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Artificial Chemistries (ACs)Artificial Chemistries (ACs)

 Man-made virtual or physical systems where objects are transformed in
interactions, like molecules in chemical reactions

 Spin-off of Artificial Life:
• from “life as it could be” to “chemistry as it could be (imagined)?”

 Goals:
• understand phenomena leading to the emergence of life
• create new forms of synthetic life from the bottom up

– “in vitro”, “in vivo”: “Wet” ACs in the laboratory
– “in silico”: computational systems 

• high-level modelling and simulation of (real) chemistry and biology
• chemistry as a metaphor for distributed and parallel computer

algorithms
• chemistry as a general model for interacting systems of objects:

nuclear physics, language, music, economies
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Wet ACsWet ACs

 DNA computing

 Reaction-diffusion computers

 Synthetic life and protocells

 Computing with bacteria, slime mold, ...

slime mold maze solver
A. Adamatzky et al.

Molecular Automaton
Shapiro & Benenson

Los Alamos Bug
Rasmussen et al.

self-propelled oil droplet
Hanczyc et al.
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Artificial Chemistries “in silico”Artificial Chemistries “in silico”

 Virtual, abstract ACs:
• well-stirred: molecules as a “gas” or dissolved in well-mixed reactor
• spatially-resolved: molecules move in 2D or 3D space
• compartmentalized: molecules inside various (nested) containers

well-stirred AC
example of spatial AC:

Tim Hutton's Organic Builder
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Components of an Artificial ChemistryComponents of an Artificial Chemistry

 Triple (S,R,A)
• S = set of molecules
• R = set of reaction rules
• A = algorithm that applies rules to molecules

 Some algorithms:

granularity well mixed spatial, compartmental

individual molecules,
single reactions

random molecular collisions:
effective or elastic

move, collide, react (gas vs.
fluid dynamics, lattice systems,
crowding)

molecular species,
effective reactions

reaction probability proportional
to propensity (Gillespie SSA,
next reaction method)

next subvolume method,
multicompartment Gillespie

groups of molecules
and reactions

fire groups of reactions together
within interval tau (tau leaping)

spatial tau-leaping

concentration
changes

numerical ODE integration PDE integration
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Constructive vs. Nonconstructive ACsConstructive vs. Nonconstructive ACs

 N = total number of possible molecular species

 M = number of species present in the reactor at a given moment

 Nonconstructive: M = N or close: fixed set of molecules 

 Constructive: M << N
• new molecules may be created, with potentially new interactions

nonconstructive AC: repressilator constructive AC: matrix chemistry
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Emergent Phenomena in ACsEmergent Phenomena in ACs

 Studying the origins of life "in silico":
• Emergence of organizations
• Emergence of autocatalytic sets
• Emergence of evolution
• Emergence of protocell-like structures
• Emergence of cell differentiation and multicellularity
• Emergence of ecology-like or other higher-level interactions
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Emergence of Organizations in ACsEmergence of Organizations in ACs

 Autopoeisis [Maturana, Varela 1973]: self-maintainance, system
continuously regenerates itself

 Organization [Fontana1991,94]: closed and self-maintaining set of
molecular species
• AlChemy: an artificial chemistry in lambda-calculus
• Matrix Chemistry [Banzhaf 1993]:  binary strings “fold” into matrices that

are multiplied

 Chemical Organization Theory [Dittrich2007]: 
• formal theory of organizations
• algorithms to compute and analyze organizations
• structuring computer programs as organizations [Matsumaru 2011] 

 From organizations to evolution:
• emergence of recombination in a binary string automata reaction chemistry

[Dittrich1998]
• evolution as a movement in the space of organizations [Matsumaru 2006]
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AlChemyAlChemy

 AlChemy [Fontana1991,94]: AC created to investigate how novelty
arises and is maintained in a system able to produce a combinatorial
variety of structures: constructive dynamical systems

 molecules are functions expressed in lambda-calculus
– capture object/function duality in chemistry
– (loose) analogy to functional groups in chemistry:

 reactions apply function f to function g to produce function h:

 if successful (effective reaction) another random molecule is destroyed
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AlChemy ExperimentsAlChemy Experiments

