the current state of the art in techniques for parallelizing
AChems on GPUs, with a focus on AChems that can be used for heuristic
optimization akin to evolutionary algorithms. We will see that, as the chemistry
exhibits more fluctuations, that is, the stronger its stochastic behavior, the more
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difficult it becomes to parallelize it efficiently on a GPU. However, such stochastic
AChems are often necessary in domains where interactions involving a small
number of molecules must be modelled (such as gene regulation, cell signalling
and other cellular processes), where noise has a qualitative impact on the behavior
of the system, and, in our case of heuristic optimization algorithms, where they must
rely on some amount of randomness to generate novel solutions and to explore new
regions of the search space. So far the challenge of parallelizing stochastic AChems
on GPUs remains far from solved to satisfaction though, therefore some suggestions
for future research will be outlined at the end.

We start with an introduction to artificial chemistries (Sect. 2) and their (typically
sequential) simulation algorithms (Sect. 3). Section 4 provides a brief overview of
GPU architecture and programming. Parallel simulation algorithms for AChems
are presented in Sect. 5, with focus on GPU algorithms. Finally, Sect. 6 discusses
AChems for optimization and their potential parallelization on GPUs, and Sect. 7
concludes the chapter.

2 Artificial Chemistries

An Artificial Chemistry is formally defined in [22] as a tuple .S; R; A/, where S

is the set of possible molecules in the system, R is the set of reaction rules governing
their molecular interactions, and A is an algorithm that determines when and how
the reaction rules are applied to the molecules. Numerous algorithms exist for this
purpose, as discussed in Sect. 3.

The molecules in an AChem may float in a well-stirred (or well-mixed) tank
reactor (spatially homogeneous AChem), may be scattered in different regions of
space (spatial AChem), or may be contained within abstract compartments akin
to cellular structures. In the first case, since no spatial considerations are taken
into account, all molecules share the same opportunities to encounter any other
molecules within the tank reactor. In the second case, space is explicitly modelled in
the system, for instance, in the form of 2D surfaces or 3D volumes; so the probability
of a molecule to collide with other molecules situated in its vicinity is higher than
that of bumping into molecules situated far away. In the third case, compartments
may contain molecules or other compartments inside, perhaps in a hierarchical
manner, but their location may remain abstract, that is, molecules and compartments
are not necessarily placed in a spatial structure with an explicit coordinate system.
Such differences have a large impact on the dynamics of the system as well as on
the algorithms used to simulate the AChem.

When they collide, molecules may react with each other (resulting in an effective
collision) or not (elastic collision). In an artificial chemistry, the reaction rule set
R determines which molecular species react with which. When the collision is
effective, the chemical reaction rearranges the participating atoms into the products
of the reaction. Therefore the quantities of each molecular species change in the
process. When the amount of molecules is very large, as happens often in a
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real chemistry, these quantities are typically measured in terms of concentrations
of each species, that is, the amount of (moles of) a given molecular species
per unit of volume. Hence, from a macroscopic perspective, a system contained
in a fixed volume can be fully described by the concentration dynamics of its
molecules in space and time. For a well-stirred vessel containing a sufficiently
large number of molecules, such concentration dynamics can be expressed as a
system of ordinary differential equations (ODEs), where each equation describes
the change in concentration of one particular molecular species. This ODE system
can be expressed in matrix notation as follows:

dc.t/

dt
D M v.t/; (1)

where dc.t/=dt is the vector of differential equations expressing how the concentra-
tion ci of each of the species Ci changes in time t ; M is the stoichiometric matrix
of the system, which expresses the net changes in number of molecules for each
species in each reaction; and v.t/ is a vector of rates for each reaction. The rates
typically follow kinetic laws from chemistry, such as the law of mass action, or
other laws such as enzyme or Hill kinetics.

In order to remain simple yet close to real chemistry, the law of mass action is
often employed. This law states that in a well-stirred tank reactor, the average speed
(or rate) of a chemical reaction is proportional to the product of the concentrations
of its reactants [3].

For example, consider the following set of chemical reactions, representing the
classical Lotka–Volterra model of predator–prey interactions in a simple ecology:

A C B
ka�! 2A (2)

B
kb�! 2B (3)

A
��! ;: (4)

These reactions can be interpreted as: “species A (a predator such as a fox) eats
prey B (such as a rabbit) and reproduces with speed ka; prey B reproduces with
speed kb , after eating some nutrient C (such as grass) often assumed to be abundant
enough to remain at a constant level; a predator dies with rate �.” When applying
the law of mass action, such reactions lead to the following ODE system:

da

dt
D kaab � �a (5)

db

dt
D kbb � kaab; (6)

where a is the amount or concentration of predator A and B the amount of prey
B . Equation (5) states that the population of predators grows when predators
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reproduce in reaction (2) (and this happens with a rate proportional to the product
of concentrations of its reactants A and B) and shrinks when predators die in
reaction (4). Conversely, (6) shows that the prey population decreases when they
are eaten in reaction (2) and increases when they eat some grass in reaction (3).
This example can be generalized to derive the ODEs corresponding to any given set
of chemical reactions in an automatic way.

The law of mass action is a simplification that considers molecules as dimen-
sionless particles moving like gas molecules in a bottle. Nevertheless this law is still
useful to model the speed of chemical reactions related to many natural phenomena.

In a spatial chemistry, besides chemical reactions, the location and movement
of the molecules in space must also be modelled. Sometimes individual molecules
are tracked, but more often the quantities of molecules are too large for efficient
individual tracking, so the movement of macroscopic amounts of molecules must be
simulated instead. Molecules may simply diffuse in space, resulting in a reaction–
diffusion process [70], they may be dragged by fluid or atmospheric currents
(resulting in an advection–reaction–diffusion process [60]), or they may be actively
transported by other mechanical, electrical, or chemical forces. For conciseness we
focus on reaction–diffusion processes.

In a reaction–diffusion process, molecules not only react but also diffuse in
space, and this can be expressed macroscopically by a system of partial differential
equations (PDEs) describing the change in concentrations of substances caused by
both reaction and diffusion effects combined:

@c.p; t/

@t
D f.c.p; t// C Dr2c.p; t/: (7)

The vector c.p; t/ now refers to the concentration level ci at time t of each chemical
Ci at position p D .x; y; z/ in space. The reaction term f.c.p; t// describes the
reaction kinetics, like in (1), but now expressed for each point in space. The diffusion
term Dr2c.p; t/ tells how fast each chemical substance diffuses in space. D is a
matrix containing the diffusion coefficients, and r2 is the Laplacian operator.

As an example, consider now that the predators and prey in the Lotka–Volterra
model may wander on a two-dimensional surface, with respective speeds Da and
Db . The corresponding PDEs then become:

@a

@t
D kaab � �a C Dar2a (8)

@b

@t
D kbb � kaab C Dbr2b: (9)

The reaction part remains unchanged, while the diffusion part is represented by the
last term in (8) and (9). Albeit simple, the Lotka–Volterra model is well known
to display a rich set of behaviors, leading sometimes to oscillations in predator
and prey concentrations, explosion of prey populations, extinction of both species,
waves of predators chasing prey, clustering of species, and so on. It has been studied
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in a wide variety of settings, including well-mixed and spatial scenarios, as well as
deterministic and stochastic settings [2, 50]. Therefore we will use this example to
illustrate the various algorithmic aspects discussed throughout this chapter.

