
Anatomy and Physiology of an Artificial Vision
Matrix

Andrew Vardy and Franz Oppacher

School of Computer Science
Carleton University

Ottawa, K1S 5B6, Canada
Fax: +1 (613) 520-4334
avardy@scs.carleton.ca

http://www.scs.carleton.ca/˜avardy

Abstract. We present a detailed account of the processing that occurs
within a biologically-inspired model for visual homing. The Corner Gra-
dient Snapshot Model (CGSM) initially presented in [1] was inspired by
the snapshot model [2] which provided an algorithmic explanation for the
ability of honeybees to return to a place of interest after being displaced.
The concept of cellular vision is introduced as a constraint on processing.
A cellular vision matrix processes visual information using retinotopi-
cally arranged layers of low-level processing elements interacting locally.
This style of processing reflects general principles known of visual pro-
cessing throughout the animal kingdom. From a technical standpoint,
this style of processing is inherently parallel. Here we describe a cellular
vision matrix which implements CGSM and illustrate how this matrix
obeys cellular vision. Some new comparative results are presented and
it is found that CGSM’s performance degrades gracefully with environ-
mental modification and occlusion.

1 Introduction

In [1] we presented a biologically-inspired model for visual homing. This model
was inspired by the snapshot model, proposed to explain the ability of honey-
bees to return to a place of interest after displacement [2]. Our model, called
the Corner Gradient Snapshot Model (CGSM), was found to achieve successful
homing on a dataset of real-world panoramic images. It outperformed a similar
biologically-inspired model [3,4] on the same images. CGSM has two distinguish-
ing features. First, it operates on real-world two-dimensional images, in contrast
to most other models inspired by the snapshot model which operate on one-
dimensional images, often taken of simulated or simplified worlds [5,6,7,8,9,10,
11,3]. Secondly, all of CGSM’s processing is constrained to involve only local low-
level interactions between neuron-like elements. We call this constraint cellular
vision. Here our main purpose is to show how CGSM adheres to cellular vision
by providing detailed wiring diagrams. We also present some new results which
indicate that CGSM’s performance will degrade gracefully when the environment
is significantly modified.

A.J. Ijspeert et al. (Eds.): BioADIT 2004, LNCS 3141, pp. 290–305, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Anatomy and Physiology of an Artificial Vision Matrix 291

1.1 Visual Homing

A critical competence for an agent, whether animal or robot, is the ability to
repeatedly return to important places in the environment such as the nest or food
sources. If this is achieved by exploiting visual cues then we call it visual homing.
The snapshot model (described below) is a possible model for visual homing in
the honeybee. With the snapshot model, a single “snapshot” image taken from
the goal location is all that is stored to represent the environment. A number
of alternative approaches have been proposed for visual homing, particularly in
robotics. Basri et. al employ formal computer vision techniques to determine the
epipolar geometry relating the snapshot and current locations and move directly
home [12]. Memory-based approaches represent the environment by a set of
images and associated home vectors [13,14,15]. Some memory-based approaches
employ panoramic imaging systems as we do here (e.g. [14,15]). If the agent never
has to leave the vicinity of the goal then the feature tracking approach of [16] can
be employed for homing (this approach also uses corners as we do here). However,
none of these more technical approaches consider the biologically-plausibility of
their algorithms. Thus, we are inspired here by the snapshot model and we have
attempted to provide an implementation of it which is both biologically-plausible
and efficient.

1.2 The Snapshot Model

The snapshot model was developed to match data of honeybee search patterns
[2]. A model agent is placed at the goal and allowed to capture a snapshot image.
It is then displaced and allowed a return attempt. The disparity between the
current and snapshot images is used to guide the return. One key requirement of
the snapshot model is that the agent maintains a constant orientation. There is
evidence to suggest that bees take on the same orientation when returning to a
remembered place as they took when originally learning the layout of that place
[17,18,19]. A robot homing via the snapshot model must employ some sort of
compass system to maintain or compensate for changes in orientation.

1.3 Cellular Vision

The neurophysiology of visual homing in insects has not yet been probed [11].
How then can we posit an insect-inspired neural architecture to implement visual
homing? The answer is to step back and look at the overall principles that seem
to govern the processing of visual information in insects and other animals.

