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ABSTRACT: Here we develop a mechanism of protein optimization using a computational approach known as “genetic
programming”. We developed an algorithm called Protein Optimization Engineering Tool (POET). Starting from a small library of
literature values, the use of this tool allowed us to develop proteins that produce four times more MRI contrast than what was
previously state-of-the-art. Interestingly, many of the peptides produced using POET were dramatically different with respect to their
sequence and chemical environment than existing CEST producing peptides, and challenge prior understandings of how those
peptides function. While existing algorithms for protein engineering rely on divergent evolution, POET relies on convergent
evolution and consequently allows discovery of peptides with completely different sequences that perform the same function with as
good or even better efficiency. Thus, this novel approach can be expanded beyond developing imaging agents and can be used widely
in protein engineering.
KEYWORDS: protein engineering, CEST MRI, genetic programming

■ INTRODUCTION
Natural evolution has produced a myriad of proteins, and
many of them have been used for medical treatment and
recently for diagnostics. However, since the beginning of life,
natural evolution has only explored a small portion of the
protein design space,1 challenging protein engineers to
optimize existing and to even create new protein functions.
Directed evolution is a common and powerful technique to
artificially evolve proteins in the laboratory.2 In general,
directed evolution starts from a template protein that has a
function similar to the desired one. Next, a library of mutant
proteins is generated, often by using error-prone DNA
polymerase, and screened for the “fittest” protein that shows
the most desired feature. This first generation will then serve as
a template for the next generation, and the procedure is
repeated until a suitable protein with respect to the particular
feature is found (Figure 1a).

Despite its effectiveness, directed evolution comes with
several limitations. For many proteins, the experimental
evaluation process is very time-consuming and many of the
mutants produce silent mutations which do not carry on to
later generations. Furthermore, optimizing proteins requires
navigation through a complex fitness landscape, with
optimization trajectories often leading to a dead-end, unless
several mutations occur at once3,4 (Figure 1b). Deploying a
novel Protein Optimization Engineering Tool (POET) based on
genetic programming can make it possible to overcome these
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challenges by exploring a wider range of the protein design
space (Figure 1c). POET relies on the principle of convergent
evolution, i.e., when species/proteins have different origins but
have developed similar features. This is in contrast to divergent
evolution, in which separate species evolve differently from a
common origin. Thus, POET allows for the identification of
new peptides/proteins with desired features that could not
have been discovered with traditional protein engineering
tools. POET utilizes all the search space, and even protein
variants that do not show improvement over previous
generations to provide useful information that can lead to
improvement of the next generation. Hence, the POET
algorithm is potentially a game changer for the protein design
tool that can be implemented into numerous protein
engineering applications.

Evolutionary Computation is a field in computer science,
studying algorithms inspired by biological evolution. Genetic
Programming (GP)5,6 is among powerful evolutionary
computation techniques that evolve solutions to difficult
structural design tasks as a general problem solver. In the
context of protein engineering, GP was used to predict
transmembrane domains and omega loops in proteins,5 to
evolve energy functions for evaluating protein structures,7 and
more recently, to predict protein−protein interactions related
to disease.8 This earlier work demonstrates the capability of
GP to model features in the protein search domain, and in
particular its ability to extract features relevant for a prediction
task. This is a central capability in biological applications where
often high-dimensional inhomogeneous data sets are used as
input to predict output values. In addition to creating
predictive models, the underlying mechanisms of GP allow it
to come up with novel models, often on first sight surprising or
even counterintuitive to the user.9 Over the past decades, GP
has proven to produce human-competitive solutions to many
problems.10

To evaluate the potential of POET to evolve ultrasensitive
proteins and peptides, we decided to focus on solving the
problem of sensitivity of a specific class of peptide-based
probes used for magnetic resonance imaging (MRI) of
molecular targets. The peptides can be detected with MRI
via a contrast mechanism, termed chemical exchange
saturation transfer (CEST). CEST is based on the dynamic
exchange process between an exchangeable proton (hydrogen
atom) and the surrounding water protons.11,12 This contrast
was demonstrated to be most efficient for poly-L-lysine by van

Zijl and colleagues13 and later on was optimized for several
other peptides.14,15 The poly-L-lysine was used as a backbone
for designing of a synthetic gene, termed Lysine Rich Protein
(LRP), that was successfully used for in vivo imaging of several
translational models.16−20 However, long repeats and high
content of lysine residues might affect the cellular stability of
the protein and consequently reduce the contrast. To increase
the number of available building blocks and improve the
contrast, we developed POET to evolve peptides that provide
high CEST contrast with diverse sequences.