 Starting from a population of random molecules:
• diversity decreases
• system converges to small set of self-copying molecules
• n-membered elementary hypercycles, but brittle, easily collapse

 When self-copying is disabled:
• “polymerization”: formation of long “polymers” by concatenating

“monomers”
• formation of large organizations that are stable and resilient to

perturbations
• more rarely, formation of interacting, inter-dependent organizations
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Emergence of Autocatalytic SetsEmergence of Autocatalytic Sets

 Autocatalytic set: every molecule in the set is produced in reactions
catalyzed by members of the set

 Kauffman (1986): could life have originated from an autocatalytic set of
proteins?
• do autocatalytic sets inevitably form if the number of catalytic

reactions is large enough?
• model: strings (polymer sequences) with maximum length L, from

an alphabet of size B
– condensation/cleavage reactions:

– graph-theoretical analysis: minimum probability of catalysis (P) that

would favor the formation of autocatalytic sets:

– autocatalytic sets would form for P > Pcrit
– for a given L: proteins (B=20) need lower  P than RNA or DNA (B=4)
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Emergence of Autocatalytic SetsEmergence of Autocatalytic Sets
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Autocatalytic MetabolismsAutocatalytic Metabolisms

 Kauffman (1986): from autocatalytic sets of proteins to the emergence
of metabolisms
• proteins catalyze formation & breakdown of organic compounds

 Bagley & Farmer (1992): dynamical system model of autocatalytic
metabolisms
• catalytic focusing: when the system is kept out of equilibrium,

catalysis focuses the mass of the system into a core of few species
• computer simulations:

– emergence of autocatalytic networks able to take up food and turn it
into a stable core: autocatalytic metabolism (fixpoint)

– when subject to mutations: autocatalytic metabolisms “evolve” by
jumping from one fixpoint to a different one
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Autocatalytic Sets: Challenges and ProgressAutocatalytic Sets: Challenges and Progress

 Realistic conditions hamper the system's capacity to survive and evolve:
• dynamic and stochastic effects
• leaks and errors caused by side reactions
• autocatalysis compensates for losses and errors but not fully

 Emergence of autocatalytic sets
under stochastic fluctuations
[Filisetti 2010]:
• autocatalytic sets emerge more

rarely
• sets are less stable, may be

wiped out by stochastic
fluctuations

• more recently: autocatalytic sets
within lipid vesicles  [Serra 2014]
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Emergence of Protocell-like StructuresEmergence of Protocell-like Structures

 Ono & Ikegami (2001): self-replicating autopoietic protocells
• 5 types of particles move, rotate, and interact on a hexagonal grid

– hydrophobic vs. hydrophilic: isotropic vs. anisotropic repulsion
– neutral vs. others: weak interaction

particle role property reactions

A autocatalyst hydrophilic                              :  autocatalytic production of A

W water hydrophilic

M membrane hydrophobic                              :   catalytic production of M

X food neutral                              :   recycle using energy

Y waste neutral                                                                    :   decay

isotropic
repulsion

anisotropic
repulsion
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Autopoietic ProtocellsAutopoietic Protocells

 isotropic M molecules cluster together but soon die out

 anisotropic M molecules: protocell-like structures form under low supply
of food molecules
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Emergence of Higher Level InteractionsEmergence of Higher Level Interactions

 Swarm Chemistry [Sayama 2009-]
• particles of several types move in 3D

space:
– move towards nearby particles
– adjust speed to average speed of

neighbors
– avoid collision

• behavior governed by “recipe” of parameters: 

#

Recipe: Parameters:
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Swarm ChemistrySwarm Chemistry

 Behaviors (with underlying recipe) evolved by interactive evolution

 Java demo:
http://bingweb.binghamton.edu/~sayama/SwarmChemistry

 Some behaviors displayed:
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An Artificial Chemistry in PythonAn Artificial Chemistry in Python

 PyCellChemistry: python package to let users program their own ACs
(to be released this summer)
• www.artificial-chemistries.org

 Basic system:
• multisets (bags) of molecules
• chemical reactions
• conversion from chemical reactions to ODE and Gillespie SSA
• hierarchical cell compartments