The lower layers in human visual cortex are composed of neurons exhibiting
differently structured receptive fields [20]. In their pioneering work on cat visual
cortex, Hubel and Wiesel state, “the receptive field of a cell in the visual sys-
tem may be defined as the region of retina (or visual field) over which one can
influence the firing of that cell.” [21]. Further, visual processing neurons gen-
erally appear to be organized into columns with the retina on the bottom and

292 A. Vardy and F. Oppacher

increasingly elaborate, yet overlapping, receptive fields found as one ascends.
This arrangement is retinotopic: “each level of the system is organized like a
map of the retina.” [20]. These observations also hold for insects. In describing
motion processing within the framework of the fly’s visual system Egelhaaf et al
state “the visual system is organized in a retinotopic way by columnar elements”
[22]. They describe how local image motion is detected by small-field neurons
which subsequently connect to wide-field neurons. The small-field cells, called
Elementary Motion Detectors (EMDs), compute local motion through lateral in-
teractions between neighbouring cells on the same level within adjacent columns.
To summarize, both vertebrates and invertebrates have visual systems that are
structured according to the following general principles: Vertical arrangement of
retinotopic columns; Horizontal arrangement into layers of heterogeneous func-
tion; Local processing of neurons that interact with other neurons in nearby
columns and layers.

We refer to the use of these principles in artificial vision as cellular vision, and
a matrix of processing elements adhering to these principles as a Cellular Vision
Matrix (CVM). The CVM explored here was designed to produce movement
vectors from images. Thus, at some point the dimensionality of the processing
matrix must be brought down to the two dimensions of a vector describing
motion in the plane. This is done in the final two layers of the CVM which exhibit
very wide receptive fields. This aspect is also incorporated into the cellular vision
concept and is inspired by the increasingly wide receptive fields found as one
ascends from the retina into the visual processing areas of many animals.

A number of other researchers who have built computational and/or robotic
models inspired by insects seem to be implicitly adhering to cellular vision. In [23]
a robot inspired by the fly motion detection system has an array of hardware-
implemented EMD units arranged retinotopically in a ring around the robot.
Similar fly-inspired examples can be found in [24,25]. [26] presents a retinotopic
neural model for the escape reflex of locusts. Additional examples of retinotopic
neural models of insect vision include two others based also on the snapshot
model [10,11]. Of these, the neural snapshot model [10] is of primary interest here
because it provides the inspiration for CGSM. The primary difference being that
the neural snapshot model operates only in a simplified simulation environment
on one-dimensional binary images.

Two notes before concluding this section. First, adopting cellular vision rules
out a host of more traditional computational methods. Chief among these is
search. Interestingly, most of the existing implementations of the snapshot model
utilize search and are therefore not readily implementable in a CVM (exceptions
in [10,11]). Second, a CVM is inherently parallel. Here and in [1] the CVM for
CGSM is run on a serial computer. However, parallel implementation must be
imagined to allow a fair comparison with non-CVM methods. If simulating a
CVM with m layers at resolution n × n on a serial computer, the time com-
plexity to complete processing of one image would be O(mn2). However, if the
implementation is parallel the time complexity is just O(m).

Anatomy and Physiology of an Artificial Vision Matrix 293

2 The CVM for CGSM

The CVM which implements the CGSM homing method consists of 29 layers.
Each layer is composed of a grid of elements equal in size to the input image,
all sharing the same function. A group of adjacent layers that together performs
some higher-level function is called a segment. We begin by describing the pro-
cessing matrix at a high-level and then descend to describe how segments and
groups of segments achieve the necessary high-level functions in low-level terms.

A flow chart of the CGSM processing matrix is depicted in figure 1. An input
image is fed into the processing matrix. It is first smoothed and then corners
are extracted as features. If the agent is at the goal then the image of features
is stored as the snapshot image. Gradients are formed around each feature and
these gradients are locally compared with features in the snapshot image to
generate vectors which indicate the direction that these features have moved in.
These vectors specifying motion in the image are mapped onto vectors specifying
the corresponding motion of the agent. Finally, this last set of vectors is summed
to create the agent’s home vector.