In spatial chemistries, the modelled space is often divided into small lattice sites
or into larger containers (subvolumes). Lattice sites typically hold one or very few
molecules, while subvolumes may potentially contain a larger number of molecules.
Each subvolume can be treated as a well-mixed reactor where the law of mass
action applies. Diffusion is handled as a flow of molecules between neighboring
reactors, with molecules being expelled from one compartment and injected in the
neighboring one.

A special case of spatial organization is a multi-compartmental AChem: in such a
chemistry, a population of compartments is modelled, each with chemicals and per-
haps also other compartments inside, hence allowing hierarchies of compartments to
be constructed recursively. A typical example of this case is Membrane Computing
or P Systems [54], a formal model of computation inspired by chemistry.

3 Algorithms for Artificial Chemistries

As stated in Sect. 2, an AChem is characterized by the tuple .S; R; A/. The
algorithm A determines when and how the set of reaction rules R should be applied
to a multiset or “soup” of molecules M currently in the system, where each element
of M is an instance of an element in S .

A naive way to implement A would be to pick a few random molecules from the
soup M (simulating a molecular collision), remove them from M , perform a lookup
into the rule table R for a reaction rule r 2 R that involves the collected molecules,
apply r to these molecules obtaining the reaction products (thus simulating an
effective collision), and inject the products into the soup. In case no reaction rule
applies, the removed molecules would be reinserted back without change (elastic
collision). In case more than one reaction rule applies, the tie could be broken by a
priority scheme or simply by random selection. This process would be repeated for
the desired number of time steps, or until the system reaches an inert state where
none of the reaction rules in R can be applied to the molecules in M . However,
when the number of molecule types and/or the number of reaction rules is large,
this naive algorithm can be very inefficient, wasting too much computation time
on elastic collisions. Moreover, with the naive algorithm, it is difficult to simulate
reaction rates accurately in order to follow rate laws such as the law of mass action
or others.

For these reasons, various algorithms have been proposed to simulate chemical
reactions more efficiently and accurately, by focusing the computation effort
on effective reactions. These algorithms can be classified into deterministic and
stochastic simulation algorithms. The deterministic algorithms work by numerically
integrating the ODEs or PDEs that describe the chemical system. The stochastic
algorithms take into account individual molecular collisions and calculate which
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reaction should occur when scheduling the reactions and updating the molecule
counts accordingly.

Our focus is on GPU implementations of AChems, and it turns out that deter-
ministic algorithms tend to be straightforward to parallelize, as will be explained in
Sect. 5. The main research challenges for the parallelization of AChems on GPUs,
however, lie within the stochastic algorithms. These algorithms can be exact to
the level of each individual reaction or approximate in order to trade accuracy for
performance. They are reviewed below.

3.1 Stochastic Simulation of Well-Mixed AChems

In order to simulate only the effective collisions, it is useful to observe that the faster
a reaction on average, the more likely it is to occur within a given time interval.
Moreover, the more molecules there are in the vessel, and the more they can react,
the smaller the expected time interval between any two consecutive reactions, that is,
the greater the amount of reactions that might be occurring (almost) simultaneously.
These two rather intuitive observations are at the heart of the famous Stochastic
Simulation Algorithm (SSA) method by Gillespie [29]. This is probably the most
well-known algorithm for the stochastic simulation of chemical reactions in well-
stirred vessels and the basis for several improved variants that followed.

Gillespie’s SSA and its variants are exact methods: they simulate each individual
chemical reaction, resulting in a stochastic behavior for the whole system that
accurately reflects what would occur at the level of each individual molecule. When
the number of molecules is very large, and the stochastic behavior must still be
considered, approximate methods are an alternative: they simulate ensembles of
reactions, at a granularity that can be controlled as a parameter of the simulation.

We introduce Gillespie’s SSA below, together with various related methods that
will provide some useful background to discuss parallelization of such algorithms
on GPUs in Sect. 5. An overview of the various algorithms in this area can be found
in a recent review by Gillespie [31].

3.1.1 Gillespie’s SSA

The original SSA by Gillespie as described in [29] is still widely used, since it
is at the same time simple, accurate, and sufficiently efficient in many cases. The
algorithm is based on the notion of propensity (defined formally in [31]): informally,
the propensity of a reaction is a value proportional to the probability that the reaction
will occur within the next infinitesimal time interval, given the current state of the
system.

The pseudo-code for Gillespie’s SSA is displayed in Algorithm 1. For each
time step iteration, it calculates which reaction should occur and when it should
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Algorithm 1 Gillespie SSA (Stochastic Simulation Algorithm) [29]
1: multiset of molecules currently in the system: M

2: set of possible reactions: R

3: number of reactions: m D jRj
4: simulation time: t D t0
5: while desired do
6: for all rj 2 R do
7: calculate the propensity aj of reaction rj as: aj D cj hj

8: cj : stochastic reaction constant for rj

9: hj : number of possible collision combinations leading to rj

10: end for
11: a0 DPm

jD1 aj

12: draw a reaction rj 2 R at random (uniformly) with probability P.rj / D aj =a0

13: draw a random number p uniformly within the unit interval (0,1).
14: draw time interval � from an exponential distribution: � D � ln.p/

a0

15: update current simulation time t as: t  t C �

16: perform reaction rj by removing its educts and adding its products to multiset M

17: end while

occur. The next reaction to occur (reaction rj ) is chosen at random from a uniform
distribution, with a probability proportional to its propensity aj . The time interval
� after which the reaction occurs is also drawn at random, but from an exponential
distribution with average 1=a0, such that the expected interval between reactions is
1=a0.

The stochastic constants cj can be either given or derived from the kinetic
rate coefficients using the examples from [29] or the generic formula exposed
in [73]. The values hj count the number of different ways to collide the subset
of molecules in M required to perform reaction rj , and their calculation is also
explained in [29] (and generalized in [73]). In a nutshell, when the law of mass
action applies, it suffices to take hj as the product of the numbers of molecules of
each type involved in rj , and adjust cj by a constant factor that takes into account
the number of simultaneous collisions involved in rj . In practice, collisions involve
molecular pairs, and collisions of three or more molecules are very rare. Reactions
involving multiple molecules usually combine several reaction steps in a single one
for simplification.

Figure 1 shows one run of our implementation of the well-mixed Lotka–Volterra
example using SSA with the same parameters as in [29]. As shown in [29], the
ODE should remain stable in this case, while the stochastic simulation exhibits
oscillations that sometimes amplify themselves.

The runtime for this algorithm scales linearly with the number of possible
reactions jRj, as can be noticed from lines 6 to 10. Hence, although at each time step
the algorithm picks only reactions that effectively occur, when the set R is large,
a considerable amount of time can be spent in calculating all their propensities.
In order to alleviate this problem, a number of variants of the original SSA and
alternative algorithms have been proposed. We summarize them next.
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Fig. 1 Lotka–Volterra
stochastic simulation using
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3.1.2 Other Exact Algorithms

The original Gillespie SSA is sometimes referred to as the direct method (DM).
A variant of the DM is Gillespie’s First Reaction Method (FRM) [31]: instead
of picking a random reaction in a propensity-proportional way, FRM draws one
random �j interval for each reaction rj independently, j D 1; : : : ; m, and executes
the reaction with the smallest �j . The value of �j is calculated using the formula of
line 14 of Algorithm 1 with aj in the place of a0. The remaining �j values are then
discarded (because similarly to the propensity values in DM, they must be updated
for the next simulation time step according to the new state of M ).