 Example ACs:
• basic: chameleons, prime number chemistry, matrix chemistry
• biochemical circuits: dimerization, logistic growth, repressilator
• ecology and evolution: Lotka-Volterra, quasispecies, NK landscapes
• distributed & parallel computing: molecular TSP, fraglets, disperser
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A Non-Constructive AC: Lotka-VolterraA Non-Constructive AC: Lotka-Volterra

class LotkaVolterra:

    def __init__( self, usestoch ):

        reactionstrs = [

            "rabbit + grass --> 2 rabbit + grass , k=1",

            "fox + rabbit   --> 2 fox            , k=1",

            "fox            -->                  , k=1" ]

        if usestoch:

            self.reactor = GillespieVessel(nav=40)

        else:

            self.reactor = WellStirredVessel()

        self.reactor.parse(reactionstrs)

        self.reactor.deposit('rabbit', 5.0)

    ...

    def run( self ):

        while (not self.extinct() and not self.exploded() and \

               self.reactor.vtime() <= 40.0):

            self.reactor.integrate(dt=0.001)
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Lotka-Volterra: Deterministic vs. StochasticLotka-Volterra: Deterministic vs. Stochastic

 Deterministic simulation via ODE integration:
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Lotka-Volterra: Deterministic vs. StochasticLotka-Volterra: Deterministic vs. Stochastic

 Stochastic simulation via Gillespie SSA for V = 40 / N
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A Constructive AC: The Molecular TSPA Constructive AC: The Molecular TSP

 Traveling Salesman Problem (TSP):
• find the tour of minimum cost that visits all the cities on a map
• use only the available roads
• visit each city only once
• known to be NP-hard:

– cannot be solved in general within a polynomial number of operations
– typically heuristic algorithms are used: find approximate solutions
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A Constructive AC: The Molecular TSPA Constructive AC: The Molecular TSP

 Molecular TSP [Banzhaf 1990]: TSP heuristic inspired by chemistry
• 2 types of molecules: machines and tours

– tour: list of cities in the order they are visited, e.g. [1 2 5 4 6 3 1]  

• Machines (“enzymes”) operate on tours (“substrates”)
– E-machine: swaps two random cities in a tour
– C-machine: cuts a tour segment and pastes it elsewhere in tour 
– I-machine: cuts and inverts the segment before pasting it
– R-machine: recombination (crossover) between 2 tours

• Start with a “chemical soup” of random tours
• Machines operate on tours independently (potentially in parallel)

– draw 1 random molecule (2 for R-machine), perform operation
– evaluate cost of each tour (educts and products)
– inject best tour (2 best for R-machine) into soup, discard rest

• Result: progressive selection of best tours
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Molecular TSP in PyCellChemistryMolecular TSP in PyCellChemistry

class MolecularTSP( HighOrderChem ):

    def __init__( self, ncities ): ...

        tsp = TSPgraph(ncities, ...) # create road map

        for i in range(popsize):  # produce random tours

            mol = self.randomMolecule()

            self.mset.inject(mol)

        rule = 'self.exchangeMachine(%s)'

        self.rset.inject(rule, count)

        rule = 'self.cutMachine(%s)'

        self.rset.inject(rule, count)

    ...

    def run( self ): ...

        while gen <= self.maxgen:

            for j in range(genops):

                self.iterate() # pick rules and tours for reaction

            (bfit, bmol) = self.bestMolecule()

            gen += 1
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Molecular TSP: Initial PopulationMolecular TSP: Initial Population

 Some random tours selected out of a population of 100 molecules: 
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Molecular TSP: After 4000 GenerationsMolecular TSP: After 4000 Generations

 Random tours selected out of the final population of 100 molecules: 
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Summary and OutlookSummary and Outlook

 What can we learn from ACs? Are they just toy chemistries?
• Learn how things work by building them:

build complexity starting from the bottom up
• Natural computing and emergent computation:

computation is embedded in the chemical system
– ACs make such tight association more clear

• Understand emergent phenomena through mathematical analysis:
– formalizing ACs: Chemical Organization Theory, RAF theory

(reflexively autocatalytic sets), Chemical Reaction Automata (DNA
computing), P systems, Brane calculi, ...
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Summary and OutlookSummary and Outlook

 Towards a discipline of AC: challenges
• AC field not mature yet: scattered attempts, no coherent big picture
• Barely scratching the surface of commonality between emergent

phenomena (shared challenge with complex systems research)
• Move upwards in complexity:

– existing systems still take too much for granted (autocatalysis,
container, replication mechanism...)