■ RESULTS AND DISCUSSION
Developing Protein Optimization Evolving Tool

(POET) Based on Genetic Programming. Genetic
programming, much like many other evolutionary algorithms,
follows the basic principles of evolution. A population of
random solutions to a given problem is generated as the first
generation. The fitness of each of these solutions is evaluated
and quantified as a measurement for their performance. The
solutions with the highest fitness values are more likely to be
selected to create the next generation of solutions after being
impacted by evolutionary operators such as crossovers and
mutations. Crossover is a reproduction mechanism analogous
to sexual reproduction. Usually in crossover two parent
solutions are selected to create two new offsprings. A common
way to do so is to combine genetic codes for each of the parent
solutions in a manner that the offspring will contain parts from
both parents but is not identical with either of them. Mutation
usually occurs after crossover and has a chance to randomly
modify a small detail of solutions. The general goal of GP is to
evolve solutions to reach a specified fitness level. In other
words, to find a solution that satisfies the solving criteria of a
problem.

As a first step of developing POET, we incorporated GP to
evolve CEST predicting models represented by tables of motifs
and weights. Motifs are recurring patterns in protein sequences
and their respective weight represents the impact of that
pattern in calculating the CEST contrast of a given protein. For
example, a motif could be Glycine-Arginine-Arginine (GRR)
or Arginine-Lysine (RK) and their initial weights could be
−0.60 and 4.39 units, respectively (Figure 2a,b and Table S1).
POET models attempt to find their motifs in given protein
sequences and add the weights of the found motifs to generate
a score value correlated with the CEST contrast of that protein.
POET attempts to find and evolve models that best predict the

Figure 1. The principles of POET. (a) Illustration of conventional directed evolution, where in each evolution cycle one mutant exhibits better
fitness and thus is used as a template for the following generation of evolution. (b) Often, in directed evolution, the protein fitness reaches a local
maximum, and consequently all the mutants exhibit lower fitness (empty arrows). In this case it is impossible to predict which mutant should be
used as a template to achieve improved fitness (the route from 1 to 5). (c) In the case of POET, the route from 1 to 5 is not determined by
stepwise mutagenesis and adhering to the parental protein, but rather by generating libraries of peptides that cover broadly all the search space.
Each generation helps to shape a set of rules that determine the next set of peptides. This way all the search space of the fitness landscape is covered
and consequently minimizing the probability of missing the absolute maximum.
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CEST contrast. POET generates an initial random population
of 100 models which can have up to 50 rows of motifs and
weights. Evaluation of these models is done by comparing the
score values from these models with the actual CEST contrast
levels of proteins in a training data set. These models are then
compared by how well they can predict the CEST contrast
measured from the training data (Figure 2c).

POET uses a selection mechanism called the Tournament
Selection to choose the parent models from the population
(Figure 2c,d). Five models are selected, and their fitness values
are compared against each other. The two models with the
highest fitness are selected to reproduce two offspring models.
POET divides the table of each parent model into two sections
of A and B and then generates two offspring models, each of
which will contain section A of one parent table and section B
of the other. POET uses mutational operators that modify the
weights and motifs of the model tables. Across 5,000 to 50,000
iterations of this algorithm (Figure 2, arrow), the motif-weight
pairs that are most important and accurate at predicting the
training data set are maintained, and those that are poor at
improving the training data set are discarded, causing the
model to develop in an analogous manner to Darwinian
evolution.21

