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Abstract. We present a variant of the snapshot model [1] for insect vi-
sual homing. In this model a snapshot image is taken by an agent at
the goal position. The disparity between current and snapshot images
is subsequently used to guide the agent’s return. A matrix of local low-
level processing elements is applied here to compute this disparity and
transform it into a motion vector. This scheme contrasts with other vari-
ants of the snapshot model which operate on one-dimensional images,
generally taken as views from a synthetic or simplified real world set-
ting. Our approach operates directly on two-dimensional images of the
real world. Although this system is not a model of any known neural
structure, it hopes to offer more biological plausibility than competing
techniques because the processing applied is low-level, and because the
information processed appears to be of the same sort of information that
is processed by insects. We present a comparison of results obtained on
a set of real-world images.

1 Introduction

In [1] the snapshot model was proposed to explain the remarkable ability of
honeybees to return to a place of interest such as a nest or food source after being
displaced from that place. Variants of this model have been implemented both in
simulation and in physical robots [4,11,3,7,14,8,9,10]. All of these computational
models operate on one-dimensional images. Even for the case of physical robots
with cameras that generate two-dimensional images, the height dimension is
almost immediately collapsed such that the image used for homing is effectively
one-dimensional. Our approach differs from these in that we apply our processing
directly on two-dimensional images. We find that the use of two-dimensional
image features improves results over a similar model that operates only on one-
dimensional features. Also, a number of these other models are tested either
in simulated worlds or in simplified real world scenarios. We test our approach
using the real world image album of [10] and compare our results with theirs.

The snapshot model was developed to match data of honeybee search pat-
terns. A model agent is placed at the goal and allowed to capture a snapshot
image. It is then displaced and allowed a return attempt. The model operates
on one-dimensional panoramic binary images. Features (region centers) in the
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current image are paired with their closest matching counterparts in the snap-
shot image. Each pairing generates two vectors: one correcting for bearing and
one correcting for differences in apparent size. The sum of all vectors yields the
motion vector. One key requirement of the snapshot model is that the agent
maintains a consistent orientation. There is evidence to suggest that bees take
on the same orientation when returning to a remembered place as they took
when originally learning the layout of that place [2,15,6]. A robot homing via
the snapshot model must employ some sort of compass system to maintain, or
compensate for changes, in orientation.

In [8] a neural implementation of the snapshot model was presented. It
showed that the processing necessary to implement the snapshot model could be
achieved using simple neuron-like elements arranged in layers of interconnected
rings. The outermost ring was exposed to a one-dimensional panoramic image of
the homing agent’s environment. Subsequent layers processed this image and ex-
tracted the necessary vectors to achieve homing. Our approach has been directly
inspired by this work. It differs, however, in its use of two-dimensional images,
and hence, two-dimensional processing layers. Also, the use of real-world test
images prompted a number of modifications.

We can not state that our method is a model of any known neural circuit in
an insect’s brain. According to [9], “...nothing is known so far about the neural
circuits that realize visual homing in insect brains.” Still, there are three ways
in which we claim that our model has some measure of biological plausibility.
First, all computations are made via a matrix of locally-connected neuron-like
elements. Second, this matrix has a layered structure which preserves spatial
relationships from layer to layer. This is inspired by the retinotopic structure of
the mammalian visual cortex where neurons on one layer seem to share receptive
fields with the layers below them [5]. Our final claim to biological plausibility
is in regard to the sort of information that our method employs. It operates on
snapshots of a scene, stored in retinal coordinates. This is the primary contention
of the snapshot model [1]. More recent work on wood ants [6] suggests the storage
and use of two-dimensional templates for ant homing. We hope that our model
can help to close the explanatory gap between a complete neural map of the
hardware that implements visual homing in insects and a purely computational
model that cares nothing for the details of implementation.

Our method operates by approximating, for each feature in the snapshot
image, the direction in which that feature has moved in the current image. The
features we use are image corners. The method used to determine the direction
of feature movement is to examine the local gradient, created from features in
the current image, at the position of the snapshot feature. Thus, we refer to our
method here as the Corner Gradient Snapshot Model, or CGSM.