– once something emerges, difficult to move beyond it, to reach the next
level of complexity: need automatic encapsulation of the acquired
emergent properties

 Future:
• Tigher interdisciplinarity and integration between wet and virtual
• Fuzzy line between virtual and real, more and more hybrid systems
• Seamless programming: compile chemistry? chemical computers?
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MIT Press, Summer/Fall 2015 (571 pages)
https://mitpress.mit.edu/books/artificial-chemistries

Together with the book there will be a software package in python that we hope will
be useful for people to get a quick start in the field and learn how to program their
own artificial chemistries in a very simple and intuitive way.

So during this talk I'll introduce ACs and discuss some emergent phenomena within
ACs, and will also introduce our software package that will be released in the next
couple of weeks.
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Artificial Chemistries (ACs)Artificial Chemistries (ACs)

 Man-made virtual or physical systems where objects are transformed in
interactions, like molecules in chemical reactions

 Spin-off of Artificial Life:
• from “life as it could be” to “chemistry as it could be (imagined)?”

 Goals:
• understand phenomena leading to the emergence of life
• create new forms of synthetic life from the bottom up

– “in vitro”, “in vivo”: “Wet” ACs in the laboratory
– “in silico”: computational systems 

• high-level modelling and simulation of (real) chemistry and biology
• chemistry as a metaphor for distributed and parallel computer

algorithms
• chemistry as a general model for interacting systems of objects:

nuclear physics, language, music, economies

Artificial chemistries can refer to experiments in the web lab trying to understand the
emergence of life or to create new building blocks for life
● but mostly they refer to computational systems where people try to study some

phenomena related to the origins of life out of some chemicals,
● or (as it was my case when I started in this field) as inspiration for new algorithms

for distributed and parallel computation. In my case, I was working in computer
networks, like algorithms for the internet for instance, and we had a programming
language inspired by chemistry in which fragments of computer programs could
react and modify themselves like in a chemical reaction.

● and you'll also be surprised to see that artificial chemistries can also be applied to
very distinct fields such as the modelling of human language, like the emergence
of a shared vocabulary and grammar in a group of individuals, and even to
compose music or to model the way goods are transformed and sold in
economies.

Today I'll be focusing on these in silico systems, because I'm a computer scientist, so
I only have a vague abstract idea about the real wet lab stuff.
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Wet ACsWet ACs

 DNA computing

 Reaction-diffusion computers
 Synthetic life and protocells
 Computing with bacteria, slime mold, ...

slime mold maze solver
A. Adamatzky et al.

Molecular Automaton
Shapiro & Benenson

Los Alamos Bug
Rasmussen et al.

self-propelled oil droplet
Hanczyc et al.

so I only have this one slide on the wet systems, just to give you a flavor of the extent
of the sytems covered:
● from molecular computing as in the DNA automaton, which is a finite state

machine built with DNA and enzymes,
● to crazy micelles with non-biological nucleic acids sticking out of them
● and oil droplets that move and dance and even start talking to each other
● and slime molds that find their way out of a labyrinth using a form of chemotaxis

following gradients of chemicals, which can be seen as a form of biological
computer on a petri dish.

these are only a few examples.

most of these wet systems actually have corresponding computer simulations, so I
think one of the most interesting and promising applications of artificial chemistries
is in the computational modelling of these wet systems, which have mainly 2
purposes: to understand how life can originate and as a consequence how to construct
life, and to apply this knowledge to “programmable life” and “programmable
chemistries”
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Artificial Chemistries “in silico”Artificial Chemistries “in silico”

 Virtual, abstract ACs:
• well-stirred: molecules as a “gas” or dissolved in well-mixed reactor
• spatially-resolved: molecules move in 2D or 3D space
• compartmentalized: molecules inside various (nested) containers

well-stirred AC
example of spatial AC:

Tim Hutton's Organic Builder

now turning to the computational systems, we can distinguish mainly between two
types of artificial chemistries:

- well mixed in which any molecule has the same probabability of encountering any
other molecule in the system (no explicit notion of space)

- and chemistries where space is explicitly represented, for instance the molecules
move in a 2D or 3D space, where they may form some closed compartments

- or the compartments can be taken for grated with some molecules being exchanged
between compartments, and inside every compartment we mainly have a well mixed
system
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Components of an Artificial ChemistryComponents of an Artificial Chemistry

 Triple (S,R,A)
• S = set of molecules
• R = set of reaction rules
• A = algorithm that applies rules to molecules

 Some algorithms:

granularity well mixed spatial, compartmental

individual molecules,
single reactions

random molecular collisions:
effective or elastic

move, collide, react (gas vs.
fluid dynamics, lattice systems,
crowding)

molecular species,
effective reactions

reaction probability proportional
to propensity (Gillespie SSA,
next reaction method)

next subvolume method,
multicompartment Gillespie

groups of molecules
and reactions

fire groups of reactions together
within interval tau (tau leaping)

spatial tau-leaping

concentration
changes

numerical ODE integration PDE integration

When designing an artificial chemistry we must specify 3 elements:

- the set of possible molecules in the system and their shapes,

- the way they react,

- and the algorithm that chooses which molecules collide and when, and apply the
reaction rules from R to them

some of the algorithms are mentioned in this table:

depending on the granularity we're looking at, we can look at the system at the level
of individual molecules, or sets of molecules reacting in a similar way, or a more
coarse-grain level

as we move towards more coarse grain levels, the stochastic effects due to random
molecule collisions get smaller until they disappear and the system can be treated
with ordinary differential equations which is still a very common approach in the
modelling of real chemical and biological systems.

the same happens also in systems with spatial considerations, where the algorithms
also model the physics of the motion, diffusion or transport of particles from one
position in space to another, or between compartments.
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Constructive vs. Nonconstructive ACsConstructive vs. Nonconstructive ACs

 N = total number of possible molecular species

 M = number of species present in the reactor at a given moment
 Nonconstructive: M = N or close: fixed set of molecules 
 Constructive: M << N

• new molecules may be created, with potentially new interactions

nonconstructive AC: repressilator constructive AC: matrix chemistry

another important distinction is between constructive and non-constructive
chemistries: basically constructive chemistries are those where new molecules may
be produced all the time, with potentially new chemical reactions happening between
them

talk by Yuagsheng Cao yesterday: repressilator
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Emergent Phenomena in ACsEmergent Phenomena in ACs

 Studying the origins of life "in silico":
• Emergence of organizations
• Emergence of autocatalytic sets
• Emergence of evolution
• Emergence of protocell-like structures
• Emergence of cell differentiation and multicellularity
• Emergence of ecology-like or other higher-level interactions

Emergence of organizations, autocatalytic sets: random catalytic reaction nets,
Kauffman, recent work by Filisetti & al.

Emergence of evolution: automata reaction chemistry (Dittrich), Bagley&Farmer

Emergence of protocell-like structures: Hutton's chemistry, Ono's protocells

Emergence of cell differentiation and multicellularity

Emergence of ecology-like or other higher-level interactions: Tangled nature, Avida,
Swarm Chemistry
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Emergence of Organizations in ACsEmergence of Organizations in ACs

 Autopoeisis [Maturana, Varela 1973]: self-maintainance, system
continuously regenerates itself

 Organization [Fontana1991,94]: closed and self-maintaining set of
molecular species
• AlChemy: an artificial chemistry in lambda-calculus
• Matrix Chemistry [Banzhaf 1993]:  binary strings “fold” into matrices that

are multiplied

 Chemical Organization Theory [Dittrich2007]: 
• formal theory of organizations
• algorithms to compute and analyze organizations
• structuring computer programs as organizations [Matsumaru 2011] 

 From organizations to evolution:
• emergence of recombination in a binary string automata reaction chemistry

[Dittrich1998]
• evolution as a movement in the space of organizations [Matsumaru 2006]

the notion of organization is related to the notion of autopoeisis where a (living)
system must maintain itself
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AlChemyAlChemy