POET Develops a Library of Contrast Producing
Peptides. Much like in evolution, the fittest peptide can be
either selected from a large population (in this case training
set) or, alternatively, many generations can compensate for a

smaller population. The evolution using POET was performed
for ten generations, and the resulting contrast relative to K12
(a sequence of 12 lysines) can be seen in Figure 3. K12 was
chosen as a peptide for comparison due to the high contrast it
produces and similarities to other reported results from poly-L-
lysine.13,15,17 For each generation we have obtained a library of
ten synthetic peptides which were termed for convenience
“CESTides”. Figure 3a,b show z-spectra (CEST-spectra) and
MTRasym plots, respectively. The amplitude of the peak of the
plot at 3.6 ppm − the amide resonance frequency was used to
generate the generational plot Figure 3. As can be seen in
Figure 3, within 10 generations, POET generated a CESTide
that displays a 4-fold increase in the MRI contrast.
Interestingly, the best CESTide was produced in generation 7.
Sequence Diversity of CESTides. POET was able to

generate a large variety of different chemistries (Figure S1),
many of which would not be discovered by directed evolution
on a feasible time scale. Traditionally, the general convention is
that peptides that are suitable for generating CEST contrast
should be positively charged.22,23 However, our findings
(Figure 4 and Figure S2) demonstrate that good CESTides
can deviate from the poly-L-lysine like sequence. This is
especially important for designing a new version of genetically
encoded CEST based reporters.20 Less charged reporters
reduce intracellular interactions with other proteins while the
use of more varied amino acids increases the intracellular
expression level of the reporter as it is not dependent on the
supply of a single amino acid. Moreover, the diversity in the
CESTides isoelectric point (pI) can allow tailoring the reporter
to different cellular environments.
Exchange Rate Calculations. There are three factors that

determine the optimal CEST contrast (MTRasym): the
chemical shift of the exchangeable proton (Δω), the saturation
power (ω1), and the optimal exchange rate (kex). While
simulations can predict what the optimal three factors are, only
Δω and ω1 are easy to control experimentally. In contrast, the
exchange rate is completely dependent on the chemical
formulation of the contrast agent.24 Hence, it is complicated
to predict in silico the kex for a contrast agent with a single
exchangeable proton25,26 and even harder to do so for a
peptide with at least ten exchangeable protons.27 We used
computational simulations to examine what the optimal
exchange rate would be. Our simulations show that for
peptides with exchangeable amide protons at 3.6 ppm, the kex
that provides the maximal MTRasym should be around 1473
Hz. Therefore, we aimed with POET to evolve peptides with
kex as close as possible to these values. Since kex is an absolute

Figure 2. Schematic illustration of POET. (a−d) Paradigm and
workflow.

Figure 3. Improvement of CESTides by POET. (a) MTR and z-spectra from the best and the worst peptide in generation 7. (b) The MTRasym is
normalized against the contrast generated by K12 in the same experiment to provide a consistent comparison across experiments and plotted with
respect to the generations.
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number that is dependent only on the peptide sequence and
structure as well as on the chemical environment of the peptide
(i.e., pH, temperature, etc.) and is independent of the field
strength, we determined the kex for selected peptides using a
14.1 T MR spectrometer, which provides better spectral
resolution. Table 1 shows improvement in the exchange rate of
peptides with evolution. The measured exchange rates are of
course an average of the exchange rates of all the exchangeable
protons with the same chemical shift. Remarkably, two
peptides, KYTKTRKQSSKA and NSSNHSNNMPCQ showed
average kex that are 1.75 times faster than K12. Therefore,
using POET we were able to optimize the proton exchange
rate of selected peptides through evolution and consequently
improve the CEST contrast.
Improvement of Sensitivity. After determining the

increased exchange rate of the peptides we developed with
POET, we wanted to see if the increase in exchange rate and

