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Second-Order Systems

Second-order systems (systems described by second-order DE’s)
have transfer functions of the following form:

G (s) =
b

s2 + as + b

(This TF may also be multiplied by a constant K , which affects
the exact constants of the time-domain signal, but not its form).

Depending upon the factors of the denominator we get four
categories of responses. If the input is the unit step, a pole at the
origin will be added which yields a constant term in the
time-domain.
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Category Poles c(t)

Overdamped Two real: −σ1, −σ2 K1e
−σ1t + K2e

−σ2t

Underdamped Two complex: −σd ± jωd Ae−σd t cos(ωd t − φ)
Undamped Two imaginary: ±jωn A cos(ωnt − φ)
Critically damped Repeated real: −σd K1e

−σd t + K2te
−σd t



We can characterize the response of second-order systems using
two parameters: ωn and ζ

Natural Frequency, ωn: This is the frequency of oscillation
without damping. For example, the natural frequency of an RLC
circuit with the resistor shorted, or of a mechanical system without
dampers. An undamped system is described by its natural
frequency.

Damping Ratio, ζ: This measures the amount of damping. For
underdamped systems ζ lies in the range [0, 1]:
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Damping ratio ζ is defined as follows:

ζ =
Exponential decay frequency

Natural frequency

=
|σd |
ωn

The exponential decay frequency σd is the real-axis component of
the poles of a critically damped or underdamped system.

We now describe the general second-order system in terms of ωn

and ζ.

G (s) =
b

s2 + as + b

In other words we want to get the relationships from ωn and ζ to a
and b. Why? Because ωn and ζ are more meaningful and useful
for design.
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If there were no damping, we would have a pure sinusoidal
response. Thus, the poles would be on the imaginary axis and the
TF would have the form,

G (s) =
b

s2 + b

The poles are at s = ±j
√

b. The natural frequency is governed by
the position of the poles on the imaginary axis. Therefore,
ωn =

√
b.

b = ω2
n
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Consider an underdamped system with poles −σd ± jωd . The
exponential decay frequency is σd . For a general second-order
system the denominator is s2 + as + b and the roots have real part
σd = −a/2.

We apply the definition for ζ:

ζ =
Exponential decay frequency

Natural frequency
=
|σd |
ωn

=
a/2

ωn

Thus, a = 2ζωn. We can now describe the second-order system as
follows:

G (s) =
ω2

n

s2 + 2ζωns + ω2
n

Poles: s1,2 = −ζωn ± ωn

√
ζ2 − 1
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e.g. Describe the category of the following systems:

ωn =
√

b, ζ = a/2
ωn

= a
2
√

b

(a) ζ = 1.155 =⇒ Overdamped

(b) ζ = 1 =⇒ Critically damped

(c) ζ = 0.894 =⇒ Underdamped
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Characteristics of Underdamped Systems

Underdamped systems are very common and we will focus in
particular on designing compensators for underdamped systems
later in the course. Consider the step response for a general
second-order system:

C (s) =
ω2

n

s(s2 + 2ζωns + ω2
n)

=
K1

s
+

K2s + K3s

s(s2 + 2ζωns + ω2
n)

We solve for K1, K2, K3 then take the ILT:

c(t) = 1− e−ζωnt

[
cos(ωn

√
1− ζ2t) +

ζ√
1− ζ2

sin(ωn

√
1− ζ2t)

]
= 1− 1√

1− ζ2
e−ζωnt cos(ωn

√
1− ζ2t − φ)

where φ = tan−1
(
ζ/
√

1− ζ2
)

.

Although the two parameters ωn and ζ completely characterize the
form of the underdamped response, we usually specify the response
with the following derived parameters:

Peak time, Tp: The time required to reach the first
(maximum) peak.

Percent overshoot, %OS : The amount that the response
exceeds the final value at Tp.

Settling time, Ts : The time required for the oscillations to die
down and stay within 2% of the final value.

Rise time, Tr : The time to go from 10% to 90% of the final
value.
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Consider determining Tp, the time required to reach the first peak.
At the peak, the derivative is zero. Thus, we can solve for the
value of t for which ċ(t) = 0. We do this differentiation in the FD:

C (s) =
ω2

n

s(s2 + 2ζωns + ω2
n)

d

dt
c(t) → sC (s) =

ω2
n

s2 + 2ζωns + ω2
n

We now find the ILT to obtain ċ(t) and proceed to find the times
at which ċ(t) = 0.

COVERED ON BOARD

Tp =
π

ωn

√
1− ζ2
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Percent overshoot is defined as follows,

%OS =
cmax − cfinal

cfinal
× 100

If the input is a unit step, cfinal = 1.

c(t) = 1− e−ζωnt

[
cos(ωn

√
1− ζ2t) +

ζ√
1− ζ2

sin(ωn

√
1− ζ2t)

]
cmax = c(Tp) = 1 + e(−ζπ/

√
1−ζ2)

We obtain,

%OS = e(−ζπ/
√

1−ζ2) × 100

This relationship is invertible,

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)
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The settling time Ts is the time required for c(t) to reach and stay
within 2% of the final value.

c(t) = 1− 1√
1− ζ2

e−ζωnt cos(ωn

√
1− ζ2t − φ)

Consider just the exponential envelope of c(t),

1√
1− ζ2

e−ζωnt

Solve for the time at which the envelope decays to 0.02

1√
1− ζ2

e−ζωnt = 0.02

Ts =
− ln(0.02

√
1− ζ2)

ζωn
≈ 4

ζωn

Note that this is a conservative estimate since the sinusoid might
actually reach and stay within 2% earlier.
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There is no analytical form for Tr (time to go from 10% to 90% of
final value). This value can be calculated numerically and has been
formed into a table:
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Relationship to Pole Plot
The following is the pole plot for a general second-order system:

σd = ζωn is the real part of the pole and is called the exponential
decay frequency.

ωd = ωn

√
1− ζ2 is the imaginary part and is called the damped

frequency of oscillation.

Notice the following:

ωn is the distance to the origin

cos θ = ζ

Relationship to Pole Plot

We can relate Tp, Ts , and %OS to the locations of the poles.

Tp =
π

ωn

√
1− ζ2

=
π

ωd
Ts =

4

ζωn
=

4

σd
%OS = f (ζ)

Tp = π/ωd Ts = 4/σd



Design Example
Given the system below, find J and D to yield 20% overshoot and
a settling time of 2 seconds for a step input torque T (t).

The transfer function must first be determined,

G (s) =
1/J

s2 + D
J s + K

J

Relating to the standard form of a second-order systems we have,

ωn =

√
K

J
2ζωn =

D

J

The specification of 20% overshoot allows us to calculate
ζ = 0.456.

The specification of Ts = 2 allows us to calculate ζωn = 2. From
these values we can easily calculate D = 1.04 and J = 0.26.


