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ABSTRACT
Indoor localization using mobile devices such as smartphones
remains a challenging problem as GPS (Global Positioning
System) does not work inside buildings and the accuracy of
other localization techniques typically comes at the expense
of additional infrastructure or cumbersome war-driving. For
such environments, we propose a localization scheme which
uses motion information from the smartphone’s accelerom-
eter, magnetometer, and gyroscope sensors to detect steps
and estimate direction changes. At the same time, we use
a Wi-Fi based fingerprinting technique for independent po-
sition estimation. These measurements along with an inter-
nal representation of the environment are combined using
a Bayesian filter. This system will allow us to reduce the
amount of training required and work in sparse Wi-Fi envi-
ronments. We test our approach in two real-world environ-
ments to show the benefits of incorporating user motion for
indoor localization.

1. INTRODUCTION
In the past, most of the attention was given to Loca-

tion Based Services (LBS) in outdoor environments as GPS
played the dominant role in localization. Recently, we are
seeing a paradigm shift in the mobile applications market,
where indoor LBS is being considered the new frontier. Due
to the increasing number of mega size multi-level construc-
tions like airports, shopping malls, universities and other
facilities, people tend to spend more time indoors. Research
shows people only spend 10-20% of their time outdoors [1]
and more than 70% calls originate from indoors which indi-
cates great potential fot indoor LBS.

The proliferation of smartphones is motivating researchers
to look at other ways for more reliable and energy efficient
indoor positioning of users which have a reasonable tradeoff
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between accuracy, reliability, cost, and scalability. To min-
imize deployment and infrastructure costs, different tech-
niques and technologies are being explored. Indoor posi-
tioning is challenging as GPS does not work inside buildings
so most common solutions take advantage of existing RF
(Radio Frequency) infrastructures like Wi-Fi and cellular.
There are several ways in which RF signals can be used for
positioning. It is not easy to model the radio propagation
in indoor environments because of diffraction, scattering,
shading, severe multipath, low probability for availability of
line-of-sight (LOS) path, and specific site parameters such
as floor layout, moving objects, and numerous reflecting sur-
faces. There is no single good model for an indoor radio mul-
tipath characteristic so far. Different techniques have differ-
ent advantages and disadvantages. Hence, using more than
one type of positioning algorithm at the same time could
yield better performance. There are different triangulation,
proximity or fingerprinting based algorithms available which
deal with the indoor positioning problem in various ways.

On the other hand in robotics, inertial sensors, laser range-
finders, and computer vision are used to provide accurate
localization without the requirement of fixed infrastructure.
Mobile devices, such as smartphones and music players, have
recently begun to incorporate a powerful yet diverse set
of sensors. These sensors include GPS receivers, micro-
phones, cameras, proximity sensors, magnetometers, tem-
perature sensors, accelerometers, and gyroscopes. In the fu-
ture, other sensors like altimeters, barometers, etc., may be
incorporated into these devices. Inertial measurement units
(IMUs) like accelerometers and gyroscopes are being em-
bedded in most of the latest smartphones. Accelerometers
measure 3D linear accelerations of the device whereas gy-
roscopes give angular velocities. Most modern smartphones
also include a magnetometer for raw magnetic readings and
heading information. Using these sensors one can estimate
the user’s motion and characterize their activity as, for ex-
ample, walking, standing, jumping, running etc. User mo-
tion can then also be used to keep track of position via dead
reckoning.

Problems arise when using RF based positioning schemes
in environments where RF signals are sporadic or sparsely
deployed. Due to the placement of APs (Access Points) and
cell towers, there might be areas where RF signals are not
available. Similarly there may be disruption in the RF sig-
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nals due to limits on radio range, energy resources, and other
sources of noise. In such environments it is better to incorpo-
rate additional information from IMUs for localization with
opportunistic RF based position correction.

Our main contributions to address the above challenges
can be summarized as follows:

• We identify an opportunity to use sensor-based
dead-reckoning and opportunistic Wi-Fi posi-
tioning for localization using smartphones in
areas where there is sparse Wi-Fi coverage. Our
approach does not require the installation of additional
infrastructure.

• We developed and used an iOS app on the Ap-
ple iPhone 4 to evaluate our technique. This
app was tested in the tunnels of Memorial Uni-
versity of Newfoundland which have very lim-
ited Wi-Fi coverage.