contrast was able to allow us to detect CEST contrast from
lower concentrations of the peptides. We imaged serial
dilutions of K12 and compared it to NSSNHSNNMPCQ
which is a neutrally charged peptide with an amine proton
exchange rate that is approximately 2 fold higher than K12
(913 Hz and 490 respectively). For each dilution we calculated
the p value of each pixel using a Student’s t test, compared a set
of four images obtained +3.6 ppm to four images obtained at
−3.6 ppm from the water peak, and created a t test map as
described before.28,29 As can be seen in Figure 5, both peptides
can be imaged at concentration as low as 1 mg/mL (505 μM
for K12, 668 μM for NSSNHSNNMPCQ) with a confidence
level greater than 0.05. It is important to note that the signal-
to-noise ratio (SNR) was found to be 59.2 and the CNR was
found to average 1.23 in wells with the peptides, compared to
0.39 in wells without peptides. (Figure S3). These data suggest
that even at low concentrations, the peptides evolved by POET

Figure 4. Structure of four representative distinct peptides. (a) K12; KKKKKKKKKKKK; Theoretical pI/Mw: 11.04/1556.10. (b) A peptide from
generation 2 has a neutral pI, yet generates contrast higher than the K12; NSSNHSNNMPCQ; Theoretical pI/Mw: 6.73/1332.38. (c) A peptide
from generation 5 that generates contrast that is approximately 4 times larger than K12: KMWDWEQKKKWI; Theoretical pI/Mw: 9.53/1706.04.
(d) A peptide from generation 7 that generates contrast that is twice that of K12 but has an acidic pI: ICLKSQPICGID.
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produce MTRasym detectable contrast at micromolar concen-
tration.
Learning by POET. We sought to examine the differences

between the peptides generated by POET to determine if
POET was converging toward a solution. This was calculated
via the nearest neighbor distance from peptides in the same
generation using Grantham distance, which takes into
consideration differences between the size, charge, and
hydrophobicity of different amino acids.30 The basic
assumption is that amino acids that are similar in chemical
composition, polarity, and molecular volume are more likely to
change throughout evolution as they are less disruptive to
protein function. To determine whether POET was learning
and converging on a solution, we compared the Grantham
distance between the peptides discovered with POET with
peptides that were generated randomly. We first examined the
intergenerational nearest neighbor distance (Figure 6a), by
comparing finding the shortest Grantham distance within each
peptide’s generation and all prior generations. As the
Grantham distance decreased with an increase in the number

Table 1. Normalized CEST Contrast and Exchange Rate for
Selected Peptides

normalized CEST
contrast (%)a kex (Hz)

peptide sequence generation amide amine OH amide

KKKKKKKKKKKKb 0 3.14 0.00 0.00 490
NSSNHSNNMPCQ 2 6.55 1.46 1.30 856.3
CCWHNPKWRRTR 3 1.34 6.38 11.67 332.6
KYTKTRKQSSKA 3 7.19 3.53 5.89 857.7
KPWHGCASRTKR 4 5.08 5.90 8.75 659.2
DKVCKIQKRKWH 5 4.58 2.75 4.61 572.8
KKRLHWIRWHCG 5 2.52 6.25 6.50 460.1
ICLKSQPICGID 7 1.57 0.62 2.18 704.1
KMGKLIGIPVLK 7 1.55 0.18 0.91 553.2
LWSDIKMKLKKT 7 2.00 0.40 0.95 630.3
EPSNLPKGMNEK 8 2.52 0.35 1.12 529.4
TSKSKKRMTAKK 8 4.52 1.73 3.16 625.8

aNormalized to 1 mM peptide concentration, B1 = 6 μTesla. bK12.

Figure 5. Sensitivity of evolved CEST peptides. (a) Contrast for each sample from the dilution experiment. Lines are from linear regressions, and
each has an R2 greater than 0.95. (b) Probability maps show the p-values from a t test to determine if any contrast perceived is statistically
significant. (c) CEST maps show the MTRasym values for each pixel.
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of generations, this implies that learning took place since it
shows that the predictions of POET are more similar than
would be generated by randomness and are decreasing in
distance faster. Next, we examined the intragenerational
nearest neighbor distance by comparing each peptide to all
peptides in the same generation to determine the most similar
peptide (Figure 6b). We find that the distance stays lower than
the random simulation, implying that there is a form of
selection occurring since the distance is lower than that of
random peptides. The distance is not decreasing by generation
which suggests that POET is not converging on a solution,
which would show the predictions decreasing in distance as
they all approach the same global maximum.