Fig. 1. Processing applied by the CGSM matrix. Adapted from [1].

294 A. Vardy and F. Oppacher

Before describing the CVM for CGSM in depth we look at it from a more
removed perspective. Figure 2 shows the entire CVM, visualized in 3-D with
OpenGL. A single column of the CVM is shown. Note how many layers are dis-
placed diagonally. These displacements have been added to make clearly visible
the connections between layers. Processing flows from the bottom right up to
the upper left. All subsequent figures of the CVM will follow this convention.
These figures are all zoomed-in views of particular parts of figure 2 with addi-
tional labels and effects added. Note the circled summation sign at the upper
left of the matrix. This indicates that the next-to-last and last layers are to be
summed to form the x and y components (respectively) of the final agent motion
vector that is output from the CVM. The next section provides detail on how
the low-level structure of a CVM is to be described. Subsequent sections present
each high-level component of the processing matrix in low-level terms.

Fig. 2. Overview of CVM for CGSM, visualized in OpenGL.

3 CVM Structure

We can describe a CVM by giving just the neighbourhood and function of each
processing element along a column that ascends from the input layer to the
last layer of the CVM. The input layer can be considered the ‘retina’. By the
time processing reaches the CVM’s last two layers the input image will have
been transformed into a vector which will directly control the agent’s behaviour.
The neighbourhood of an element within a CVM describes which of its peers it

Anatomy and Physiology of an Artificial Vision Matrix 295

receives input from and the weighting of their connections with that element.
The function achieved by each processing element is one of the following:

Conv. The sum of all neighbours’ weighted activation levels is returned. This is
the convolution operation, prevalent in signal processing.

Mult. The product of all neighbours’ weighted activation levels is returned.
Max. The highest weighted activation level is returned.
IsMax. If the special neighbour has the highest weighted activation of all neigh-

bours then 1 is returned. Otherwise 0 is returned. The “special neighbour”
is a single neighbour designated to have a special status. For IsMax it is just
the one neighbour that all other neighbours are compared to.

MaxDX. The horizontal displacement of the neighbour with the highest weighted
activation level is returned.

MaxDY. The vertical displacement of the neighbour with the highest weighted
activation level is returned.

Thold(f). If the special neighbour ’s weighted activation level is above f then 1
is returned. Otherwise 0.

Pow(f). The special neighbour ’s weighted activation level is raised to power f .
Expr. Each neighbour may have a symbol associated with it whose purpose is to

stand in for that neighbour’s activation level in an algebraic expression. The
algebraic expression includes the usual operators and common numerical
functions (+, −, ∗, /, ˆ, sin, cos, sqrt, and the constant pi). Also,
the following special symbols are used to stand for certain element-specific
parameters or global constants.

c column index of current element in image (i.e. x-coordinate)
r row index of current element in image (i.e. y-coordinate)
w image width
h image height
o value set to +1 if the current element is in the top half of the image, and

to -1 in the bottom half

An element applies its function and then takes on the resultant value. All
elements on a single layer are updated synchronously. In this implementation im-
ages are horizontally panoramic but vertically bounded. If an element’s neigh-
bourhood stretches horizontally past the image boundary then it is wrapped
around toroidally to the opposite side of the image. If an element’s neighbour-
hood stretches vertically past the image boundary then the element will be given
a special out-of-bounds value, causing any subsequent elements that connect to
this element to also become out-of-bounds. Effectively the image being processed
will shrink vertically. This approach allows all functions to handle the border in
a uniform manner.

3.1 Gaussian Filter

The input image is assumed to be corrupted with some amount of high-frequency
noise. Some of this noise is removed with a 5x5 Gaussian filter. Figure 3(a)

296 A. Vardy and F. Oppacher

depicts a 2-layer implementation of this filter. Layer 0 is the input layer and
Layers 1 and 2 form the filter. The Gaussian kernel is separable, meaning that
it can be split into two identical, but orthogonal layers [27]. After processing,
Layer 2 will be a smoothed version of Layer 1.

(a) Gaussian, X Deriv, Y Deriv (b) Y Deriv, Harris-Corner-Extr

Fig. 3. CVM segments from input image to corner image. Larger spheres are elements,
smaller spheres show connections. Numerical labels show connection weights. Symbols
used in the Expr function are shown adjacent to corresponding elements.