The Next Reaction Method (NRM) [28] goes one step further: it sorts the
reactions by increasing �j on a waiting list, where they are scheduled to occur
at t C �j . As the products and educts change the composition of M , only those
reactions on the waiting list that were affected by the change need to be rescheduled.
The waiting list is kept in the form of a binary tree for efficient lookup and update.
If the number of reactions is large, and each reaction changes only a few molecules
in M , NRM can significantly outperform DM. However, it is also more difficult to
implement.

3.1.3 Approximate Algorithms

Whatever the simulation method chosen, simulating individual molecular reactions
does not scale well to a large number of reactions, nor to a large amount of
molecules. For these cases, an alternative solution is to rely on approximate
algorithms. These algorithms simulate multiple reactions in a single step, trading
accuracy for performance.

One of the most well-known algorithms in this category is the �-leaping method
[30]. It assumes that an interval � can be found such that the propensities of the
reactions change by a negligible amount within this interval. This assumption is
called the leap condition: if it holds, several reactions can be fired within one
simulation step (one leap), without updating the propensities after each individual
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Algorithm 2 �-leap [30]
1: let M , R, m, t as in Algorithm 1
2: while desired do
3: choose a suitable leap size � , for instance according to [11]
4: t  t C �

5: for all rj 2 R do
6: calculate propensity aj as in Algorithm 1
7: � D aj �

8: draw kj from a Poisson distribution: kj � Poisson.�/

9: fire reaction rj kj times, and update M accordingly
10: end for
11: end while

reaction. Therefore the algorithm takes a leap forward by several reactions at each
time step, resulting in significant savings in computation time. The price to pay is
a loss of accuracy, since the assumption of constant propensities over an interval is
only an approximation.

The leap size � plays a crucial role in the �-leaping algorithm: it must be small
enough such that the propensities do not change significantly within this interval
and must also be large enough such that several reactions can be fired in a single
leap, in order to save simulation time. Therefore a good choice of � is essential but
not always easy to make. A preliminary procedure for adjusting � automatically
during the simulation was sketched in [30]. Several improvements followed, with
the method in [11] advised by [31] as being more accurate and faster than earlier
attempts. The goal of all � adjustment methods is to find the largest possible � that
still satisfies the leap condition. The method in [11] does that indirectly, by choosing
a � that leads to a bounded change in the relative amount of each reactant species in
the system (this is faster than to calculate the propensities directly). When the leap
size found is too small, the algorithm usually falls back to the baseline SSA.

Once � has been chosen appropriately, the number of firings kj for each reaction
rj 2 R is drawn from a Poisson distribution with mean and variance � D aj � .
The state vector is then updated accordingly. The pseudo-code for the basic �-leap
algorithm is sketched in Algorithm 2. Figure 2 shows the prey populations for the
Lotka–Volterra example now running over the �-leaping algorithm with various
leap sizes set as a function of the global propensity a0: for instance, “leap 100”
means � D 100=a0. One can see that leap 10 still displays a good agreement with
the expected SSA behavior, while leap 100 excessively amplifies the oscillations,
and leap 500 leads to the premature extinction of the species. The run instances
shown have been selected arbitrarily out of multiple runs, as instances that look
representative of the stochastic behavior of the system under the chosen parameters.
For instance, the majority of leap 500 runs lead to premature extinction, while only
a few leap 100 runs lead to extinction, the majority of them just displaying a larger
than normal oscillatory behavior. This illustrates the importance of setting the � leap
size properly, in order to satisfy the leap condition.
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Apart from setting � properly, several other extensions of �-leaping have been
proposed. First of all, due to the potentially large leaps, Algorithm 2 may easily
produce negative molecule counts if care is not taken. To solve this problem, each
kj may be constrained to a maximum by drawing it from a binomial distribution
[14,69], or alternatively, only the number of firings of certain critical reactions (those
with reactants approaching extinction) may be constrained [10].

Another important class of �-leap extensions are those that deal with stiff systems
[42,57]. In stiff systems, very fast reactions coexist with very slow reactions, where
reaction speeds can differ sometimes by several orders of magnitude. The implicit
�-leaping method [57] deals with stiff systems by extending the implicit Euler
method (used to integrate stiff ODEs) to the stochastic simulation domain. More
recently, the so-called stochastic projective methods have been proposed [42], also
extending upon corresponding ODE methods, with the aim of improving calculation
efficiency by including a number of extrapolation steps in between leaps.

Beyond simulation performance, an important feature of �-leaping and variants
is that they can be adjusted to a wide range of behaviors, ranging from one-reaction
stochastic exact simulation to a deterministic ODE integration approach: as the
number of molecules approaches infinity, the stochastic variations in the Poisson
distribution become negligible, and �-leaping converges to ODE integration.

3.2 Simulating Spatial and Compartmentalized AChems

A well-mixed system is a simple but generally poor representation of a real
system and does not scale well to a large number of interacting objects. Since the
applications of purely well-mixed systems are limited, we now turn our attention
to spatial systems. Here again, there are deterministic and stochastic simulation
algorithms, and we focus on the stochastic methods.

Like their ODE counterpart, the simplest PDE integration method consists of
simply discretizing ıt in (7) into small fixed-sized time steps �t : for each successive
integration time step �t , calculate the change in concentration �c (in one time unit)
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for each molecular species in the system at each point in space using (7) and update
the concentration vector c accordingly: c.p; t C�t/ D c.p; t/C�c�t . This method
relies on �t being sufficiently small such that the coarse concentration changes �c

remain close enough to their ideal ıc. It is not always easy to choose an appropriate
�t that strikes a good balance between execution time and accuracy, and this is
especially problematic in the case of stiff systems. Therefore more sophisticated
algorithms are available, and the interested reader is referred to [6] for an overview
and further literature pointers.

As for the stochastic algorithms, since it would be too expensive to keep track
of the movement of each individual molecule separately, the space is usually
partitioned into equally sized sites or subvolumes, each holding a number of
molecules. Each subvolume is treated as a well-mixed vessel with a given volume
and a given coordinate in space. Diffusion is implemented as a unimolecular
reaction that expels a molecule out of one vessel and injects it in another nearby
vessel. The corresponding stochastic diffusion coefficients can be obtained from the
deterministic ones by taking into account both the unimolecular reaction case (recall
Sect. 3.1.1) and the volume of the compartment, as explained in [23]. Based on this
idea, a number of spatial extensions of Gillespie’s SSA for the stochastic simulation
of reaction–diffusion systems have been proposed [23, 26, 63].