2 Processing Matrix

We will now describe the operation of the processing matrix for CGSM. The
processing that is applied is depicted in figure 1. A summary of this processing
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follows: An input image is fed into the processing matrix. It is first smoothed
and then corners are extracted as distinct features. If the agent is at the goal
then the image of features is stored as the snapshot image. Gradients are formed
around each feature and these gradients are locally compared with features in
the snapshot image to generate vectors which indicate the direction that these
features have moved in. These vectors specifying motion in the image are mapped
onto vectors specifying the corresponding motion of the agent. Finally, this last
set of vectors is summed to create the agent’s overall motion vector. For the
following layer descriptions, the image that is fed in from the previous layer is
referred to as the input image. There is insufficient space to describe exactly how
each layer’s functionality can be distributed across a grid of low-level processing
elements. We hope that the simplicity of each layer will provide the reader with
assurance that this distribution is possible.

Gaussian Filter. Convolves the input image with a 5x5 Gaussian mask.
Corner Extraction. Extracts corners from the input image. The corner detec-

tion scheme we use is known as the Harris detector and is essentially the same
as that presented in [13] (pages 82-85). The required computation is purely
local in scope and requires only the application of some simple hard-coded
algebra to the results of local convolutions and sums.

Local Maxima Extraction. Applies thresholding and non-maxima suppres-
sion to find peaks in the input image [13].

Gradient Formation. Forms decaying gradients around points (maxima) in
the input image. These gradients allow the next layer to detect the direction
in which a corner has moved from its idealized position at a stored snapshot
point. Repeated gaussian filtering and diffusion are two possible ways of
implementing this layer. We opt for a different approach which is quicker to
compute with a serial computer. A single gradient mask is constructed with a
center value of unity that decays out radially according to 1/dζ , where d is the
distance from center and ζ is an arbitrary constant (0 > ζ > 1). Beginning
with a zero image, copies of the mask are centered over each feature. The
value of each pixel in the output image is taken as the maximum value from
all mask copies aligned directly above it. Note that we assume that the agent
moves only horizontally in the plane. Thus, corners in the top half of the
image should never be paired with those in the bottom half. We implicitly
prevent such pairings by forming gradients in the top and bottom halves of
the image separately.

Ring Operator. Applied at every non-zero point in the snapshot image to
generate a vector pointing in the direction that the feature has moved. This
layer actually has two input images: the snapshot image, and the gradient
image. At each non-zero point in the snapshot image, S, a ring of detector
cells surrounding S is employed to detect the approximate direction of the
gradient at that point. Ideally, this direction will point to the matching
feature F . The vector from S to the detector cell with the highest response
yields the uphill direction of the gradient. The vectors generated by this
layer are image vectors in that they describe the motion of features within
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the plane of the image. Image vectors will be indicated below in lower-case
(−→u , −→v , −→

i , and −→e ).
Vector Mapping. Maps image vectors into agent motion vectors. An agent

motion vector describes the motion of the agent within its plane of travel
that would correct (reduce to zero) the corresponding image vector. The
next section provides more detail on this layer. Agent motion vectors will be
indicated in upper-case (−→V , −→

I , and −→
E ).

Vector Sum. Sums the agent motion vectors in the input image to generate a
single vector that will move the agent toward home.

Fig. 1. Processing applied by the CGSM matrix. The input is the image in the upper-
left corner. The output is the movement vector in the shaded circle at the bottom.
Processing layers are shown as boxed text. Dashed arrows relate to the storage and
recall of the snapshot image. The input image was taken from position (270,180) in
the image album discussed in the Results section. This image was taken from a point
directly to the right of the snapshot position (210, 180). Hence, the direction of the
output movement vector is approximately correct.
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2.1 Vector Mapping

Each image vector −→u is attached or associated with the position of a feature S in
the snapshot image. −→v = −−→u is a unit vector which points from C to S, where
C is the position of a feature in the current image. If features are paired correctly
then S and C will both correspond to a single environmental feature F . In this
section we will assume that this is true. The vector mapping layer computes an
agent motion vector −→

V , using −→v and Sx (horizontal position of snapshot feature
within the image). Ideally each −→

V would point directly home. However, there is
insufficient information (e.g. distance to F ) to compute −→

V exactly, therefore we
develop an approximation. First we decompose −→v and −→

V .