The subsequent sections expand on each of these contri-
butions, beginning with a short related research overview
followed by our proposed idea, evaluation, and conclusion.

2. RELATED WORK
Smartphone accelerometers have been used in some mo-

bile localization schemes in an assistive or collaborative man-
ner. In Surroundsense [9], they are used as one of the pa-
rameters for the fingerprint, whereas CompAcc [2] uses them
to count the number of steps taken to estimate the distance
travelled by a pedestrian.

In [11] the authors gave a novel particle filtering based
scheme for indoor positioning which does not rely on any in-
frastruction and uses only the sensors from the smartphones.
But their system is not stand alone as their design requires
a centralized system. In [6] the authors dont rely on any
Wi-Fi but depend on a more accurate step counter and turn
detections for position accuraccy. We feel that in build-
ings where multiple floors have the same layout, this scheme
might fail and some kind of auto correction measure has to
be taken. In other work [10][3][12][5], researchers have used
accelerometer data to detect human activities such as walk-
ing, standing, climbing stairs, jogging, etc. A short overview
of related work is covered in [14].

3. SYSTEM ARCHITECTURE
In probabilistic robotics, a belief is the internal knowl-

edge of the robot or a system about the state of the world.
In our case state means the location of the subject in our
environment. States cannot be measured directly, but we
can represent and estimate the probability that the system
lies in each possible state. We use the term belief to refer
to the conditional probability distribution over all possible
states. This distribution assigns a probability to each pos-
sible hypothesis with regards to the true state. State xt is
generated stochastically from state xt−1 meaning that the
belief at time t is calculated from its past belief at time t−1.
The most general algorithm for calculating beliefs is given by
the Bayes filter algorithm. Algorithm 1 depicts Bayes Fil-
ter which is a recursive Bayesian state estimation technique
utilized in mobile robotics and other applications [13].

This algorithm is recursively applied at every iteration
when belief bel(xt) needs to be calculated from bel(xt−1).

Algorithm 1: The general algorithm for Bayes filtering

Input: ut, zt, bel(xt−1)

1: for all xt do
2: bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt|xt)bel(xt)
4: end for

Output: bel(xt)

Bayes filter possesses two essential steps. In Line 2, it pro-
cesses the control ut. It does so by calculating a belief over
the state xt based on the prior belief over state xt and the
control ut. ut in our case is the motion captured from the
motion model. This step of the algorithm is also called pre-
diction [13].

Figure 1: Block diagram of the proposed system

The second step of Bayes filter is called the measurement
update. In line 3, the Bayes filter algorithm multiplies the
belief bel(xt) by the probability that measurement zt may
have been observed. It does so for each hypothetical poste-
rior state xt. To compute the posterior belief recursively, the
algorithm requires an initial belief bel(x0) at time t = 0. If
we are ignorant about the initial condition we can initialize
using the uniform distribution.

3.1 Design Overview
Figure 1 shows the block diagram of our proposed sys-

tem. In our localization scheme we divided our map into a
grid. The center of these grid cells are referred to as anchor
points which have known physical coordinates (x, y). The
grid space between two anchor positions determines the res-
olution or granularity of the positioning system. The system
state variable xt indicates the anchor point that is closest
to the current position. The initial belief of the system is
assumed to be uniform as the system will not know where
the user is positioned. The on-board magnetometer is nois-
ier compared to gyroscope when giving heading estimation
[15]. Therefore, we only use the magnetometer to initialize
the orientation of the user and calibrate the gyroscope. This

268



is one of the assumptions of our system that we ask the user
to face one of the corridors (potential path where the user
can walk). After this initialization/calibration process we
keep track of the heading using the gyroscope. We use the
step counter [15] to estimate the distance travelled and the
gyroscope to estimate the direction in which this distance is
travelled. As shown in the figure 1, accelerometers are used
to detect the steps taken.

3.2 Motion Model
Using a step counter and gyroscope one can estimate the

user’s recent trajectory and then predict bel(xt). Step detec-
tion is the automatic determination of the moments in time
at which footsteps occur. If one wants to use accelerome-
ter data to detect just the instant motion of the device, one
needs to be able to isolate sudden changes in the movement
from the constant effect of gravity.