The Next Subvolume Method (NSM) [23] is one of the most well-known
algorithms for the stochastic simulation of reaction–diffusion systems. It is a spatial
extension of NRM, in which subvolumes are scheduled by event time as were single
reactions in NRM. The event time for a subvolume is computed as a function of the
total propensity of the reactions (including diffusion as a unimolecular reaction)
within the subvolume, in the same way as the event time was computed for a single
reaction in NRM as a function of its propensity. In each iteration, the next subvolume
is picked from the top of the waiting list. From inside this subvolume, a random
reaction (or diffusion instance) is chosen for firing in a propensity-proportional
way as in the basic SSA (direct method). The propensities and event times for the
concerned subvolumes (that is, the subvolume where the reaction occurred and
the one that received a diffused molecule, if any) are updated accordingly, and
the algorithm proceeds to the next iteration. Like in NRM, events are kept in a
binary tree, to accelerate the search for the compartment within which a reaction
or diffusion event should occur. In this way, the execution time for one iteration
of the NSM algorithm scales logarithmically with the number of subvolumes and
therefore represents a significant advantage over a linear search for subvolumes as
would stem from a direct extension of SSA. NSM is implemented in the software
package MesoRD [33], and several other algorithms are based on it.

The Binomial �-leap Spatial Stochastic Simulation Algorithm (B�-SSSA) [46]
combines binomial �-leap and NSM in order to simulate longer time spans. In a
nutshell, the algorithm operates as follows: subvolumes are scheduled by event time
as in NSM. Whenever the propensities allow it, binomial �-leap is used within
a selected subvolume, in order to take a leap of several reactions in a single
iteration. Otherwise, a single reaction is chosen within the subvolume using the
basic direct SSA.
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Rather than considering diffusion as a special kind of reaction, the Gillespie
Multiparticle Method (GMP) [58] takes a different approach by splitting diffusion
and reaction events in time, as follows: diffusion events advance synchronously
in time across all sites, using a multiparticle lattice gas model. Between two
diffusion events, reaction events are executed at each site independently, using
Gillespie SSA, until the time for the next reaction reaches the time for the next
diffusion event. Another diffusion event is then recomputed, and the procedure is
repeated in the next iteration. Time between diffusion events is deterministic, but
the particles diffuse to neighbors chosen at random. Due to the synchronous nature
of the diffusion events, this algorithm is easier to parallelize [71], as will be seen
in Sect. 5.

The Multi-compartmental Gillespie’s Algorithm (MGA) was presented in [55],
and improved variants thereof followed in [27, 59]. MGA is an extension of SSA
to multiple compartments following a nested membrane hierarchy or P System
[54]). P Systems are artificial chemistries intended as formal models of parallel
computation, in which rules akin to chemical reactions are applied to objects
akin to molecules enclosed in a membrane. Membranes can be nested, forming
a hierarchical structure. Originally, P System rules would execute in a maximally
parallel way, with no account for different reaction rates. When applied to systems
biology however, a more realistic reaction timing must be taken into account, and
MGA seeks to fill this gap. The algorithm is based on NRM: the events occurring in
each membrane are ordered by firing time, and at each iteration, the algorithm picks
the events with lowest time for firing, updating the affected variables accordingly.

In [65] Membrane Computing is used to evolve populations of artificial cells
displaying growth and division. The volume of the compartments is not explicitly
modelled in [65]. An extension of Gillespie for compartments with variable volume
is introduced in [43], in order to simulate cellular growth and division. Indeed,
the authors show that when the volume changes dynamically, the propensities are
affected in a non-straightforward way, and adaptations to the original SSA are
needed to accurately reflect this.

All the algorithms above assume that molecules are dimensionless particles
moving and colliding randomly. However, in reality, intracellular environments are
crowded with big macromolecules such as proteins and nucleic acids that fold in
complex shapes. In such an environment, the law of mass action no longer applies.
Simulations of reaction kinetics in such crowded spaces need different algorithms,
such as presented in [61], which also show that fractal-like kinetics arise in such
cases.

Recognizing that there is no perfect “one size fits all” algorithm for all pos-
sible applications in systems and cell biology, a meta-algorithm was proposed
by [67]. The meta-algorithm is part of the E-Cell simulation environment and
is able to run several potentially different sub-algorithms inside (such as ODE
integration and NRM), in an integrated way. Time synchronization is achieved by
taking the sub-algorithm (“stepper”) with minimum scheduled time, in a manner
similar to NRM. Such a meta-algorithm could also be interesting for simulation
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of multi-compartmental systems, where each sub-system may be simulated by a
different algorithm.

4 GPU Computing in a Nutshell

In recent years, parallel computing on General-Purpose Graphics Processing Unit
(GP-GPU) hardware has become an affordable and attractive alternative to tra-
ditional large and expensive computer clusters. Originally designed for high-
performance image processing in computer graphics, movies, games, and related
applications, the popularity of GPUs has reached domains as diverse as scientific
computing for physics, astronomy, biology, chemistry, geology, and other areas;
optimization and packet switching in computer networks; and genetic programming
and evolutionary computation, among other domains [8, 17, 32, 44].

In this section we summarize the GPU architecture and programming very
briefly, just enough for the reader to be able to follow the discussion on the
parallelization of the AChem algorithms in Sect. 5. See [45] and chapter 2 of
this book for a more comprehensive overview of GPU hardware and [17] for a
more comprehensive overview of GPU computing applied to the modelling of
biochemical systems.

Initially difficult to program due to its specialized internal architecture, GPU
cards are now becoming increasingly easier to program, thanks to high-level
programming frameworks such as CUDA (Compute Unified Device Architecture,
by the GPU card manufacturer NVIDIA) and OpenCL (Open Computing Language,
a framework designed to execute over multiple GPU platforms from different
manufacturers). However, in many aspects GPU programming still remains rather
low level and architecture dependent: in order to fully exploit the parallelism
provided by GPUs, the programmer needs to know the internals of the GPU
architecture very well and design an efficient program accordingly. Moreover, not all
tasks can fully benefit from the parallelism provided by GPUs: GPUs have a SIMD
(single-instruction, multiple-data) architecture, in which each single processor is
able to process multiple data items in parallel using the same instruction. Therefore,
the tasks that are good for GPUs are those that must handle multiple data items
using the same flow of instructions.

In a nutshell, the GPU architecture is organized as follows: each GPU device
contains a grid of multiprocessors (typically between 15 and 30). Each multiproces-
sor is organized as a set of SIMD processors. Each SIMD processor can handle a
number of data items in parallel, typically 8 or 32. All the processors share a global
memory space. Each multiprocessor has a local memory space that is not visible to
other multiprocessors, but that can be shared among its own SIMD processors, and
is called the shared memory space.

The CUDA framework tries to hide the internal organization of a GPU device,
while exposing the aspects that are necessary for the programmers to optimize their
algorithms to run efficiently on the GPU. As such, each card is structured as a grid of
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blocks. Blocks are scheduled to multiprocessors, and each block may run a certain
number of threads in parallel (typically 512 or 1,024). These threads are mapped
to SIMD processors in a preemptive way: each SIMD processor can handle up
to N threads in parallel (N is called the warp size and is typically 32), provided
that they all run the same instruction on different data items. If a processor gets
a group of threads in which half of them is doing something different than the
other half (this is called thread divergence and typically occurs during conditional
branching), then the processor must run one group of threads first, then the second,
in sequence, therefore increasing the overall execution time needed to complete the
multithreaded task. Therefore, avoiding thread divergence is one technique to help
improving the performance of GPU programs.