−→v = a
−→
i + b−→e (1)

−→
V = α

−→
I + β

−→
E (2)

−→
I is a movement of the agent towards a feature X (the relationship of X to

S and C will be made clear below). With this movement, X will move upwards
in the image according to −→

i . One can imagine walking towards a light and
having the image of that light travel straight upwards in one’s field of vision.
The walking movement is −→

I and the corresponding movement of the light is −→
i .−→

E is a movement of the agent 90o to the right of X. With this movement, X will
move to the left according to −→e . We can similarly imagine walking 90o to the
right of a light and seeing the image of that light travel to the left in our field of
vision. In this case, the walking movement is −→

E and the movement of the light
is −→e . Figure 2 illustrates these relationships. The quantity θX is the horizontal
angular position of X in the image, θX = 2πXx

w , where Xx is the x−coordinate
of X and w is the image width. We can now give the form of −→

i , −→e , −→
I , and −→

E .

−−−→
I(θX) =

[
sin θX

cos θX

] −→
i =

[ 0
1

]
−−−−→
E(θX) =

[
sin (θX+90o)
cos (θX+90o)

] −→e =
[−1

0

]

We wish to have the feature C move in the image toward S. However, the
exact position of C is unknown. We make the assumption that C is not too
distant from S. That is, S ≈ C. Thus, any movement of the agent −→

V that would
make S move along −→v would also make C move along −→v . Of course, S cannot
move at all because it is a feature recalled from memory and is fixed in the
image. The feature X is a stand-in for S intended to make it less awkward to
speak about the movement of S. Summarizing: X = S and X ≈ C.

We now return to find the constants a, b, α, and β in equations 1 and 2.
Given −→

i and −→e we can solve equation 1 for a and b. The solution: a = vy and
b = −vx. We make a further approximation to find α and β. If a is much larger
than b than the difference in vertical image position between S and C is greater
than the difference in horizontal position. In this case, the agent’s distance to
the environmental feature F along −→

I will be greater than the distance along
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Fig. 2. Motion of the image feature X in direction −→v is generated by motion of the
agent in direction −→

V .

−→
E . The opposite will be true if b is much larger than a. Thus, we make the
approximation: α = a and β = b. The final mapping from −→v to −→

V is as follows.

−→
V =

[
vy sin θS − vx sin (θS + 90o)
vy cos θS − vx cos (θS + 90o)

]
(3)

One last caveat remains. The vector −→
i points upwards in figure 2 because

movement in direction −→
I would cause X to sweep upwards. However, if X

had been a feature in the bottom half of the image then X would have swept
downwards. Thus, for features in the bottom half of the image −→

i will be (0,−1).

3 Results

We compare the homing performance of CGSM against an implementation of
the average landmark vector model which was designed to operate on real-world
images [10,12]. The average landmark vector model can be considered a variant
of the snapshot model [9]. This approach extracts features from a 1-D image
that is itself extracted from a 2-D panoramic image. Once the features have
been extracted the average landmark vector model is applied in its original form
[7]. We shall refer to this implementation of the average landmark vector model
as XALV (eXtracted Average Landmark Vector).

The authors of [10] have very kindly made their images available to us and we
use them here to compare our results with theirs. These images were taken from
a grid of positions spaced 30 cm apart within a 9m× 3m area. The environment
was an unmodified entrance hall of a university building. These pictures were
taken by a robot-mounted camera pointed upwards at a conical mirror. The
robot’s orientation was kept constant throughout the image capturing process.
We have taken this album of 300 images and unfolded all of them into rectangular
panoramic images, 180 × 48 in size. Figure 3 shows an example image from the
album and an unfolded version of the same image.



Low-Level Visual Homing 881

(a) Camera image (b) Unfolded image

Fig. 3. The image unfolding process.

Figure 4 shows the homing performance of both the XALV and CGSM models
on the image dataset using the image taken at position (210,180) as the snapshot
image. This image is depicted in figure 3(b). Both models calculate home vectors
for all images. These home vectors are depicted in figure 4. The figure also shows
the success of homing for all grid positions. A pure white cell indicates successful
homing. Homing is considered successful if a path along the home vectors exists
from the position in question to the home position. We calculate a quantity
called the approach index for each position,

approach index =
starting distance − closest distance

starting distance

The quantity starting distance is the euclidean distance from the starting
position to the home position. Closest distance is the smallest distance from the
current position to the home position along the path from the starting position.
The approach index for a successful starting position is 1. If, however, the path
from the starting position leads away or perpendicular to the home position
then the approach index will be 0. If the path approaches the home position
but does not reach it then the approach index will be between 0 and 1. The
purpose of the approach index is to judge the success of homing even if it is not
completely successful. The level of whiteness shown in figure 4 is proportional
to the approach index for the corresponding position.