In recent years, CEST has been used for measuring in vivo
temperature changes,31 pH,32,33 enzyme activity,34,35 metal
ions,36 metabolites,37 glycogen and glucose,38,39 glutamate,
glycoproteins,40 and glycosaminoglycan.41 Recently, CEST
MRI has been performed in the beating heart to detect fibrosis
after myocardial infarction in mice42 and for in vivo mapping of
creatine kinase metabolism.43 We have previously demon-
strated that CEST can be used to monitor sustained drug
release44 and to sense cellular signaling using a genetically
encoded biosensor.45 Moreover, we have repeatedly demon-
strated that reporter genes based on CEST MRI can be used to
monitor gene expression in a 3D cell culture,23,46 in vivo in
rodents,26 or in a live pig heart.47 In many of these examples,
the CEST contrast is generated from a unique exchangeable
proton. In this case, to improve the CEST contrast it is
sufficient to optimize the exchange rate of this unique proton
and this could be done using rational design.23 However, when
designing a peptide for imaging, with multiple protons that
exchange with different resonance frequencies and different
rates, the optimization is too complex and is beyond the
current rational design capabilities. Thus, using tools like
POET that combine machine learning algorithms and

evolutionary principles with experimental measurement, is
ideal for peptide optimization.

We do note that some of the POET optimized peptides
(e.g., KKRLHWIRWHCG) have lower amide exchange rates
relative to K12. However, the amine contrast at 2 ppm was
significantly greater for these peptides indicating that the
increased MTRasym at 3.6 ppm for these optimized peptides has
contributions also from the amine exchangeable protons. This
can be seen in Figure 3b where a strong amine MTRasym is
observed at 2 ppm for some of the optimized peptides. Thus,
POET can optimize and exploit both amide and amine
exchangeable protons to maximize the MTRasym at 3.6 ppm.

In one of the original papers, van Zijl and colleagues
suggested poly-L-lysine as polypeptide based CEST agents.13

Following this discovery, we explored multiple genetically
encoded proteins rich in positively charged amino acids such as
lysine and arginine.16,18−20,48,49 Many of these genes expressed
proteins in vivo. In none of these studies was a toxic effect or
immune response observed. Nevertheless, in many of these
studies there was no long-term follow up on immune response.
While direct injection of high doses of poly-L-lysine may be
toxic,50 other studies suggest that a toxic or immunogenic
response depended on the formulations; for example, poly-L-
lysine nanocapsules show immunocompatibility and lack of
toxicity in vivo.51 One of the goals of this study was to explore
the boundaries of amino acid composition without compro-
mising the CEST contrast. It is well understood and
characterized that the presence of foreign proteins in the
body will eventually elicit an immune response. Nevertheless,
the findings from this study strongly support the notion that
immunogenetic epitopes could be replaced with other peptides
while retaining CEST characteristics. In fact, it might be
feasible to expand the POET to include a module that screens
for immunogenic epitopes using known algorithms and exclude
these epitopes much like we excluded hydrophobic peptides to

Figure 6. Grantham distance between discovered CESTides. (a) Intergenerational distance, where peptides are compared to those in their own
generation and all prior ones. (b) Intragenerational distance, where peptides are only compared to those in the same generation. The peptides
discovered using POET are blue circles (mean ± 95% confidence interval (CI)), simulated peptides generated randomly are shown as red squares
(mean ± 95% CI). Each data set has a trendline fit to an exponential decay curve (a), or linearly (b).
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humanize future CEST reporters. Moreover, POET helps to
diversify the amino acid sequence, finding sequences that are
uncharged as described above and potentially replace
immunogenic epitopes with nonimmunogenic epitopes.