3.2 Corner Extraction

We briefly review the general method of corner extraction first before describing
how it is implemented here. The method is known as the Harris detector [27]
(pages 82-85) and was originally presented in [28]. Consider an image point, p,
and a small window centred on p. If the window is shifted then we can compare
the amount of change between the old and new windows. A corner is defined
as an image point where this degree of change is large for all possible shifts. A
simplified check for this condition is that, for the shift producing the smallest

Anatomy and Physiology of an Artificial Vision Matrix 297

change, the level of change must still be large. An analysis is presented in [28]
which equates this minimum change with the smaller eigenvalue of matrix M,

M =
[

i k
k j

]
where i =

∑
D2

x, j =
∑

D2
y, k =

∑
DxDy

Dx and Dy are the spatial derivatives of the image in the x and y directions.
The summations above cover the pixels of a small window centred on p. After a
few algebraic steps we can arrive at an equation for the smaller eigenvalue, λs,

λs =
i + j − √

(i + j)2 − 4(ij − k2)
2

(1)

λs will be the output from the Harris Corner Extraction segment. The first
step in arriving at this value is to estimate spatial derivatives. Figure 3(a) shows
the X Derivative and Y Derivative segments which do just that. We indicate a
particular element at image position (x, y) and layer index l as Vx,y,l. The value
of an element at position Vx,y,3 is computed as Vx+1,y,2 − Vx−1,y,2 which is the
central-difference approximation of the first derivative in the x direction. The
Conv function of Layer 3 combined with its -1 and +1 connections to Layer 2
performs this approximation. Layer 4 squares Layer 3. That is, Vx,y,4 = V 2

x,y,3.
This provides us with the value D2

x necessary to calculate λs. The Y Derivative
segment is similar to the X Derivative and provides us with D2

y in Layer 6.
The Harris Corner Extraction segment is shown in figure 3(b). Layer 7 does a

summation from Layer 4 of the X Derivative segment. This calculates i =
∑

D2
x.

Similarly, Layer 8 calculates j =
∑

D2
y. The inputs to Layer 9 travel back from

figure 3(b) to 3(a). They connect to Layers 3 and 5, the first layers of the X
Derivative and Y Derivative segments. Multiplying them yields DxDy. Layer 10
then does the summation to achieve k =

∑
DxDy. Finally, Layer 11 implements

equation 1 to calculate λs.

3.3 Local Maxima Extraction

Layer 11 holds an image of λs values indicating the quality of corner at each
position. This may be described as a ‘hilly corner image’. To extract discrete
point features the peaks of these hills must be found. Figure 4(a) shows how
this is achieved. First, another Gaussian Filter is applied in Layers 12 and 13
to further reduce residual noise as well as any noise introduced by the corner
extraction process. Next local maxima will be detected. The IsMax function in
Layer 14 will set its element to 1 only if the corresponding element in Layer
13 has a value strictly greater than all of its immediate neighbours. The Thold
function in Layer 15 will set its element to 1 only if the corresponding element
in Layer 13 has a value greater than the threshold (0.025). Finally, Layer 16
multiplies these quantities to perform a boolean AND. That is, a point in the
smoothed corner image (Layer 13) must be both a local maximum AND exceed
a threshold if it is to be extracted as a corner.

298 A. Vardy and F. Oppacher

(a) Loc-Max-Extr, Snapshot (b) Gradient Formation, Unit Ring

Fig. 4. CVM segments from corner image, to gradient image, and finally to image
vectors. (a) The IsMax function has one dark line to show connection to the special
neighbour. The ‘*’ symbol beneath Snapshot indicates that this layer requires an out-
side signal. (b) “x30” indicates that layer 19 is applied for 30 iterations.

3.4 Snapshot

Figure 4(a) also depicts the Snapshot layer, Layer 17. This layer simply performs
a copy of Layer 16. However, the Snapshot layer requires an external signal to
operate. This signal is made active when the agent is positioned at the goal
position and allowed to take a snapshot image. If the signal is not active then
the Snapshot layer will just maintain its storage.