Peak detection is a method which calculates the steps from
the 3-axis accelerometer readings. A threshold value can be
used to detect a peak. If changes in acceleration are too
small, the step counter will discard them. The step counter
can work well using this algorithm, but sometimes it can
be overly sensitive. The algorithm that we chose for our
step counter is inspired by an analog pedometer [17]. The
algorithm used for our step counter using mobile phone ac-
celerometer is available in [15]. There are several other algo-
rithms available for step counters but most of them are pri-
marily for accelerometers attached to the foot, hip or other
body part.

The iPhone 4 has a 3-axis gyroscope which can measure
angular velocities about the axes. The Core Motion Frame-
work of the Apple iOS SDK also provide us access to built in
functions which manage and keep track of the device’s atti-
tude after the application starts. Rotation around the z-axis
is called yaw and at the start of the application it is cali-
brated with the initial stable magnetic heading. The com-
parison and performance of estimating direction with gyro-
scope compared with magnetomenter is discussed in [15].

3.2.1 Belief Update Strategies
To study our motion model, we divided our map into

grid spaces. The centers of these grid spaces are the an-
chor points which have known physical coordinates (x, y).
A set of anchor points is maintained and the probability
distribution over this set is represented by bel(xt). Figures
11 and 12 show the test environments and the positions of
all anchor points.

In the time interval [t − 1, t] the user advances from po-
sition xt−1 to position xt. The step counter and gyroscope
report back the relative change in position (xrel, yrel). As
we know the initial heading and current heading of the user,
we can determine the user’s direction of travel. So from the
last position and the new position we can determine xrel

and yrel which are distances travelled in the x-direction and
the y−direction with respect to our map.

xrel = α cos(θ + β) (1)

yrel = α sin(θ + β) (2)

where θ is the initial orientation of the device during initial-
ization, β is the yaw of the device and α is the step length.

The corresponding relative motion parameters (x∗, y∗) for
the given poses xt−1 and xt are calculated in lines 1 and 2.

These basically come from the known positions in the map.
The function norm(a, b) implements an error distribution
over a with zero mean and standard deviation of b which
was empirically chosen as 4m. The motion model is used as
step 2 in our Bayes filter implementation.

3.3 Wi-Fi Fingerprinting
In classic fingerprinting algorithms, vectors of Received

Signal Strength (RSS) measured in online phase and offline
phase are directly compared to each other. The nearest
neighbour method simply calculates the euclidean distance
in signal space between the live RSS reading and the fin-
gerprint. A major drawback of using this technique is that
different devices, becasue of their hardware and software
(sometimes devices of the same make and model), report
different RSS values which may differ from the RSS stored
in the database. This will degrade the performance of the
positioning system. In contrast, rank based localization [8]
uses only ranks of the RSS values because the rank informa-
tion is less sensitive to any bias and scale.

Figure 2 shows the block diagram of the rank based finger-
printing algorithm. In this algorithm, first the RSS values
measured in the online phase from different APs are first
sorted from strongest to weakest. Ranks (1, 2, 3, ...) are as-
signed to APs based on the position in the sorted vector.
Rank 1 is given to the strongest AP, meaning with the high-
est RSS value. Rank vectors are created from the finger-
prints stored in the database. Ranks are assigned based on
the MAC address and rank of AP in the online phase. Then
this vector is also sorted strongest to weakest keeping the
rank assigned to them. In ideal cases, the sorted ranked
vector from online phase and sorted ranked vector fron of-
fline phase will be identical hence showing perfect similarity.

In case an AP which was in the online phase was not
found in the database, the rank vector created from the
database is padded with 0, to achieve the same length as
the rank vector from the online. Other techniques, includ-
ing via Gaussian kernel [4] which calculates the likelihood
of an anchor point using the RSS value similarity between
two vectors, also face the dimension mismatch problem. In
real indoor environments the dimension of the fingerprints
of different anchor points vary considerably. If simple like-
lihood calculation mechanism (e.g., Euclidean distance or
cosine similarity) is used, mismatching could lead to large
positioning errors.

Spearman’s footrule distance measures total elementwise
displacement between two vectors. It is similar to the Man-
hattan distance for quantitative variables. According to [7]
Spearman’s footrule perform the best amongst other similar-
ity measures. Assuming uk is the rank of the k-th element in
vector U , vk is the rank of the k-th element in vector V and
n is the number of elements in vectors U and V , Spearman’s
footrule distance can be computed as follows:

Ds =
n∑

k=1

|uk − vk|.