 AlChemy [Fontana1991,94]: AC created to investigate how novelty
arises and is maintained in a system able to produce a combinatorial
variety of structures: constructive dynamical systems

 molecules are functions expressed in lambda-calculus
– capture object/function duality in chemistry
– (loose) analogy to functional groups in chemistry:

 reactions apply function f to function g to produce function h:

 if successful (effective reaction) another random molecule is destroyed

hydroxyl broup, carbonyl group

reduced form of the composition of the two functions: called the normal form h(x)
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AlChemy ExperimentsAlChemy Experiments

 Starting from a population of random molecules:
• diversity decreases
• system converges to small set of self-copying molecules
• n-membered elementary hypercycles, but brittle, easily collapse

 When self-copying is disabled:
• “polymerization”: formation of long “polymers” by concatenating

“monomers”
• formation of large organizations that are stable and resilient to

perturbations
• more rarely, formation of interacting, inter-dependent organizations
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Emergence of Autocatalytic SetsEmergence of Autocatalytic Sets

 Autocatalytic set: every molecule in the set is produced in reactions
catalyzed by members of the set

 Kauffman (1986): could life have originated from an autocatalytic set of
proteins?
• do autocatalytic sets inevitably form if the number of catalytic

reactions is large enough?
• model: strings (polymer sequences) with maximum length L, from

an alphabet of size B
– condensation/cleavage reactions:

– graph-theoretical analysis: minimum probability of catalysis (P) that
would favor the formation of autocatalytic sets:

– autocatalytic sets would form for P > Pcrit
– for a given L: proteins (B=20) need lower  P than RNA or DNA (B=4)

starting from reactions that look like the formation of peptide bonds, in a reversible
way such that these bonds can also be broken up

P: prob of catalysis = prob that a prot catalysis the formation of another

the lower Pcritical, the easier it is for autocatalytic sets to form

Pcrit decreases with B and with L, hence high B and high L favor autocat sets

even if catalysis is very improbable, still autocatalytic sets would emerge
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Emergence of Autocatalytic SetsEmergence of Autocatalytic Sets
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Autocatalytic MetabolismsAutocatalytic Metabolisms

 Kauffman (1986): from autocatalytic sets of proteins to the emergence
of metabolisms
• proteins catalyze formation & breakdown of organic compounds

 Bagley & Farmer (1992): dynamical system model of autocatalytic
metabolisms
• catalytic focusing: when the system is kept out of equilibrium,

catalysis focuses the mass of the system into a core of few species
• computer simulations:

– emergence of autocatalytic networks able to take up food and turn it
into a stable core: autocatalytic metabolism (fixpoint)

– when subject to mutations: autocatalytic metabolisms “evolve” by

jumping from one fixpoint to a different one

autocatalytic metabolism: autocatalytic set in which the species concentrations are
significantly different from those expected without catalysis

only by a steady inflow of food molecules (because catalysis accelerates reaction in
both directions, equilibrium does not change)

mutations (production of new catalysts in spontaneous reactions):
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Autocatalytic Sets: Challenges and ProgressAutocatalytic Sets: Challenges and Progress

 Realistic conditions hamper the system's capacity to survive and evolve:
• dynamic and stochastic effects
• leaks and errors caused by side reactions
• autocatalysis compensates for losses and errors but not fully

 Emergence of autocatalytic sets
under stochastic fluctuations
[Filisetti 2010]:
• autocatalytic sets emerge more

rarely
• sets are less stable, may be

wiped out by stochastic
fluctuations

• more recently: autocatalytic sets
within lipid vesicles  [Serra 2014]

Serra: only species shorter than 3 letters can cross the membrane
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Emergence of Protocell-like StructuresEmergence of Protocell-like Structures

 Ono & Ikegami (2001): self-replicating autopoietic protocells
• 5 types of particles move, rotate, and interact on a hexagonal grid

– hydrophobic vs. hydrophilic: isotropic vs. anisotropic repulsion
– neutral vs. others: weak interaction

particle role property reactions

A autocatalyst hydrophilic                              :  autocatalytic production of A

W water hydrophilic

M membrane hydrophobic                              :   catalytic production of M

X food neutral                              :   recycle using energy

Y waste neutral                                                                    :   decay

isotropic
repulsion

anisotropic
repulsion

Hydrophilic and hydrophobic particles repel each other

neutral particle may establish weak interactions with the other two types

Hydrophobic particles: isotropic or anisotropic.

