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ABSTRACT

A mobile robot can determine its rotation with respect to a
goal position by comparing the image taken at the goal with
the current image. Assuming that both images are omnidirec-
tional, the current image can be shifted horizontally to deter-
mine the minimum difference with the goal image, and hence
the rotation. The size of the region around the goal wherein
this strategy succeeds is reduced by the presence of nearby
objects and ambiguous image features. We propose a simple
pixel weighting scheme that alleviates these problems. The
approach is validated on images captured by a mobile robot
in a typical office environment.

Index Terms— Visual compass; visual homing; biologically-

inspired robotics.

1. INTRODUCTION

The ability to return to a previously visited places is funda-
mental to navigation. This return may be guided by a compar-
ison between the image taken at the goal place and the current
place. We call this visual homing. Visual homing is a demon-
strated ability of insects and appears to play a crucial role in
their navigational strategies [1, 2]. A number of algorithms
for visual homing in robots have been proposed (see reviews:
[3, 4]). Many of these algorithms split the homing task into
two parts where the rotation and translation are solved for sep-
arately. Here we focus on estimating the rotation between the
view captured at the goal location and the current view. This
estimation process is made much easier by the use of omni-
directional images for which rotations about the vertical axis
are equivalent to horizontal shifts of the image.

Methods for estimating the motion of a moving agent (robot
or animal) from visual imagery have come from two distinct
communities. The computer vision community have proposed
relatively unconstrained methods that ideally work in a wide
variety of settings [5]. Such methods require estimating the
parameters of the motion from noisy data, which tends to be
a computationally expensive process. On the other hand, the
biologically-inspired robotics community have proposed so-
lutions based on reasonable constraints on a navigating robot

(e.g. travel on a planar or near-planar surface). These solu-
tions are generally much simpler than those proposed by the
computer vision community. Some researchers have specifi-
cally focused on algorithms which might plausibly be imple-
mented in the limited neural hardware of an insect [6, 3].

One such simple homing algorithm proposed by Zeil et
al. is based on gradient descent [7]. They found that the raw
distance between images, measured by summing the squared
pixel differences, increases relatively smoothly with spatial
distance. Thus, a robot could travel home by moving so as
to minimize this image distance metric. This approach has
been referred to as descent in image distance (DID) [4]. Fur-
ther, they found that image distance increased smoothly with
angular distance—allowing the the use of a visual compass
based on DID. An robot at some arbitrary pose (x,y, 8) with
respect to a goal position could search in the space of image
rotations for the rotated image with minimum distance to the
goal image. Ideally, the angle of minimum distance would
be 6. Zeil et al. did not explicitly test this idea, but it has
been successfully implemented by others [8, 9]. (The smooth
relationship between image and spatial distance exists only
within a particular region in the neighbourhood of the refer-
ence image. Approaches based on DID are only guaranteed
to work within this region.)

Stiirzl and Moller proposed an improvement to this style
of visual compass [9]. They observed that the approach of
Zeil et al. works well when all objects are relatively distant
from the robot, but poorly when many objects are nearby. The
presence of nearby objects has the effect of shrinking the re-
gion where the smooth relationship between image and spa-
tial distance exists. Thus, they proposed a very coarse dis-
tance filter that could be used to assign differing weights to
pixels in the image comparison step based on their estimated
distance from the robot. The distance filter they employed in-
volved comparing images taken from very nearby positions
with very little change in orientation. A pixel-by-pixel com-
parison would ideally reveal large changes for nearby objects,
but little or no change for distant objects.

However, the presence of nearby objects is not the only
problem for a DID-based visual compass. Image regions from
different parts of the image with similar appearance can be
confused with each other. This can lead to the detection of



false minima in image distance space. Also, the weights used
by Stiirzl and Moller were obtained by considering both the
current and goal images, along with images taken from adja-
cent positions. However, a suitable distance must be chosen
from which to obtain the adjacent images. Further, this cho-
sen distance will depend upon the distribution of objects in
the environment and their relative positions.