The similarity measure above return the scores for every
anchor point. The anchor point with the lowest score is con-
sidered the best match. Ideally using k smallest reference
points to calculate the estimated position yields a better re-
sult. In [7] the author solves a p-center problem to estimate
the final position estimate. In the rank based technique the

269



Figure 2: Block Diagram of the Wi-Fi Rank based
fingerprinting

distribution of scores will differ because of several reasons.
The number of APs visible in the querying scan and posi-
tion where the scan was done affects the distribution of the
scores. For instance if the scan is done at a corner where 20
APs are visible compared to another location where only 5
APs are visible, the distribution of scores will differ a lot.
The random test on 13 anchor points in the Engineering
Building was done. It was noted that the accuracy of the
position estimate was independent from the score distribu-
tion. Figure 3 shows the maximum and minimum score dis-
tribution and Figure 4 shows the normalized entropy of the
score distribution. As the user initiates the application, the
belief is uniformly distributed. Entropy is a measure of the
uncertainty associated with a random variable and is also re-
ferred to as the expected value of the information contained
in a message, which in our case is the belief. At position
5 to 9 the accuracy was under 8m whereas 1-4 and 10-13
the error was greater then 8m. The best match at position
6 and 8 were estimated the correct position but both the
entropy and min-max distribution does not infer a trend.
The distribution of scores tells us that our certainty of our
position estimate is not dependent on the score distribution.
Hence we used a different approach to use Wi-Fi for posi-
tion correction. We assign weights w1, w2, and w3 to the
best 3 matched anchor points only if they are all within 2
hop neighbors to each other. Otherwise we ignore the Wi-Fi
scan. It means that when the Wi-Fi localization module es-
timates the best 3 matches, the weights are assigned only if
each anchor point is at least 2-anchor point distance to any
of the other two. For our experiments we assign 0.4, 0.3 and
0.2 weight to the three best matched positions.

Figure 3: The minimum and maximum scores at
different anchor points.

Figure 4: After normalizing the scores, entropy is
calculated.

4. PERFORMANCE EVALUATION
We will explain our experiment methodology, settings,

scenarios, and results in this section. Our main experimental
goal is to measure the benefit of using motion information
from the user to track and position in an indoor environ-
ment.

4.1 Methodology
The system evaluation contains multiple phases. The first

phase is to test the performance of our step counter which
is a foundation of our motion model. After checking the
accuracy we can determine if it is good enough to be used in
our motion model. The accuracy and precision of our motion
model is then tested in two different indoor environments.

The second phase is the evaluation of our measurement
model. By analyzing the performance metrics, we can de-
termine if it can be used for opportunistic measurement up-
date. Furthermore, it is important to test our system in an
environment with sporadic Wi-Fi signal. Next, we explore
the benefit of using motion for localization and tracking and
analyze the advantages of using rank based Wi-Fi in sparsely
distributed Wi-Fi environment. We measure the benefit in
the following aspects:

• System Performance:

Hypothesis 1: The system accuracy and precision
is comparable to other Wi-Fi only localization system
while using less training

• Cost:

Hypothesis 2: The system training and maintenance
cost can be reduced.

• Scalibility

Hypothesis 3:: The system can work in different in-
door environment.

4.2 Experimental settings
Experiments and evaluations of our motion model, mea-

surement model and hybrid localization scheme were carried
out at two contrasting environments at Memorial University.
The first area was part of the 2nd floor of Engineering Build-
ing. The space was divided into a grid using a 3 × 3m cell
size. 33 positions were selected within the hallways for the
anchor points. Each anchor point is surveyed for Wi-Fi data
and a fingerprint is created for each survey point. The an-
chor points are possible locations that the user can be in
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the environment. The distance between two anchor points
is nearly 6 steps. The belief is chosen to be updated after
every 6 steps in this environment. Figure 5 shows the map
of the Engineering Building field test environment.

Figure 5: Map of the Engineering Building. Green
triangles are the anchor points where data has been
collected and the system has fingerprints for those
locations. Red circles are untrained areas.

The second environment is the Unversity Tunnel system
which connects different buildings of the university. There
is no Wi-Fi coverage provided for the tunnels. Figure 6
shows the map of the tunnel system. The only Wi-Fi signals
available are at entrance positions to the tunnel. Hence the
areas of Wi-Fi AP visibility is very limited and also sporadic
in nature. This place is a good testbed for our system. Both
the environments are different. The Engineering Building
has more sharp turns, whereas the the tunnel has smaller
turns. The distance between two anchor points here is 5.5m.
Therefore the belief update happens after 9 steps.