One of POET’s advantages is the ability to develop peptides
where the mechanism of the peptide is not understood.
Currently, one of the limiting factors is the length of the
peptide. Every additional amino acid increases exponentially
the peptide search space. This, in turn, increases the time
required for computing each generation. With the increase in
computational power, it is anticipated that POET can be
applied for longer peptides. Sometimes it is important to have
AI for evolving large proteins, but sometimes it is important
just to evolve short peptides or motifs in large protein
sequences. POET can be useful for optimizing short peptides
and especially when only small data sets are available by
reliance more on generational evolution. Such examples for
short peptides or motifs could be peptides for drug, gene, or
exosome targeting,52 metal binding domains,53 functional
protein motifs,54 or peptide linkers for fusion proteins.55,56

All the above applications rely on short peptides and could
benefit from optimization by POET.

■ MATERIALS AND METHODS
Peptide Synthesis and Preparation. The peptides

determined by POET were obtained from Genscript (Piscat-
away, NJ). Each peptide was dissolved to a concentration of 5
mg/mL in deionized water. Mass concentrations were used for
experiments due to limitation of volume in the phantom and
the small amount of soluble peptide. Calculations of molar
mass assumed each peptide would associate with a Na+ ion on
every negatively charged residue and a Cl− ion on every
positively charged residue. To keep differences in pH from
interfering with the CEST effect, each peptide was titrated to a
pH of 7.2 using 0.1 M HCl and 0.1 M NaOH.
MRI Parameters. In earlier generations MRI data was

obtained using a vertical bore 11.7 T Bruker Avance system
with the 0.2 mL samples placed in the imaging coil and kept at
37 °C during imaging. The first scan is a WASSR scan used to
determine the exact frequency of water in the sample so that it
may be adjusted accordingly.57 The second scan is a CEST
scan made from a modified RARE sequence (TR/effective TE
= 10000/4.5 ms, RARE factor = 32, FOV = 17 × 17 mm2, slice
thickness = 1.2 mm, matrix size = 64 × 64, spatial resolution =
0.27 × 0.27 mm2) including a continuous-wave saturation
pulse of 4 s, saturation powers of 1.2, 2.4, 3.6, 4.7, 6.0, 7.2,
10.8, and 12.0 μT covering saturation frequencies from −10 to
+10 ppm offset from water in steps of 0.27 ppm. Starting with
the fifth generation of peptides we acquired MRI data using a
horizontal bore 7T Bruker preclinical MRI. The change in field
strength produced similar results, but at lower field strength
there is a higher influence on the amide contrast effect from
the amine contrast as the peaks broaden.

The samples were placed within an imaging phantom
custom designed and produced by 3D printing specifically for
this task. Each group of samples is run through two scans. The
first scan is a WASSR scan used to determine the exact
frequency of water in the sample so that it may be adjusted
accordingly.57 The second scan is a CEST scan made from a
modified RARE sequence, with a RARE factor of 16, and a TR
of 10,000 ms. Saturation pulses were applied as a block pulse
for 4000 ms, and a saturation power of 4.7 μT covering
saturation frequencies from −7 to 7 ppm offset from water in

steps of 0.2 ppm. Each generation was scanned multiple times
to ensure accuracy. Data processing was done with an in-house
MATLAB script.58

Finally, the amide proton chemical exchange rate was
measured by Quantitation of Exchange with Saturation Power
(QUESP)27 using an ultrafast Z-spectroscopy method59 on a
14.1 T Bruker NMR spectrometer where the saturation power
was varied from 0.2 to 14.8 μT. The saturation time was 5 s,
the TR was 10 s, the number of averages was 8, and the
temperature was maintained at 37 °C.
Exchange Rate Calculation and Simulation. The amide

proton exchange rate was quantified by Bloch−McConnell
equation fitting of the power dependence of the 14.1 T amide
proton signal using custom written software (MATLAB). The
amide proton signal was extracted from the ultrafast Z-
spectrum by 4-pool (water, amide, amine, and hydroxyl proton
pools) Lorentzian fitting.60