In this paper we apply a similar strategy to Stiirzl and
Moller, in that we employ a weighted form of DID to estimate
rotation. However in this case the weights are based upon the
difference between rotation estimates obtained from individ-
ual pixels and the measured rotation obtained from odome-
try. In general, we do not expect accurate information to be
available from odometry when visually homing. However,
we assume that at some point in the past the robot did visit
the goal position and captured an image. It then moved away
from the goal, maintaining an accurate position estimate dur-
ing the initial part of its outward route. In our visual compass,
a pixel will be given a high instantaneous weight during train-
ing if its individual rotation estimate agrees with the estimate
from odometry. Further, we combine instantaneous weights
obtained along the training route into a single weight image.

In the next section the format of our images will be pre-
sented. In section 3 the weighting scheme will be formally
described. Section 4 then presents experimental results on a
database of images collected in a typical office environment.
Discussion and brief concluding remarks then follow in sec-
tions 5 and 6.

2. RECTANGULAR PANORAMIC IMAGES

The value of a pixel at column ¢ and row j of image [ is in-
dicated by (1, j). The width and height of the image are de-
noted w and h, respectively. All images considered here were
captured from a camera mounted upwards on a robot, view-
ing a hyperbolic mirror. A low-pass filter is applied to avoid
aliasing in the subsequent resampling process. Next, the im-
ages are reprojected onto a sphere. This sphere is divided up
into a grid of constant angular resolution. The final image is
obtained by sampling the low-pass filtered image for all posi-
tions of the grid. We will refer to these images as rectangular
panoramic. See figure 1(d) for four examples of rectangular
panoramic images.

One useful property of rectangular panoramic images is
that two images taken from the same position but different
orientations differ only by a horizontal shift. More formally,
let Ay denote the image captured at position @ with orientation
6. Then Ag(i,j) = Ag+no(i + k, j). The rotation angle A
corresponds to a shift of k pixels. The relationship between
A6 and k is as follows,

2§ = k2T
w

We measure angles counter-clockwise from the robot’s for-
ward heading, yet image indices increase from left to right

(i.e. clockwise). Hence, the negative sign above.

3. A WEIGHTED DID COMPASS

Assume that the snapshot image S was captured from the goal
position, which we will also refer to as the snapshot position.
The current image C' is captured from the robot’s current po-
sition. We define the squared difference image for a rotation
by k pixels,

The image distance function for shift % is taken here to be
the sum of all values in SD,

%

The visual compass described by Zeil et al. amounts to
finding the horizontal shift &’ that minimizes ssd.

k' = argmin ssd(k)
ke[0,w—1]

This method searches through all w possible shifts for the one
with the lowest ssd measured across all pixels. If we narrow
our focus to consider only one pixel, we would have the fol-
lowing,

minshift(i,j) = argmin SD(s,j, k)
ke[0,w—1]

This amounts to a search for the pixel in row j of C' which is
most similar to S (4, 7). This is exactly the type of search car-
ried out by optic flow methods such as block matching [10].
Here, however, the size of the “block” is 1 x 1. It may be
advantageous to increase the region that must be matched in
order to reduce susceptibility to false matches. This can be
achieved quite efficiently by applying a low-pass filter to SD.
We will indicate the application of such a filter by filt(SD).
We redefine minshi ft to utilize this filter,

manshift(i,j) = argmin filt(SD(4,j,k))
kel0,w—1]

In general, minshift(i, j) might be quite different from
the true shift. However, it may be accurate, meaning that pixel
(4,7) is in a patch of the image distinct enough to be matched
correctly. The rotation estimate from pixel (2, j) is as follows,

. e N2m
Ab; ;= —mmshzft(z,])a

We wish to assess the accuracy of Ag; ; and thus the qual-
ity of pixel (4, j) for rotation estimation. We take the value
from odometry, Af,4, as an estimate of the true rotation. As-
sume that A@; ; is corrupted from the true Af by the noise

term e.
Aﬁi,j = Ag + €



€ is assumed to have a normal distribution with zero mean and
standard deviation o.