Isotropic hydrophobic particles repel hydrophilic particles with equal strength in all
directions

Anisotropic particles: stronger repulsion in one direction
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Autopoietic ProtocellsAutopoietic Protocells

 isotropic M molecules cluster together but soon die out

 anisotropic M molecules: protocell-like structures form under low supply
of food molecules

anisotropic case:

- osmosis of resource particles across membranes

- as a result of competition, some closed cells survive and begin to grow

under low supply of X food molecules, protocell-like structures form:

- top: M particles are isotropic, clusters resembling cells form, but are unable to
sustain themselves and end up dying out

- bottom: M particles are anisotropic, irregular membrane filaments form initially,
and some of them form closed protocells able to grow, divide and sustain their
internal metabolism.

emergence of a protocell structure after membrane formation

cells grow and divide

stick together because of clustering of hydrophobic membrane particles

Blue: Water (W) particles

red: membrane (M) particles

yellow: autocatalysts (A).



18L. Yamamoto and W. Banzhaf, “Emergence in Artificial Chemistries”, Anchorage, Alaska, June 2015

Emergence of Higher Level InteractionsEmergence of Higher Level Interactions

 Swarm Chemistry [Sayama 2009-]
• particles of several types move in 3D

space:
– move towards nearby particles
– adjust speed to average speed of

neighbors
– avoid collision

• behavior governed by “recipe” of parameters: 

#

Recipe: Parameters:
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Swarm ChemistrySwarm Chemistry

 Behaviors (with underlying recipe) evolved by interactive evolution

 Java demo:
http://bingweb.binghamton.edu/~sayama/SwarmChemistry

 Some behaviors displayed:
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An Artificial Chemistry in PythonAn Artificial Chemistry in Python

 PyCellChemistry: python package to let users program their own ACs
(to be released this summer)
• www.artificial-chemistries.org

 Basic system:
• multisets (bags) of molecules
• chemical reactions
• conversion from chemical reactions to ODE and Gillespie SSA
• hierarchical cell compartments

 Example ACs:
• basic: chameleons, prime number chemistry, matrix chemistry
• biochemical circuits: dimerization, logistic growth, repressilator
• ecology and evolution: Lotka-Volterra, quasispecies, NK landscapes
• distributed & parallel computing: molecular TSP, fraglets, disperser
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A Non-Constructive AC: Lotka-VolterraA Non-Constructive AC: Lotka-Volterra

class LotkaVolterra:

    def __init__( self, usestoch ):

        reactionstrs = [

            "rabbit + grass --> 2 rabbit + grass , k=1",

            "fox + rabbit   --> 2 fox            , k=1",

            "fox            -->                  , k=1" ]

        if usestoch:

            self.reactor = GillespieVessel(nav=40)

        else:

            self.reactor = WellStirredVessel()

        self.reactor.parse(reactionstrs)

        self.reactor.deposit('rabbit', 5.0)

    ...

    def run( self ):

        while (not self.extinct() and not self.exploded() and \

               self.reactor.vtime() <= 40.0):

            self.reactor.integrate(dt=0.001)
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Lotka-Volterra: Deterministic vs. StochasticLotka-Volterra: Deterministic vs. Stochastic

 Deterministic simulation via ODE integration:
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Lotka-Volterra: Deterministic vs. StochasticLotka-Volterra: Deterministic vs. Stochastic

 Stochastic simulation via Gillespie SSA for V = 40 / N
A
:
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160
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80

Many systems do not survive to the end of the simulation (typically because one of
the species goes extinct)

This is a well selected case where they survived long enough to compare with the
previous simulation

NAV=40

c0(rabbit) = 5 = n0(rabbit) / NAV => n0(rabbit) = 5 * 40 = 200

c0(fox) = 2 = n0(fox) / NAV => n0(fox) = 2 * 40 =80
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A Constructive AC: The Molecular TSPA Constructive AC: The Molecular TSP

 Traveling Salesman Problem (TSP):
• find the tour of minimum cost that visits all the cities on a map
• use only the available roads
• visit each city only once
• known to be NP-hard:

– cannot be solved in general within a polynomial number of operations
– typically heuristic algorithms are used: find approximate solutions
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A Constructive AC: The Molecular TSPA Constructive AC: The Molecular TSP

 Molecular TSP [Banzhaf 1990]: TSP heuristic inspired by chemistry
• 2 types of molecules: machines and tours

– tour: list of cities in the order they are visited, e.g. [1 2 5 4 6 3 1]

• Machines (“enzymes”) operate on tours (“substrates”)
– E-machine: swaps two random cities in a tour
– C-machine: cuts a tour segment and pastes it elsewhere in tour
– I-machine: cuts and inverts the segment before pasting it
– R-machine: recombination (crossover) between 2 tours

• Start with a “chemical soup” of random tours
• Machines operate on tours independently (potentially in parallel)

– draw 1 random molecule (2 for R-machine), perform operation
– evaluate cost of each tour (educts and products)
– inject best tour (2 best for R-machine) into soup, discard rest

• Result: progressive selection of best tours



26L. Yamamoto and W. Banzhaf, “Emergence in Artificial Chemistries”, Anchorage, Alaska, June 2015

Molecular TSP in PyCellChemistryMolecular TSP in PyCellChemistry

class MolecularTSP( HighOrderChem ):

    def __init__( self, ncities ): ...

        tsp = TSPgraph(ncities, ...) # create road map

        for i in range(popsize):  # produce random tours

            mol = self.randomMolecule()

            self.mset.inject(mol)

        rule = 'self.exchangeMachine(%s)'

        self.rset.inject(rule, count)

        rule = 'self.cutMachine(%s)'

        self.rset.inject(rule, count)

    ...

    def run( self ): ...

        while gen <= self.maxgen:

            for j in range(genops):

                self.iterate() # pick rules and tours for reaction

            (bfit, bmol) = self.bestMolecule()

            gen += 1

with this it is easy to program a chemistry, say, if you're familiar with python, which
can be learned very quickly, then depending on the complexity of the chemistry it
can be programmed in a couple of hours or a couple of days.

of course the performance of such system cannot be compared with more powerful
systems, for instance a couple of years ago I worked with GPU programming for
parallelizing artificial chemistry algorithms, where you can get orders of magnitude
better performance but also the learning curve is much more difficult.
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Molecular TSP: Initial PopulationMolecular TSP: Initial Population

 Some random tours selected out of a population of 100 molecules:
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Molecular TSP: After 4000 GenerationsMolecular TSP: After 4000 Generations

 Random tours selected out of the final population of 100 molecules: 
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Summary and OutlookSummary and Outlook

 What can we learn from ACs? Are they just toy chemistries?
• Learn how things work by building them:

build complexity starting from the bottom up
• Natural computing and emergent computation:

computation is embedded in the chemical system
– ACs make such tight association more clear

• Understand emergent phenomena through mathematical analysis:
– formalizing ACs: Chemical Organization Theory, RAF theory

(reflexively autocatalytic sets), Chemical Reaction Automata (DNA
computing), P systems, Brane calculi, ...

understand theoretical boundaries, limitations and potential

either the container is predesigned, or replication is predesigned, or the way the
molecules interact is carefully designed in order to reach the desired effect.

once something emerges, cannot move beyond it, to the next level: no automatic
encapsulation of the acquired emergent properties
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Summary and OutlookSummary and Outlook

 Towards a discipline of AC: challenges
• AC field not mature yet: scattered attempts, no coherent big picture
• Barely scratching the surface of commonality between emergent

phenomena (shared challenge with complex systems research)
• Move upwards in complexity:

– existing systems still take too much for granted (autocatalysis,

container, replication mechanism...)
– once something emerges, difficult to move beyond it, to reach the next

level of complexity: need automatic encapsulation of the acquired
emergent properties

 Future:
• Tigher interdisciplinarity and integration between wet and virtual
• Fuzzy line between virtual and real, more and more hybrid systems
• Seamless programming: compile chemistry? chemical computers?

2 examples: reversibility & logic gates (binary)

feedback loop from experiments to simulation and so on:

cannot make progress unless we join forces
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