3.5 Gradient Formation

Before describing the implementation of gradient formation in the CVM, we first
review the purpose of forming gradients around detected features of the current
image. The CGSM homing method requires that correspondences be established
between current image features (Layer 16) and snapshot image features (Layer
17), and that these correspondences should be in the form of vectors which point
from the snapshot image feature to the corresponding current image features.

Anatomy and Physiology of an Artificial Vision Matrix 299

From the perspective of an individual element within a CVM, how can these
vectors be determined? There can be no ‘search for similar elements’ because
search is a global operation not permitted within a CVM. One answer is to form
a gradient image which rises from zero at the position of a current image feature
and increases in proportion to distance from the feature. Then, correspondence is
established by assuming that a snapshot image feature matches whatever current
image feature was responsible for generating the particular ‘well’ of the gradient
image which the snapshot feature is sitting on. The downhill direction of the
gradient gives this disparity vector, or image vector.

We use Hassoun and Sanghvi’s method to form the gradient image [29].
The intended goal of their algorithm is to determine the optimal path between
two points on a grid, and to compute this path with a set of processors which
are spatially distributed on the same grid. To this end, the first stage of their
algorithm distributively computes a potential surface whose height gives the
cost of moving to the source point1. We use just this aspect of their algorithm
here, with cost defined as distance on the grid. In this case, however, there
are multiple sources for the potential surface. The grid is initialized to 0 where
there are features detected in the feature detection layer, and to some arbitrarily
large value Gmax everywhere else2. Vx,y will indicate the current value of a grid
element and V ′

x,y will indicate the new value. The set of neighbours of (x, y) is
Πx,y. The distance from (x, y)’s neighbour (p, q) ∈ Πx,y to (x, y) is dp,q. This
whole method of gradient formation boils down to the following update rule,

V ′
x,y = min

{
Vx,y, min

(p,q)∈Πx,y

(Vp,q + dp,q)
}

(2)

Figure 4(b) shows the Gradient Formation segment. This segment is unique in
this CVM in that its second layer (Layer 19) is applied in a loop for 30 iterations.
On the first iteration this layer is initialized from Layer 18, but thereafter it is
recurrently connected to itself (Layer 18 is executed only once). Ideally, a number
of iterations equal to the largest dimension of the image would be used so that the
gradient would be guaranteed to spread throughout the whole image. However,
this is a computationally expensive operation and 30 was chosen as a tradeoff
value which seemed to yield good performance. Layer 18 provides the initial
conditions for Layer 19. Specifically, it initializes all non-feature points to Gmax

and all feature points to zero. Layer 19 implements equation 2.
See figure 1 for an example gradient image produced by this segment.

3.6 Ring Operator

Figure 4(b) also shows the Unit Ring segment. This segment calculates vectors
describing the downhill direction of the gradient image at positions where a

1 A device-efficient hardware implementation of this same idea is presented in [30].
2 Gmax is set here to 30, the number of iterations of the gradient formation layer.

300 A. Vardy and F. Oppacher

feature in the snapshot layer exists. Layers 20 and 21 have ring-shaped neigh-
bourhoods connecting to the output of the Gradient Formation segment. These
two layers determine the x and y components (respectively) of the required vec-
tor. Using the symbols in the figure 3, this vector is [x, y]. However, this vector
should only exist where there is a snapshot feature. Thus, Layers 22 and 23 mul-
tiply the x and y components by s which stands for a connection to the snapshot
layer. If s is 0, meaning that there is no snapshot feature at this position, then
the vector [x, y] will be zeroed. These expressions also divide [x, y] by its length,
making it a unit vector. The negative signs in Layers 22 and 23 invert the image
vector [x, y] so that it points downhill on the gradient image.

3.7 Vector Mapping

The last two layers of the Unit Ring segment encode image vectors expressing the
movement of features within the image. The task of the Vector Mapping segment
is to transform these image vectors into agent motion vectors. An image vector −→v
is the movement of a feature in the image given the movement of the agent in the
plane −→

V (agent motion vector). An approximate method was presented in [1] to
obtain −→

V from −→v and θS , the angular position of the snapshot feature within the
image. Unfortunately, space limitations present repeat coverage of this method
here. The method is achieved by equation 3, which has been implemented in this
CVM as shown in figure 5(a).