To investigate the relationship between the amide proton
exchange rate and the asymmetric magnetization transfer ratio
MTRasym at different saturation pulse powers, a simulation
study was performed based on the numerical solution of the
Bloch−McConnell equations implemented in MATLAB
(MathWorks).61 The parameters used were longitudinal
water relaxation (T1) of 1600 ms for both the water and
solute pools, transverse relaxation time (T2) of 50 and 1 ms for
the water and solute pools, respectively, and a solute
concentration of 200 mM with a chemical shift of 3.6 ppm.
The simulated acquisition protocol used an echo time (TE) of
20 ms, a repetition time (TR) of 15 s, a continuous saturation
pulse of 5 s, applied at 9 to −9 ppm frequency offsets, with
0.25 ppm intervals, and a readout flip angle of 90°, under a 7T
main magnetic field (B0). The examined exchange rates varied
uniformly between 100 to 2000 Hz with 1 Hz increments.
Generating t Test Maps. To generate t test maps we first

acquired four z-spectra of each sample using the same
protocols as used in the other MRI experiments. Using an
in-house MATLAB script based on prior publications.17,28,29

We examined each voxel’s intensity at 3.6 and −3.6 ppm from
each experiment to generate the test populations. These were
then compared using a one tailed unpaired t test. Voxels with a
p-value worse than 0.05 were discarded, and the image was
overlaid onto a spin echo image of the phantom.
Genetic Programming. POET algorithm is a multiplat-

form GP tool written in the Python programming language.
The computational experiments were run on Michigan State
University’s High-Performance Computing Center (HPCC)
systems. Each POET replicate uses only a single CPU core
(2.5 GHz) and 8 gigabytes of RAM. At each generation of the
experiment, 100 replicates of POET are executed in parallel
using different random seeds to evolve protein-function models
able to predict the CEST contrast of peptide sequences. These
replicates allow POET to explore various regions of the search
space at the same time to find fitter models. After the evolution
of these models, the fittest one of them in each generation is
employed for predicting new optimized peptides with respect
to their CEST contrast levels. To do so, a population of 10,000
random peptide sequences is initialized and evolved by
applying an iterative evolutionary algorithm. In this algorithm,
each of the sequences in each iteration undergoes point
mutation and is evaluated using the fittest previously evolved
POET model. If a mutation is not beneficial then it is reverted,
and the sequence will move to the next population unchanged.
Otherwise, if the mutation is beneficial, the change is applied
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to the sequence to be added to the next population. This
process is performed for an arbitrary number of iterations
(usually set to 1000) until fitter predicted peptide sequences
are found. The top 10 predicted peptide sequences are chosen
to be tested in the lab. Following lab measurements, these
predicted peptides are added to the POET’s training data set,
increasing POET’s chances to learn more meaningful motifs in
the next generation of the experiment and enabling it to
predict fitter and more optimized proteins in the future. At the
very start, 42 data points (peptide sequences and their
respective CEST contrast values) were available in the
POET training data set. Furthermore, in each generation of
the experiment, approximately 10 new predicted peptides were
added to the data set after wet-lab measurements. In the final
generation of the experiment, 128 data points were available
causing each execution of POET to take up to 35 h to evolve
fit sequence-function models. POET employs a novel GP
representation specifically designed for motif discovery in
protein engineering, which differs from previous GP
representations utilized in the existing literature. Detailed
explanations of the computational aspects of POET can be
found in a sister article.21

■ CONCLUSIONS
Here we demonstrated that POET can be used to evolve
peptides to produce substantially more CEST contrast than
PLL after only a few generations. POET generated CESTides
could potentially be assembled into the next generation of MRI
reporter gene62 with improved sensitivity over previous
generations of reporters. Since POET requires only a small
set of input peptide sequences and their corresponding
quantitatively measured functions to evolve models that
predict better peptide function, it is anticipated that POET
can be used for the evolution of peptides in numerous
applications.
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