The major assumptions for our experiments are as follows

• The user is always located in the areas for which the
anchor points are defined in the system.

• The device is always pointing in the direction of the
user motion.

• The user walks close to the corridor’s center.

Figure 6: Map of part of the university tunnel.
Green triangles are the points where Wi-Fi is spo-
radically available and red discs are positions where
no Wi-Fi is available. Fingerprints for locations with
green triangles are available.

4.3 Motion Model Evaluation
In an experiment the user was asked to walk in the corridor

with our localization app in the trained areas of Engineering
Building. Figure 7 shows the heat map of the probability
distribution over time. The x-axis describe the ith update
of belief. The position IDs are listed on y-axis where the

color intensity shows the probability of being at each loca-
tion. The belief at x36, x64 and x88 are examples where
the position correction happens due to turning. Overall it
can be seen that the position is tracked pretty well along the
path of the user. From belief update x112 to x128 the user
changed his direction of walking after a few steps a couple of
times creating a to-and-from user trail. It can be observed
in the heat map that the uncertainty starts to increase as
the probability distribution spreads out. So a malicious be-
havior by the user in terms of walking in circles and moving
to and fro in the corridor over short distance might confuse
the belief system.

Figure 8 shows the entropy of the same heat map. At
x5 the entropy falls greatly due to a turn. Initially as the
probability was uniform so the entropy was maximum but
as soon the user turned the belief became more certain due
to the recognition of a corner. Every time the user turns the
corner, the uncertainty decreases and we can see a drop in
entropy. After x112 the entropy increases a little bit showing
the confusion caused by user motion.

Figure 7: Motion model heat map at Engineering
Building with dense Wi-Fi coverage. Black annota-
tions describing actual user position.

Figure 8: Entropy in the Engineering Building

4.4 Rank Based Wi-Fi Measurement Model
Eval-uation

Our Wi-Fi localization scheme returns similarity scores
between the current measurement and every anchor point
which has been surveyed for stored Wi-Fi data. The lowest
score is considered the best match. To test the rank based
fingerprinting technique we assumed that the best match
anchor point is the estimated position. We tested this in
our Engineering Building where we tested it at each anchor
point. The error was recorded by logging the distance be-
tween the ground truth and the estimated output position.
Figure 9 shows the cumulative error distribution. The mean
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error was about 4.1m. We compared our system with the
Wi-Fi based localization scheme by Yan et al [7] which uses
a completely different approach for localization.

Figure 9: Cumulative error distribution of the Rank
Based fingerprinting in Engineering Building

4.5 Performance in Sparse Wi-Fi Environment
To test our system in an environment which has sporadic

Wi-Fi signals we chose the university tunnel system which
has no Wi-Fi available but sporadic signals are available at
the different entrances of the tunnels from different build-
ings. Figure 6 shows the map of one such section of the tun-
nel. This figure shows 16 anchor points from one entrance
to another. All anchor points are equally distant from each
other. It is assumed that initially the system does not know
the user’s true position. Initializing with a Wi-Fi scan can
initialize user position if the user is in one of the entrance
areas.

Figure 10 shows the heat map of the user’s walk in the
tunnel. On x-axis we have the belief updates and on y-axis
we have the 16 anchor points. We annotated the map with
approximate actual position of the user to compare the be-
lief distribution with the movement of the user. From x0
to x12 we can see that the belief is randomly distributed
but it converges towards one direction. From x12 to x45 the
probability distribution is not that scattered and position
estimates are more confident. From x45 to x60 the proba-
bility distribution becomes less reliable as the user changes
his direction more frequently similar to the test done in En-
gineering Building. At x60 the Wi-Fi measurement update
is triggered. At this point it detects P001 as the most likely
position. The probability distribution shifts heavily towards
that position as we give higher weight to the anchor points
with higher Wi-Fi similarity. In the tunnels the Wi-Fi is spo-
radically available in only P001-P004 and then P015-P016
as described before. No Wi-Fi is detected in any anchor
points between them. Hence when the Wi-Fi update step is
triggered, due to the diversity of visible AP’s between these
two regions, the position correction has smaller error.