Other techniques to improve the performance have to do with memory man-
agement: the access time to global memory items is much slower than to items
placed in shared memory. Therefore, placing frequently used data items on shared
memory can improve performance significantly. On the other hand, these local
memory items are deallocated when the GPU call returns to the host machine’s
CPU; therefore, they have to be reinitialized at each GPU iteration call, typically by
copying them from global to local memory. Since the global memory space is much
larger and data items stored there persist across GPU invocations, its use is often
very convenient. A good technique to improve its access time is to retrieve items
in groups of contiguous memory positions (coalescent memory access). Another
important aspect to consider is the communication cost between CPU and GPU:
passing data items from the CPU to the GPU and vice versa is an expensive
operation and therefore should be minimized.

The synchronization among threads running on a GPU also deserves attention:
threads within the same block can synchronize together, while threads in different
blocks cannot. Blocks may be scheduled and preempted at any order; therefore,
inter-block synchronization is problematic. It is usually achieved by returning
control back to the host and paying a corresponding performance penalty.

In order to run a given program on the GPU, a so-called kernel function must
be specified, in which the code for each thread is written, usually as a function of
the data items that each thread should handle. After transferring all the necessary
data items from the host CPU to the GPU card’s global memory, the kernel is
then invoked with the grid and block dimension parameters, together with any
function parameters needed for the kernel to run, including the locations of the
global data items to be processed. After completion, the processed data items are
then transferred to the CPU where the computation results can be extracted for
further analysis.

The performance of an algorithm running on GPU is usually measured in terms
of the speedup of the GPU implementation with respect to a single conventional
CPU (single core). In this context, a speedup of �10 (or 10�) means that the
parallel algorithm runs ten times faster on the GPU than the corresponding
sequential algorithm on a single CPU. Note that speedup figures must be interpreted
with care, since they depend on the actual GPU and CPU models used in the
measurements.
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5 Parallelizing Artificial Chemistries on GPUs

A survey of the use of GPUs for the simulation of biological systems is presented
in [17]. Several algorithms are described, including Molecular Dynamics (MD)
simulations, lattice-based methods such as cellular automata (CA), multiparticle
diffusion models, reaction–diffusion, and P Systems on GPU. A survey of related
algorithms for parallel architectures in general can be found in [6], covering ODE
integration, as well as the sequential and parallel stochastic simulation of chemical
reactions. Here we focus on the chemistry part, and for this reason we do not cover
methods that go down to the physics of the system, simulating molecular shapes and
movements, such as MD and particle-based methods. We refer the interested reader
to [17] for an overview of these other methods in the GPU context.

Among the AChem-related algorithms, numeric PDE integration, cellular
automata, and other spatially oriented algorithms are the easiest to parallelize
on GPUs, due to their data structure resemblance to those of the image processing
tasks for which GPU hardware was originally conceived. Section 5.1 provides a
brief overview of some existing approaches to the parallelization of deterministic
AChem algorithms on GPU.

The parallelization difficulties increase as we move away from such highly
repeated data structures with identical data handling and approach stochastic
algorithms in which multiple different reactions may take place at different times.
Section 5.2 provides an overview of the existing approaches to parallelize stochastic
algorithms on GPU, and Sect. 5.4 points out the main remaining difficulties and
potential improvements.

5.1 Deterministic Algorithms

The parallelization of ODE and PDE integration on GPUs is generally straightfor-
ward and has been applied to solve problems in systems biology and other domains
[51, 60]. This is especially true for the case of numeric PDE integration, where the
same differential equations and diffusion rules apply to all the points of the grid,
providing a nearly perfect match to the GPU architecture: each GPU thread can
take care of one point in space, and the threads in a warp can perform the same
computation on different data points.

A GPU parallelization of the numeric integration of reaction–diffusion equations
in three-dimensional space is described in [51]. A detailed overview of GPU
approaches to parallelize the numeric integration advection–reaction–diffusion
equations is presented in [60].

In previous work [77], we used a parallel implementation of reaction–diffusion
on a GPU to look at large patterns, and in [76] we complemented such a GPU
implementation with an evolutionary algorithm in order to search for reaction–
diffusion systems forming desired patterns. In both cases the parallelization of
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reaction–diffusion and their automatic evolution on GPUs achieved speedups of
about two orders of magnitude compared to the single CPU case and was essential
to make the experiments run within a feasible duration.

5.2 Stochastic Algorithms

Several efforts to parallelize stochastic algorithms for AChems can be found in the
literature, with various degrees of success. This section briefly reviews these efforts,
starting with exact methods for well-mixed systems, moving on to approximate
methods and spatial and compartmental systems, and finally citing some very
recent work.

In [41] multiple instances of Gillespie’s SSA are launched in parallel on the
GPU, in order to repeat a given experiment several times. A variant of Gillespie’s
SSA called the logarithmic direct method (LDM) with sparse matrix update is
used in order to improve performance. Speedups of up to �200 are reported. Such
good performance is obviously expected given that the SSA algorithm itself is
not parallelized, so no global state needs to be maintained. Similar parallelization
strategies can be found in software packages such as AESS [35] and CUDA-
sim [78].

A parallelization of Gillespie’s FRM on GPU is proposed in [18]: the calculation
of the smallest � interval is partitioned among several tasks on the GPU, each of
which takes care of a group of chemical reactions and calculates its local minimum
� value accordingly. All the local minima are collected in order to compute the
global minimum, which is then used to compute the next state of the algorithm
on the CPU. Several GPU-specific technical optimizations are also included in
order to improve the performance of the algorithm. Despite the careful design, a
weak performance gain of less than �2 speedup is reported, which can probably
be attributed to the excess of synchronization needed between GPU threads and
between CPU and GPU in order to compute and maintain the global state of the
system.

A parallel implementation of �-leap on GPUs is presented in [74], extending
upon a previous method called parallel Coarse-Grained Monte Carlo (CGMC)
for the simulation of spatially distributed phenomena on multiple scales. CGMC
partitions the space into cells akin to subvolumes. Only three types of events are
considered: diffusion, adsorption and desorption of molecules on cell surfaces. In
parallel CGMC, the �-leap method is extended from a well-mixed to a spatial
context. A master-slave configuration is used for this purpose: a master node
calculates � and broadcasts it to the slave (cell) nodes that compute propensities
and fire reactions. The locally updated molecular populations are returned to the
master who collects all the values and updates the global state for the next iteration.
The parallelization of CGMC on GPU [74] also works in the coarse-grained spatial
context of CGMC: each GPU thread (slave) takes care of one cell and performs the
leaps for the reactions inside the cell, given the interval � provided by the master
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node (CPU). Experiments show that simple parallelization strategies, including the
use of shared memory for storing local propensities and molecule counts, perform
better on large systems than more sophisticated strategies based on a multilayered
structure.

An implementation of P Systems on GPU with CUDA is shown in [12].
Membranes are assigned to blocks on the GPU, where threads apply the rules to
the objects inside the membrane. Although impressive speedup figures are reported
in [12], reaching values in the range of 1; 000�, the experiments used to obtain
these figures included only very simple reaction rules, essentially to refresh and
to duplicate objects. These rules were executed in a maximally parallel manner,
therefore obviously making full use of the GPU to perform the same operation on
multiple data items as fast as possible. A more realistic case study of P Systems
on GPUs is presented in [47], where an instance of the N-Queens problem (a well-
known NP-hard problem) is solved with the help of a P System running on a GPU
card. In [47], only the selection of the rule to be fired is done on the GPU, while the
actual rule execution is left for the CPU. In this context, a speedup of about 12� is
reported for the selection part on GPU, with respect to the corresponding selection
on CPU.