−→
V =

[
vy sin θS − vx sin (θS + 90o)
vy cos θS − vx cos (θS + 90o)

]
(3)

3.8 Vector Normalization and Summing

In figure 5(b), the agent motion vectors produced in the Layers 26 and 27 are
normalized. This is the final step of the processing chain. Now the final output of
the CVM is determined by summing the normalized agent motion vectors stored
in Layers 28 and 29. This is illustrated by the large circle in figure 5(b) which
produces the two-dimensional vector used to move the agent.

4 Results

In [1] CGSM was compared with a model we referred to as the eXtracted Average
Landmark Vector (XALV) model (from [3]) and found to exhibit superior perfor-
mance. Here we compare the performance of CGSM with Franz et. al’s warping
method [7]. Other biorobotics researchers have made comparisons between their
own methods and the warping method, both favourable and unfavourable. For
example, Weber et. al found that their method exceeded the performance of
3 Variables used in the Expr function are recycled. There are several places where the

values used are x and y but these values are local to each Expr function.

Anatomy and Physiology of an Artificial Vision Matrix 301

(a) Vector Mapping (b) Vector Normalization, Summing

Fig. 5. CVM segments to produce (a) agent motion vectors; (b) normalized agent
motion vectors. The large circle in (b) indicates the summation of Layers 28 and 29 to
produce the x and y components of the final home vector.

the warping method—however, the comparison was made only in simulation [9].
Möller compared robotic implementations of the snapshot model, XALV, and
the warping method and found that the warping method generally performed
the best and was the least sensitive to parameter settings [31]. The warping
method searches through the space of possible movements away from the home
position. For each possible movement the snapshot image is warped to appear
as if the robot had performed that movement away from the snapshot location.
The parameters of the warped image that are most similar to the current image
are used to compute the home vector.

As in [1] we compare the two methods on the 300 panoramic images used in
[3] (see the top left image in figure 1 for an example image from this database).
This database of images was taken using an omnidirectional imaging system
on a 9m x 3m grid of positions in an unmodified university building entrance
hall. The unwrapped panoramic images used here are 180 x 48 pixels in size. As
a thorough test of performance each of the 300 images is used in turn as the
snapshot image, with each such round of trials generating a set of home vectors

302 A. Vardy and F. Oppacher

such as in figure 6. Once all home vectors are generated we attempt to find a path
home from every grid position. The overall average number of positions where
homing can succeed, over all snapshot images, is the return ratio. Table 4 reports
the return ratio for CGSM and the warping method. As the left-most column
of numbers in this table indicates, the warping method exhibits far superior
homing performance. Some example homing maps are shown in figure 6 for both
methods. These particular maps are for the snapshot position at coordinates
(210cm, 180cm).

(a) Warping Method (b) Warping Method, One Block

(c) CGSM (d) CGSM, One Block

Fig. 6. Homing vectors for position 210cm x 180cm. “One Block” means corruption
by one block (see text). White cells indicate successful homing. Grey cells give the
approach index for unsuccessful homing trips (see [1]).

There are, however, at least two particular aspects of the experiment so
far which are unrealistic from the perspective of insect modelling. Firstly, an
insect such as a honeybee does not have truly panoramic vision. Honeybees in
particular have a ‘blind spot’ of about 50o in the rear [32]. Secondly, an insect’s
world is dynamic. We expect disruptions in the environment to impair homing
performance, however robustness in the face of modified surroundings is critical.

To model both of these conditions we have constructed three corrupted ver-
sions of the 300 image database. The corruption is applied simply by blotting out
(setting to zero) one, two, or three randomly positioned 40 x 48 vertical blocks
within the image. If the blocks happen not to coincide, then this represents a loss
of 22.2%, 44.4%, or 66.6% of the information possibly contained in the image (for
one, two, and three blocks respectively). Each round of homing (3002 individual
trials) is now based on snapshot images from the original image database and

Anatomy and Physiology of an Artificial Vision Matrix 303

current images from the disrupted database. The final three columns of table 4
show how the warping method’s performance is severely affected by these dis-
ruptions while CGSM exhibits graceful degradation and superior performance
to the warping method for all the disrupted cases. Figure 6 shows how the home
vectors for both methods change when a single corruption block is added.