We estimate the probability that the true rotation is within
some tolerance 7 of Ab; ;

Pij = P(AGM —T <Al Agi’j + 7')
The probability above can be computed as follows,
Dij = cdf(A017j—A90do+T, 0'2)—Cdf(A9i7j —Aﬁodo—r, 0'2)

where cdf(a, b) is the cumulative distribution function of the
normal distribution for value a and variance b. Note that if
7 is much smaller than o then p; ; can be approximated as
2 - 7 pdf(Ab; ; — Aboao, 0%), where pdf is the probability
density function of the normal distribution.

For the purposes of providing an instantaneous weight for
each (i, j) at time ¢, we utilize the following,

Wt(i,j) =2-7 pdf(AQw — Aeodo,az).

It is not sufficient for our final weight to be based on
W, alone. Superior performance is obtained if we estimate
instantaneous weight images while travelling away from the
snapshot position and then combine them into the final weight
image W. On the assumption that the errors are independent,
the probability that the rotation estimated for pixel (2, ) is
within 7 of the true A# is given by the product of the instan-
taneous weights,

W (i, ) = [[ Wi (i, 5)

The weights are obtained during a learning phase when odom-
etry provides an estimate of the true A@ that can be used to
evaluate the performance of each pixel in the snapshot im-
age. Pixels will only be given a high weight if they are useful
throughout the entirety of the learning phase.

The weighted image distance function for shift & is de-
fined as follows,

wssd(k) = Z Z W (i, j) - filt(SD(i, 4, k))

Notice that if the weight image W contained all ones then
the application of filt would have no effect. However, if W
is heterogeneous then the filtering will have an impact.
Finally, we estimate the rotation in pixels as,

k' = argmin wssd(k)
ke[0,w—1]

As we care only about the relative values of wssd(k) the con-
stant 2 - 7 does not need to be incorporated into the instan-
taneous weight images W;. This is advantageous because it
means that the only parameters that require selection are o,
those of the low-pass filter filt, and the parameters of the
training route.

4. EXPERIMENTAL RESULTS

Results were obtained on a database of rectangular panoramic
images collected in a typical office environment [3]'. Images
were collected on a 10 x 17 capture grid with 30 cm spacing
between adjacent capture positions. Throughout image cap-
ture the robot was oriented in the same direction, with cor-
rections for small changes in heading made afterwards. Thus,
ground truth data is readily available: when comparing any
two images the rotation should be 0.

For the first experiment position (5, 0) was selected as the
snapshot position in the 10 x 17 image collection known as
original. The training route was set to run directly upwards
from position (5, 1) to position (5, 16).

Various subsections of this route were tested for training,
and it was found that the weights learned for the route from
positions (5, 2) to (5, 14) worked best. We also tested varia-
tions on the parameter o which controls how close a rotation
estimate must be to the estimate from odometry for the corre-
sponding pixel to be given a high weight. Performance of the
compass appears to be relatively insensitive to this parameter.
We chose the value o = 7. The only remaining parameters to
be chosen are those of the low-pass filter filt. We employed
a Gaussian filter and tested various values for the radius of the
filter’s convolution mask (1, 2, 5, 10, 20). We also included
the option of no filter at all. A mask radius of 5 was found to
yield the best result, although again performance seemed to
be relatively robust to changes in this parameter.

Figure 1(a) shows the orientations computed by the stan-
dard unweighted DID compass during the learning phase. Fig-
ure 1(b) shows the orientations computed when the learned
weights are applied. The dark arrows indicate positions along
the trained route. Clearly we expect improvement at these
positions. However, it is highly advantageous if improve-
ment is seen for other positions. The grey arrows in figure
1(b) show the performance of the weighted DID compass over
non-trained positions.