As mentioned in Sect. 3.2, the GMP algorithm is easier to parallelize because
diffusion events occur in a synchronous way. Recently, the GMP algorithm was
indeed parallelized on a GPU (and GPU cluster), resulting in the GPGMP algorithm
[71]. GPGMP consists of a main loop on the CPU, from where three GPU kernels
are invoked: first, the Gillespie kernel computes the chemical reactions according
to the plain SSA; afterwards, the Diffusion kernel decides which molecules will
move in which direction; finally, the Update kernel is invoked to update the
molecule counts for each subvolume; and then the loop repeats, with a central
update of the simulation time flow on the CPU. Speedups of up to two orders of
magnitude are reported but on a GPU cluster and on very simple examples where
all processors run the same kind of reaction. Later, the diffusion part of GPGMP
was extended to support inhomogeneous diffusion [72], also on a GPU.

At the time of this writing, the most recent algorithm to parallelize stochastic
simulations on GPUs is [38]. It parallelizes well-mixed �-leaping on GPUs with the
help of the NVIDIA Thrust library, which provides convenient parallel operations
on vectors. The calculation and update of propensities, the random choice of the
number of firings kj for each reaction, and the update of the state vector are
done in parallel on the GPU. A speedup of up to 60� is reported with respect to
an optimized sequential SSA implementation. A comparison against a sequential
implementation of �-leaping would be useful to assess the actual performance gain
of the parallelization procedure more clearly.

The algorithm in [38] also includes a parallel version of SSA (direct method),
used when �-leaping must fall back to SSA. At each time step, this parallel SSA
performs the reaction selection procedure, the update of propensities, and the update
of the molecule counts in parallel. The computation of � , followed by the update
of the simulation time, is done by the CPU. This method is therefore efficient in
systems with large numbers of reactions and molecular species, in cases where
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�-leaping cannot be applied due to a violation of the leap condition. However the
performance of the parallel DM part in isolation is not reported in [38].

5.3 A Simple Stochastic AChem on GPU

As an example to illustrate the issues involved in parallelizing AChems on GPUs,
we have implemented a simplified version of a spatial stochastic AChem on GPU.
The algorithm combines some elements of GPGMP [71] and the GPU-based CGMC
[74]. It supports both SSA and �-leap for the reaction step, while the diffusion step is
preferentially stochastic. Diffusion can also be switched off, in order to run multiple
independent instances in parallel as in [35, 41, 78].

For simplification, we ignore the most difficult problem with �-leap so far,
namely, the adaptive nature of � , and adopt a fixed � interval that is used by all
processors during the full duration of the simulation. In multiple-instance mode
(without diffusion), the leap size can also be chosen as a multiple of the propensity
a0 for each instance (Sect. 3.1.3). As with the example of Fig. 2, adjusting �

manually allows us to illustrate the trade-off between speed and accuracy in the
algorithm.

Algorithm 3 shows how our implementation works. Three kernels are needed:
one for the reaction component (lines 5–8) and two for the diffusion component
(lines 9–22 and 23–28, respectively). At each iteration, these kernels are invoked
sequentially from the CPU, in order to choose the amount of reactions to be fired and
of molecules to be diffused during an interval � . Each kernel launches a number of
threads in parallel; each thread takes care of one lattice cell (equal to one subvolume
or one compartment). Uniformly distributed random numbers are generated using
the CURAND library under CUDA, and Poisson-distributed numbers are derived
from these upon demand, using a logarithmic variant of the basic Knuth’s method
for small lambda (0 < � � 10) and a Gaussian approximation with continuity
correction for � > 10. For simplification, no special memory access optimizations
are implemented, and the molecule counts for each compartment are stored in global
memory.

The first kernel takes care of the reaction part. Each thread simply invokes SSA or
�-leap within its compartment. In the case of SSA, multiple iterations are involved
until an interval � is simulated. In the case of �-leap, a single iteration with step �

is invoked; negative molecule counts are avoided by simply ignoring reactions that
produce them.

The diffusion component is divided into two kernels in order to solve the critical
region problem arising from the need to transport molecules from one compartment
to another (controlled by another thread). The first diffusion kernel decides how
many molecules go to which neighbor positions. This is done by treating diffusion
as a unimolecular reaction (as in NSM) and then drawing the number of firings for
this pseudo-reaction from a Poisson distribution (as in �-leap). In this way, each
thread computes the amount of molecules to be transported, subtracts this amount
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Algorithm 3 Stochastic Reaction–Diffusion on GPU
1: � : time step interval
2: t D t0
3: while desired do
4: t  t C �

5: for all threads on GPU in parallel do
6: run � -leap (Algorithm 2) for compartment
7: or alternatively, run SSA (Algorithm 1) until t is reached
8: end for
9: for all threads on GPU in parallel do

10: N : set of neighbors of this cell in the lattice
11: M : multiset of molecules within this cell
12: for all si 2M do
13: Bi;j D 0 8j 2 N

14: di : stochastic diffusion coefficient of species si

15: if di > 0 then
16: ni : number of molecules of type si in subvolume
17: � D di ni �

18: draw k � Poisson.�/

19: Bi;j D k, where j is a random neighbor of this cell
20: end if
21: end for
22: end for
23: for all threads on GPU in parallel do
24: N = set of neighbors of this cell
25: for all Bi;j from N where j is the index of this cell do
26: si  si C Bi;j

27: end for
28: end for
29: end while

from its local count, and writes it to a transport buffer B , indexed by molecular
species and destination compartment. After all the threads have completed the first
kernel, the second kernel is then launched. During this kernel, each thread inspects
the neighboring transport buffers, and increases the molecule counts for each species
destined to its position, by the amount given in the corresponding buffer position.

When the population of diffused molecules is large enough, the diffusion step
can be easily made deterministic by taking k D � on line 18. A deterministic
diffusion step combined with SSA within each compartment would turn Algorithm 3
essentially into GPGMP. The combination of stochastic diffusion with �-leap leads
to a variation of CGMC on GPU where any type of chemical reaction can be
supported. In multiple-instance mode, the two diffusion kernels are simply not
invoked.

Figure 3 shows some snapshots of the spatially extended stochastic Lotka–
Volterra example run on a lattice of 128 � 120 cells (this is the minimum lattice
size for which the GPU card is fully loaded with one cell per thread). The �-leaping
algorithm was used for the reaction step in Algorithm 3, with a leap interval of
� D 0:01 s. For better visibility, the color intensities have been normalized relative
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Fig. 3 Snapshots of predator (red or green) and prey (blue) populations in spatial stochastic
Lotka–Volterra simulations with varying diffusion coefficients (D parameter) for the predator and
prey species. Top: D D 1:0. Bottom: D D 10:0. Snapshots taken at the end of the simulation (at
t D 100 s of simulated time)

to the cell with the highest amount of chemicals (depicting therefore the relative
rather than absolute population values). When there is very little or no diffusion (not
shown), either the predator or prey populations quickly go extinct, and no patterns
are observed. For diffusion coefficients smaller than D D 1:0, the prey and predator
populations are too scattered (due to extinct regions) or too mixed, so no pattern
is formed. For the case of D D 1:0 (upper part of Fig. 3), some loose segregation
of predator and prey populations in small clusters starts to become apparent. The
clustering phenomenon seems to increase with increased diffusion: for instance,
for D D 10:0 shown in the lower part of Fig. 3, irregular but clearly visible
patterns seem to form, including dark areas with scarce populations. The position
and shapes of the clustered areas change very quickly in time, but the overall
qualitative behavior tends to persist throughout the simulation. However, beyond
a certain diffusion rate (for instance, for D D 100, not shown), the system reverts
back to the high extinction rates observed in the original case without diffusion,
indicating that we approach the well-mixed case for the whole lattice.