Table 1. Return ratios for the two methods under varying conditions.

Conditions
Method Undisturbed 1 Block 2 Blocks 3 Blocks
CGSM 69.5% 63.8% 57.1% 52.5%
Warping Method 94.3% 34.2% 19.0% 15.3%

5 Discussion

The warping method achieves its excellent result on the undisturbed image
database by exploiting global image information. All parts of the image con-
tribute to the calculated home vector. While CGSM does not perform nearly
as well as the warping method on the undisturbed database, it remains rela-
tively unaffected by large transient changes to the image database. This is due
to CGSM’s inherent functional parallelism. Approximate home vectors are gen-
erated for each feature of the snapshot image. The computation of these home
vectors occurs independently and in parallel. These vectors are finally summed
to yield the overall result, but this is intended only to offset the possible negative
impact of incorrect vectors. The final summation is the first and only time when
these multiple results converge.

That CGSM’s parallelism should turn out to provide robust performance is
an interesting result. Functional parallelism was not one of the intended features
of CGSM. Instead, the purpose of CGSM’s parallel computing style was to ensure
biological-plausibility, and to enable the possibility of parallel implementation
for improvement of algorithm complexity. However, we are now encouraged to
look to parallelism for performance advantages as well.

6 Conclusions

We have presented here a detailed account of the structure and function of
a cellular vision matrix for visual homing. It has been shown how operations
such as corner extraction, local maxima extraction, gradient formation, and the
vector operations could all be achieved by simple locally-connected elements
arranged retinotopically. Experiments compared the performance of CGSM with
the warping method and found that while CGSM’s performance is not as strong

304 A. Vardy and F. Oppacher

as the warping method under ideal conditions, its performance degrades far more
gracefully under conditions of large environmental modifications and occlusion.

Much work remains for developing and exploring CGSM. Homing perfor-
mance has not yet been tested live on a free-roving robotic platform. Also,
a thorough analysis of error conditions remains to be completed. Some work
in-progress includes the development of an exact vector mapping method and
alternative means for locally determining feature correspondence. Finally, it will
be interesting to see what other sorts of projects the cellular vision concept can
be applied to. Cellular vision was inspired by research on biological systems de-
scribed at a particular level of detail (low-level, but above that of neural wiring).
It remains to be seen how useful this concept may be both in the creation of
artificial vision systems—and perhaps—in the understanding of natural vision
systems.

Acknowledgments. Many thanks to Ralf Möller for reviews and continued
guidance, as well as the C++ implementation of the warping method. This work
has been partially supported by NSERC Postgraduate Scholarship B - 232621 -
2002.

References

1. Vardy, A., Oppacher, F.: Low-level visual homing. In Banzhaf, W., Christaller, T.,
Dittrich, P., Kim, J.T., Ziegler, J., eds.: Advances in Artificial Life - Proceedings
of the 7th European Conference on Artificial Life (ECAL), Springer Verlag Berlin,
Heidelberg (2003) 875–884

2. Cartwright, B., Collett, T.: Landmark learning in bees. Journal of Comparative
Physiology 151 (1983) 521–543

3. Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies
of visual homing in mobile robots. In Webb, B., Consi, T., eds.: Biorobotics -
Methods and Applications. AAAI Press / MIT Press (2001)

4. Roggendorf, T.: Visuelle Landmarkennavigation in einer natürlichen, komplexen
Umgebung. Master’s thesis, Universität Bielefeld (2000)

5. Hong, J., Tan, X., Pinette, B., Weiss, R., Riseman, E.: Image-based homing. In:
Proceedings of the 1991 IEEE International Conference on Robotics and Automa-
tion, Sacremento, CA. (1991) 620–625

6. Röfer, T.: Controlling a whellchair with image-based homing. In: Proceedings of
AISB Workshop on Spatial Reasoning in Mobile Robots and Animals, Manchester,
UK. (1997)

7. Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.: Where did i take that snapshot?
scene-based homing by image matching. Biological Cybernetics 79 (1998) 191–202

8. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot
employing insect strategies for navigation. Robotics and Autonomous Systems,
Special Issue: Biomimetic Robots (1999)