Figure 11 shows the entropy of the belief in the tunnel. If
we compare the entropy graphs of Engineering and tunnel it
can be observed that the entropy in the tunnel does not drop
as much as compared to the entropy in the Engineering. This
is because the tunnel lacks sharp turns as compared to the
Engineering Building. Although the accuracy from the most
probable position estimate is comparable in both locations
the certainty is less because of the absence of sharp turns.
At x51 to x59 it can be observed that due to the frequent
turning around in the same corridor the entropy increases.
It sharply decreases again at x60 when Wi-Fi measurement
update is triggered.

Figure 10: Heat map of motion model in the tunnel
with sparse Wi-Fi

Figure 11: Entropy in the Tunnel

5. CONCLUSION
This paper explores the idea to incorporate user motion

for indoor localization for sparse Wi-Fi environments, where
other Wi-Fi only systems would not perform accurately. We
discuss our results in relation to the three hypotheses men-
tioned earlier.

• System Performance

Hypothesis 1: The system accuracy and precision
is comparable to other Wi-Fi only localization system.
As it can see from the heat maps of both environments
that the system tracks the user. For our experiments
the accuracy at Engineering Building was under 4m
whereas in the tunnels it was around 6m on average.
It is marginally worse than the 0.7m to 4m average po-
sitioning error yielded by the best-performing but in-
tensively trained Horus system (using 100 Wi-Fi scans
and much smaller grid space (1.52 m and 2.13 m))
[16]. But generally for our system a single accuracy
figure can not be given as it depends upon the shape
and size of the environment. Sharp turns help reduce
positioning error estimates and long corridors accumu-
late errors. The second factor is the amount of Wi-Fi
landmarks available for position correction.

• Cost

Hypothesis 2: The system training and maintenance
cost can be reduced. We tested our system in two differ-
ent environment. One which had very dense Wi-Fi and
had training data available for all the anchor points.
On the other hand in the tunnel environment the Wi-
Fi was sporadically available at only 6 locations. There
was no survey done for those anchor points. As dif-
ferent areas in such environment have distinct Wi-Fi
visibility, so it can be exploited to our advantage to cor-
rect the position only and rely more on human motion
for positioning. Due to less reliance on Wi-Fi, minor
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changes in Wi-Fi infrastructure would not affect the
system.

• Scalability

Hypothesis 3: The system can work in different in-
door environment. We tested our system in two com-
pletely contrasting environments. One had sharper
turns with denser Wi-Fi coverage and the other having
few turns but sparse Wi-Fi coverage. The grid size in
both the environment was also different. This system
is more scalable than other indoor positioning systems
as it would require less training and would even work
in sporadic Wi-Fi environment where Wi-Fi only sys-
tems would fail.

6. FUTURE WORK
We believe that this system can be further improved in

a lot of ways. For example in the step counter we are de-
tecting the number of steps taken but using the height of
the user as a parameter to determine the stride length. Per-
haps more adaptive approach can be used here which uses
information from accelerometer to also calculate the stride
length. Artificial intelligence techniques can be employed in
the initialization phase for the system to learn the human
walking pattern and determine the style of the user to more
accurately determine the number if steps.

Similarly for Wi-Fi based localization, preprocessing the
APs after observing the environment for fluctuations can be
done which might improve the localization error.

Another interesting aspect in which the system can be im-
proved is to integrate human-centric collaborative feedback.
Positioning accuracy and precision can be improved by col-
lecting both positive and negative feedback from users in
terms of orientation.

Developing a magnetic map is also one idea which can be
explored. In that case we have to observe how stable is the
magnetic environment over time. In indoor environments
there may be areas due to electronic equipment or wiring,
where the magnetic field perturbations are distinctive. They
can be used as landmarks similar to how we use Wi-Fi.

We believe that some organizations or companies will de-
vise specifications for indoor positioning system in the near
future. With the potential rapid growth of location-aware
services for public indoor environments such as airports,
subway systems, museums, university campuses, shopping
centers, etc there will always be areas where Wi-Fi infras-
tructure will not be available and hence some alternative
technology would be needed which is reliable and scalable
at the same time. At this time we believe human motion
based localization schemes have great potential and look to
be very promising in reducing the cost both in the sense
of maintenance and energy consumption. We also believe
that more and more researchers will be attracted to exploit
the various sensors now available in smartphones for indoor
localization.
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