The rotation angles computed by the unweighted compass
are qualitatively correct within some region around the snap-
shot position. It is clear that the size of this region is increased
for the weighted compass. The mean and median angular er-
ror for the unweighted compass are 0.92 and 0.31 radians,
respectively. For the weighted compass they have dropped to
0.18 and 0.13. However, the improvement is not uniform. 55
of 169 positions exhibit less accurate rotation estimates for
the weighted compass (indicated by the squares in figure and
1(b)).

Figure 2 compares the performance of the two compasses
for snapshot position (5, 16). In this case the improvement is
even clearer. The unweighted compass is qualitatively correct
only in the very near vicinity of the snapshot. However, the
weighted compass is qualitatively correct for almost the entire

"Images from this database are available at http://www.ti.
uni-bielefeld.de/html/research/avardy.
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Fig. 1. Angle of rotation computed for snapshot position (5, 0) by DID (a), weighted DID (b), and weighted DID with thresh-
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capture area. Mean / median angular error drops from 1.29 /
1.70 t0 0.30/0.24.

The final weight image for the upwards route is shown in
figure 1(d) beneath the images used to produce it. It is inter-
esting to note which areas of the image are the most useful for
estimating orientation. Areas that maintain a similar appear-
ance throughout the training route have a higher weight. In
some cases the similarity is false. For example, in the snap-
shot image from (5, 0) there is a prominent chair and the up-
per part of this chair is given a high weight. However, in the
training route these pixels are more likely matching the black
curtain. This is a false match, but the error is small enough
that the estimated rotation is roughly correct (the chair and
curtain are relatively close). Note that not all areas which
maintain a similar appearance between the snapshot image
and the training route are retained. Most notably, the lower
part of the image maintains a near constant value of grey—
the colour of the floor. However, matches between floor pix-
els would not tend to correspond to the true rotation. Thus,
the majority of floor pixels are assigned a low weight.

Given that the weight image W shown in 1(d) has only
a small number of pixels with high weights, we wondered
whether it would be possible to reduce the weight values to
binary. This was tested by thresholding the final weight image
using the average intensity of the original weight image as a
threshold. The resulting weight image Wy, .5, has 289 pixels
of value 1 out of a total of 11644 (~ 2.5%) and is shown in fig-
ure 1(d). There was a slight reduction in performance found
in utilizing this weight image, although the computed rota-
tions were still much more accurate than for the unweighted
case (mean/median angular error 0.265 / 0.221). The result-
ing angles are shown in figure 1(c). For the downwards route
the thresholded weight image had 261 pixels with a value of
1. However, in this case there was an improvement in perfor-
mance (0.298 / 0.243). See figure 2(c).

Finally, in order to discount the possibility that the po-
sition of weighted pixels was not critical we tested the use
of randomly distributed binary weights: 289 randomly se-
lected pixels were set to 1 for the upwards route and 261
for the downwards route. For 10 different random selections
of weights the performance was always worse than with the
learned weights on both routes.

S. DISCUSSION

We have demonstrated that our weighted visual compass pro-
vides superior performance to the unweighted scheme for the
majority of tested positions. We presume that the unweighted
compass performs better in certain positions because it im-
plicitly combines a higher number of matches. While many
of these matches may yield incorrect rotations, they will tend
to be incorrect in different directions (some positive, some
negative) and therefore will cancel each other out. This is an
instance of the so-called democracy effect noted in [3]. We

plan on investigating a means of balancing the advantages of
the unweighted and weighted approaches.

It was also shown that the final weight images could be
thresholded to binary and still perform better than the un-
weighted case. This is a positive feature because a binary
weight image will clearly be more efficient both to store and
apply than a floating-point image.

6. CONCLUSIONS

We have presented a new scheme for assigning weights to pix-
els for the DID-based visual compass. This scheme has some
advantages over the method proposed by Stiirzl and Méller
in that it will assign low weights both to nearby objects and
to image regions that do not provide useful rotation estimates
(e.g. the floor). We plan on performing an experimental com-
parison between these two weighting schemes in the near fu-
ture. Also, we are investigating the use of the formal frame-
work presented here for developing weights on image features
used to estimate translation.
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