Figure 4 shows that extinction can be significantly delayed by adding a small
amount of diffusion to the system. Extinction here means that the population
of either predator or prey gets depleted in a given cell. The fraction of extinct
cells is then the fraction of cells that have either population extinct in its local
compartment. The diffusion coefficient was set to the same value for both predator
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and prey species. When no diffusion is present (D D 0), the system is reduced
to the multiple-instance mode, without interaction between compartments. In this
case, a quick extinction rate is observed. Moreover, the simulation stops at around
t D 15 s due to the extinction of all cells on the grid. In contrast, by adding an
amount of diffusion for predator and prey as low as D D 0:001, the total collapse
of the simulation is avoided: the global population remains stable and is able to
survive till the end of simulation (at t D 100 s, although the plot is truncated at
t D 40 s for better visibility), in spite of a large number of extinct cells. Further
increasing diffusion also causes a further drop in extinction rate, until it reaches zero
at D D 1:0. The extinction rate is kept at zero for D D 1:0 until about D D 10 (not
shown). A further increase in diffusion speed leads again to faster extinction, until
a scenario similar to D D 0 is achieved (not shown). This return of the danger of
extinction with increased diffusion can be delayed to higher diffusion coefficients by
decreasing the global time step � (thus increasing the accuracy of the simulation).
Hence these results must be interpreted with care and in a qualitative rather than
quantitative way.

Since the focus of this chapter is on the GPU parallelization of stochastic
AChems, we will not delve further into the details of this specific Lotka–Volterra
example. See [2, 50] for more information about stochastic predator–prey systems
and [62] for an early parallel implementation thereof. The results shown in this
section seem in line with the known literature in the area; however, the fixed � step
size has been carefully chosen to capture the relevant qualitative aspects of this
specific example. For a more general usage, in order to avoid the computational
load of adjusting � globally, an alternative could be for each thread to choose
independently whether to apply SSA or �-leap within the given � interval, for
instance, by falling back to SSA when the leap condition cannot be satisfied in its
local compartment. However this could lead to thread divergence when neighboring
compartments (executed by the same SIMD processor) choose different algorithms.
Once more, such options express the trade-off between simulation accuracy and
computational efficiency.

Concerning computational efficiency, Table 1 shows the average speedups
achieved for our GPU implementation of SSA and �-leap, for a leap size of
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Table 1 Speedups obtained
for our implementations of
Gillespie SSA and � -leap on
GPU (for � D 10=a0),
averaged over 100 runs

GPU

CPU# SSA � -Leap

SSA on CPU 60:7˙ 2:1 120:0˙ 4:0

� -Leap on CPU 23:1˙ 0:4 45:7˙ 0:8

� D 10=a0 in multiple-instance mode. The speedup is calculated over a runtime
of 10 simulated seconds of the Lotka–Volterra example under the same initial
conditions and parameters as in Fig. 1 but with different seeds for random number
generation. We can see that the GPU always outperforms the CPU (speedups are
always greater than one), even in the less obvious case of the GPU running SSA
against the CPU running �-leap. Obviously, the best speedup is achieved under the
most favorable conditions: when the GPU runs �-leap and the CPU runs SSA (this
was also the comparison used by [38]). Note that in spite of a leap size ten times
larger than the average SSA time step interval, �-leap only reaches twice the speed
of SSA. This is mainly due to the higher cost of generating Poisson-distributed
random numbers for each reaction, when compared to the two uniform numbers
needed at each SSA iteration. Higher speedups can be achieved with �-leap by
increasing the leap size, however, this also makes the algorithm less accurate as
discussed in Sect. 3.1.3.

We have also measured the share of the diffusion part of Algorithm 3 over the
total simulation time. This was done for the GPU implementation only (due to the
slowness of running the spatial algorithm on a single CPU), for the same spatial
Lotka–Volterra example and �-leap with � D 0:01. Figure 5 shows the runtimes
together with the fraction of time spent on the diffusion process alone (consisting
of the two diffusion kernels in Algorithm 3). Diffusion takes a considerable share of
the total runtime, up to about two thirds, with a peak coinciding with the parameter
regions where cells tend to survive until the end of the simulation (at t D 100 s)
(since cells with extinct populations have nothing to diffuse thus consume no
computation time). Part of the responsibility for such a high computation load might
be attributed to the required return to the CPU in between the two diffusion kernel
invocations, plus the necessity for each cell to inspect neighbor information for local
state updates (which increases memory access delay since some neighbors might not
be located in nearby global memory positions allowing coalescent memory access).
More efficient memory access schemes could be used to optimize the diffusion part,
such as those suggested in [38, 74].

5.4 Summary and Discussion

The original Gillespie SSA is known to be hard to parallelize [17]. Indeed, it can
be seen in Algorithm 1 that the global state of the system is refreshed at every time
step: the propensities of all reactions are summed up to obtain the value a0 which is
then used both to calculate the time � until the next reaction and to pick a random
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reaction to be fired, with a propensity-proportional probability. Here the global state
of the system is represented by variables a0 and � , and their regular update can be
regarded as a compulsory synchronization point in any parallel implementation of
the algorithm. Such global state maintenance is what makes the algorithm difficult
to parallelize: the best algorithms for parallel implementation are those that can be
easily split into independent or loosely connected parts, such that each processor is
able to operate alone and correctly without global state information, relying only
occasionally on data exchanges with other processors.

Methods to parallelize the original SSA and other exact methods on GPU focus
either on the realization of multiple instances of the algorithm in parallel [35, 41,
78] or on the parallelization of the steps to reach the global synchronization points
mentioned in the previous paragraph [18, 38]. Such synchronization must be done
at every iteration, usually requiring a round trip from the GPU to the CPU for that
purpose. The performance of such parallel algorithms is therefore limited by these
frequent synchronization events.

The parallelization of approximate methods such as �-leaping sounds easier:
once the step � is calculated, all the kj values for the different reactions may
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be chosen in parallel. In practice, however, the procedure to calculate � can
be computationally expensive, the time to generate poisson or binomial random
numbers (needed to obtain the various kj ) may increase with the propensities,
and the choice of each kj value may affect the others, due to substances that
participate in multiple reactions. Despite these difficulties, recently new algorithms
that parallelize �-leaping on GPUs have been proposed [38, 74]. Here again, the
update of � represents the global synchronization point that sets a limit on the
amount of parallelism that can be achieved.

The parallelization of spatial methods looks even easier: subvolumes can be
easily assigned to processors or threads that can run in parallel, occasionally
exchanging molecules. However, here again time must be synchronized globally
across all processors, since the speed of reactions happening inside each subvolume
has an impact on the overall behavior of the system, for instance, on the patterns
that may form within it. The GPU implementations of �-leap [74] and GMP [71]
both occur in a spatial chemistry and are examples of this category.