Figure 4 has a dashed box surrounding the left half of the dataset. This
box encloses the positions used to generate the results presented in [10]. It had
been our intention to replicate these results precisely, however we have not been
able to reconstruct all of the necessary parameters. This being said, our re-
implementation of the XALV model seems to achieve better results. The original
result for positions within the dashed box was that successful homing could
be achieved from 98 of the 150 grid positions. Our re-implementation achieves
successful homing from 136 of these 150 positions. This improvement is eclipsed
by CGSM which achieves perfect homing (150 out of 150) within the dashed box.
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(a) XALV home vectors (b) CGSM home vectors

Fig. 4. Homing maps of the XALV and CGSM models for goal position (210,180).
Home vectors are shown for images taken at corresponding positions. The whiteness
of each position is proportional to that position’s approach index. Positions within the
dashed box area were used for the results presented in [10].

Considering the whole of the dataset, our re-implementation of XALV achieves
142 / 300, while CGSM achieves 176 / 300. Both methods do relatively poorly
in that part of the grid furthest from the home position.

The success of homing to one particular goal position does not tell the whole
story. It may be that one method achieves good results for certain goal positions
but not for others. We have generated 300 homing maps for the 300 image
dataset using each image of the dataset, in turn, as the home position. For each
homing map we count the number of successful homing positions and divide by
300. This is the return ratio. Figure 5 shows the return ratio for all images as
the level of whiteness of each cell. Also shown is the approach index ratio which
is the sum of all approach index values divided by 300.

The average and maximum return ratios are higher for CGSM than for
XALV. The average and maximum approach index ratios are also higher. The
standard deviation of both these ratios is lower for CGSM. For 268 of the 300
homing maps the return ratio is strictly higher for CGSM than for XALV. The
approach index ratio is also strictly higher for 269 of 300 homing maps.

The area that surrounds a goal position from which successful homing can
be achieved is known as the catchment area. We can translate the return ratio
into squared metres to give an idea of the size of the catchment area for these
two models. The average catchment area for CGSM is 14.6 m2 (max. 25.3 m2)
while the average area for XALV is 6.7 m2 (max. 21.5 m2).

3.1 Discussion

Some caveats should first be mentioned in interpreting the results presented
above. Firstly, all images were taken with constant orientation. This is an unre-
alistic scenario for actual robots homing in the real world. Even for robots with
sophisticated odometry and compass systems, errors in orientation are inevitable.
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(a) XALV return ratio (b) CGSM return ratio

(c) XALV approach index ratio (d) CGSM approach index ratio

Fig. 5. Return ratio and approach index maps for XALV and CGSM.

Secondly, it was reported in [10] that changing lighting conditions seriously im-
pacted on the homing performance of XALV. Thus, care must be taken in citing
the catchment areas above as if they referred to actual environment-independent
measures. Yet, it may also be true that the catchment area for this environment
is larger than quoted above. If a set of images covering a larger area was em-
ployed it might be found that the catchment area would extend out further.
Indeed in figure 4(b) the catchment area is prematurely bounded in places by
the edges of the grid.

Our results show superior performance for CGSM over XALV. Both of these
models can be considered variants of the snapshot model. We take the superior
performance of CGSM to mean that snapshot-based homing models can do bet-
ter by utilizing information that is implicitly encoded in both dimensions of an
image seen by a homing agent. Further, we have shown that the success of a
biologically plausible model tested only in simulation [8] can be transferred into
a more realistic test environment where homing is based upon real-world images.

4 Conclusions

We have presented a variant of the snapshot model which is capable of successful
homing using real-world test images. It exhibits improved performance over a
model which did not make use of both input image dimensions. The structure
and nature of our processing matrix was inspired by real biological systems.
Areas for future work include free-roving robotic experiments, analysis of error
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conditions, and the use of alternate features and feature movement detection
methods.
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