9. Weber, K., Venkatesh, S., Srinivasan, M.: Insect-inspired robotic homing. Adaptive
Behavior 7 (1999) 65–97

10. Möller, R., Maris, M., Lambrinos, D.: A neural model of landmark navigation in
insects. Neurocomputing 26-27 (1999) 801–808

Anatomy and Physiology of an Artificial Vision Matrix 305

11. Möller, R.: Insect visual homing strategies in a robot with analog processing.
Biological Cybernetics 83 (2000) 231–243

12. Basri, R., Rivlin, E., Shimshoni, I.: Visual homing: Surfing on the epipoles. Tech-
nical Report MCS99-10, Weizmann Institute of Science, Mathematics & Computer
Science (1999)

13. Nelson, R.: From visual homing to object recognition. In Aloimonos, Y., ed.:
Visual Navigation. Lawrence Earlbaum (1996) 218–250

14. Ulrich, I., Nourbakhsh, I.: Appearance-based place recognition for topological
localization. In: IEEE International Conference on Robotics and Automation.
Volume 2. (2000) 1023–1029

15. Jogan, M., Leonardis, A.: Robust localization using panoramic view-based recog-
nition. In: International Conference on Pattern Recognition. (2000) 136–139

16. Argyros, A., Bekris, C., Orphanoudakis, S.: Robot homing based on corner tracking
in a sequence of panoramic images. In: Computer Vision and Pattern Recognition
Conference. (2001)

17. Collett, T., Baron, J.: Biological compasses and the coordinate frame of landmark
memories in honeybees. Nature 368 (1994) 137–140

18. Zeil, J., Kelber, A., Voss, R.: Structure and function of learning flights in bees and
wasps. Journal of Experimental Biology 199 (1996) 245–252

19. Judd, S., Collett, T.: Multiple stored views and landmark guidance in ants. Nature
392 (1998) 710–714

20. Pinel, J.: 7. In: Biopsychology. Allyn and Bacon (1997)
21. Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex. Journal of Physiology 160 (1962) 106–154
22. Egelhaaf, M., Kern, R., Krapp, H., Kretzberg, J., Kurtz, R., Warzecha, A.K.:

Neural encoding of behaviourally relevant visual-motion information in the fly.
Trends in Neurosciences 25 (2002) 96–102

23. Franceschini, N., Pichon, J., Blanes, C.: From insect vision to robot vision. Philo-
sophical Transactions of the Royal Society of London B 337 (1992) 283–294

24. Harrison, R.: Fly-inspired VLSI vision sensors. In J. Ayers, J.D., Rudolph, A.,
eds.: Neurotechnology for Biomimetic Robots. MIT Press (2002)

25. Huber, S., Franz, M., Bültoff, H.: On robots and flies: Modeling the visual orien-
tation behavior of flies. Robotics and Autonomous Systems 29 (1998) 227–242

26. Rind, F.: Collision avoidance: from the locust eye to a seeing machine. In Srini-
vasan, M., Venkatesh, S., eds.: From living eyes to seeing machines. Oxford Uni-
versity Press (1997)

27. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice
Hall (1998)

28. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings
of the Fourth Alvey Vision Conference. (1988) 147–151

29. Hassoun, M., Sanghvi, A.: Fast computation of optimal paths in two- and higher-
dimensional maps. Neural Networks 3 (1990) 355–363

30. Möller, R.: Path planning using hardware time delays. IEEE Transactions on
Robotics and Automation 15 (1999) 588–591

31. Möller, R.: Habilitationsschrift, Wirtschaftswissenschaftliche Fakultät der Univer-
sität Zürich (2002)

32. Land, M.: Variations in the structure and design of compound eyes. In Stavenga,
Hardie, eds.: Facets of Vision. Springer-Verlag (1989)

	Introduction
	Visual Homing
	The Snapshot Model
	Cellular Vision

	The CVM for CGSM
	CVM Structure
	Gaussian Filter
	Corner Extraction
	Local Maxima Extraction
	Snapshot
	Gradient Formation
	Ring Operator
	Vector Mapping
	Vector Normalization and Summing

	Results
	Discussion
	Conclusions