When time constraints are not an issue, impressive speedup figures can be
obtained, for instance, when P Systems run on GPU using a maximally parallel
way [12]. Since time synchronization is such a critical obstacle to parallelism, some
authors [16, 36] have attempted to get around it with techniques from distributed
systems applicable to discrete event simulations, essentially based on the rollback
of events (undo). This method presents excessive overhead due to the amount of
messages that must be exchanged between processors and the amount of events
that must be undone. In the case of complex or irreversible chemical reactions with
potential side effects, undo can be both computationally expensive and problematic.
Needless to say, due to its message passing model, such a technique does not match
the GPU architecture very well.

Load balancing is also an issue with any GPU implementation of a stochastic
AChem. In order to make full use of the GPU resources, thread divergence must be
avoided or at least minimized. Therefore when reactions are executed in parallel,
ideally similar reactions must be grouped by thread warps, such that each warp
executes a nearly identical code, minimizing divergence. Although promising,
algorithms such as GPGMP [71] and the variants of �-leap on GPU [38, 74] all
have the potential problem that thread divergence in reaction execution might occur
in the case of complex reaction networks composed of very different reactions. A
load balancing strategy that takes into account the GPU architecture is needed. One
possible strategy could be to assign groups of reactions to threads based on their
similarity and the computation load required to fire them: for instance, one thread
warp could receive a group of a few similar but difficult reactions, while another
warp would get a group of many similar and easy reactions. How to design an
efficient load balancing strategy with minimum computation overhead remains an
open issue.

A technical issue of practical importance is the availability of random number
generators on GPU. The CURAND library has been recently released, offering
a range of pseudorandom number generators on GPUs for CUDA. Before that,
researchers used their own homemade random number generator, usually a variant
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of the well-known Mersenne Twister algorithm [18, 41] and related pseudorandom
number generators [39, 68]. Other researchers have exploited the inherent paral-
lelism of the GPU to obtain pseudorandom number generators based on cellular
automata [53], as well as true-random number generators that exploit natural sources
of randomness on the GPU such as race conditions during concurrent memory
access [13]. The computation efficiency of number generators other than uniform
(Gaussian, Poisson, binomial) as needed by AChem algorithms still needs to be
further assessed and improved on GPUs.

6 AChems for Search and Optimization

Looking at optimization from an Artificial Chemistry perspective is equivalent to
explicitly modelling the optimization process as a dynamical system: candidate
solutions can be regarded as molecules, and variation can be regarded as a chemical
reaction resulting in the transformation of one or more molecules into mutant or
recombinant types [7, 37, 75]. Various types of selection pressure may be applied.
Two commonly used methods in AChems are inspired by prebiotic evolution: the
first one is to kill a random individual whenever a new one is created, and the
second one is to apply a dilution flow that randomly discards molecules when
the maximum vessel capacity is exceeded [20, 22]. Such non-selective random
elimination of individuals leads nevertheless to a selection pressure that favors
molecules able to maintain themselves in the population either by self-replication
or by being regenerated by others in self-maintaining chemical reaction networks
akin to primitive metabolisms [5, 21]. Rather than preprogramming an evolutionary
behavior like a genetic algorithm, such AChems favor the emergence of evolution
out of molecular interactions in chemical reactions. For instance, the spontaneous
emergence of a crossover operator is reported in [20].

Although most of the work in the AChem literature focuses on the dynamics
of prebiotically inspired chemistries and their evolutionary potential, without an
external objective function to be optimized, such studies are complementary to
current effort in evolutionary computation, since they can shed light on the
underlying mechanisms of evolution that could potentially be applied to improve
or to create new optimization algorithms.

Evolving populations tend to exhibit stiff system dynamics: some mutations
might cause waves of change that sweep through the populations, followed by
periods of low activity. With some adaptations, the stochastic algorithms discussed
in Sect. 3 can also be used to simulate evolutionary dynamics: a hybrid algorithm
based on SSA and �-leap is introduced in [79] and applied to the simulation of
evolutionary dynamics of cancer development. The Next Mutation Method [48]
is another recent algorithm for simulating evolutionary dynamics. Inspired by
NRM and taking into account that mutations are rare events, it aims at reducing
computation effort by jumping from one mutation to the next.
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As a model of a simple ecology, the Lotka–Volterra example can be naturally
extended to an evolutionary context. Indeed, generalized predator–prey systems
involving multiple species have been proposed, including cyclic interactions (the
predator of one species is the prey for another, and so forth, forming a food chain in
an ecosystem), as well as mutations of one or more species, leading to adaptations in
individual behavior [1, 25, 66]. In such models, predator and prey species coevolve:
for instance, predators may evolve an improved ability to track and capture prey,
whereas prey may evolve more efficient escape strategies.

Coevolutionary optimization algorithms [56] have been inspired by the competi-
tive arms race resulting from natural coevolution. Recently, a spatial coevolutionary
algorithm inspired by predator–prey interactions has been proposed [15], in which
species evolve on a two-dimensional grid in order to solve a function approximation
problem. Niches of complementary partial solutions emerge, leading to local
specializations for cooperative problem solving, which nevertheless result from
competitive predator–prey interactions.

Although promising, the potential of coevolution for optimization remains under-
explored, mainly due to the complex dynamics emerging from species interactions.
Perhaps this is an example where artificial chemistries running on top of GPUs could
help, both to better understand such dynamics and to derive improved algorithms
from such knowledge.

To the best of our knowledge, the parallelization of algorithms such as [15, 48,
79] on GPU has not been attempted so far. The simulation of complex ecologies
and their evolution seems to be an area where the use of GPU acceleration could
bring significant benefits due to the large population sizes involved, their complex
interaction patterns, and their potential for an open-ended evolutionary process.

7 Conclusions

The main challenge in parallelizing AChems on GPUs is to parallelize the stochastic
algorithms. These algorithms often rely on centralized information such as the total
propensity of all reactions in the system and the time interval between reactions,
which influence the choice of the next reaction, when it should occur, or how many
times it should be fired. Moreover, they require frequent use of random number
generators, a facility that only recently became available as a CUDA library.

However, parallelizing such stochastic algorithms is of paramount importance,
since these algorithms tend to be computationally intensive and are important when
the simulation of reactions is needed, which is often the case in artificial chemistry
studies related to synthetic biology, artificial life, and evolution.

In this survey we have shown the state of the art in artificial chemistries on
GPUs, discussed applications, and exemplified the usability of recently proposed
GPU algorithms for stochastic spatial predator–prey systems. We have highlighted
the main issues involved in the efficient parallelization of such algorithms, with
attention to their application in the optimization domain. Although many problems
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remain to be solved, as GPU programming becomes increasingly easier, it is
expected to contribute to significant advancements in the understanding of evolu-
tionary and coevolutionary processes in models of natural ecologies or for devising
new optimization algorithms able to tackle large and complex problems.
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50. Mobilia, M., Georgiev, I.T., Täuber, U.C.: Phase transitions and spatio-temporal fluctuations
in stochastic lattice Lotka–Volterra models. J. Stat. Phys. 128(1–2), 447–483 (2007)
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