Unit 3: Time Response, Part 2: Second-Order Responses

Engineering 5821: Control Systems I

Faculty of Engineering & Applied Science Memorial University of Newfoundland

January 28, 2010

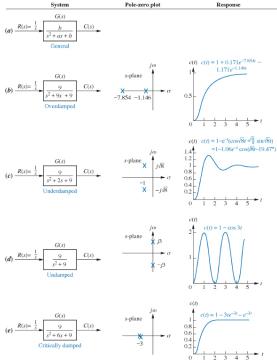
Second-Order Systems

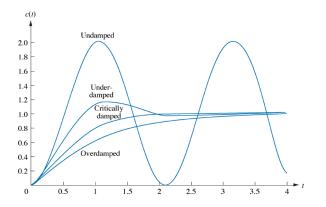
Second-order systems (systems described by second-order DE's) have transfer functions of the following form:

$$G(s) = \frac{b}{s^2 + as + b}$$

(This TF may also be multiplied by a constant K, which affects the exact constants of the time-domain signal, but not its form).

Depending upon the factors of the denominator we get four categories of responses. If the input is the unit step, a pole at the origin will be added which yields a constant term in the time-domain.





Category	Poles	<i>c</i> (<i>t</i>)
Overdamped	Two real: $-\sigma_1$, $-\sigma_2$	$K_1e^{-\sigma_1t}+K_2e^{-\sigma_2t}$
Underdamped	Two complex: $-\sigma_d \pm j\omega_d$	$Ae^{-\sigma_d t}\cos(\omega_d t - \phi)$
Undamped	Two imaginary: $\pm j\omega_n$	$A\cos(\omega_n t - \phi)$
Critically damped	Repeated real: $-\sigma_d$	$K_1e^{-\sigma_d t} + K_2te^{-\sigma_d t}$

We can characterize the response of second-order systems using two parameters: ω_n and ζ

Natural Frequency, ω_n : This is the frequency of oscillation without damping. For example, the natural frequency of an RLC circuit with the resistor shorted, or of a mechanical system without dampers. An undamped system is described by its natural frequency.

Damping Ratio, ζ : This measures the amount of damping. For underdamped systems ζ lies in the range [0,1]:



Damping ratio ζ is defined as follows:

$$\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency}}$$

$$= \frac{|\sigma_d|}{\omega_n}$$

The exponential decay frequency σ_d is the real-axis component of the poles of a critically damped or underdamped system.

We now describe the general second-order system in terms of ω_n and ζ .

$$G(s) = \frac{b}{s^2 + as + b}$$

In other words we want to get the relationships from ω_n and ζ to a and b. Why? Because ω_n and ζ are more meaningful and useful for design.

If there were no damping, we would have a pure sinusoidal response. Thus, the poles would be on the imaginary axis and the TF would have the form,

$$G(s) = \frac{b}{s^2 + b}$$

The poles are at $s=\pm j\sqrt{b}$. The natural frequency is governed by the position of the poles on the imaginary axis. Therefore, $\omega_n=\sqrt{b}$.

$$b = \omega_n^2$$

Consider an underdamped system with poles $-\sigma_d \pm j\omega_d$. The exponential decay frequency is σ_d . For a general second-order system the denominator is $s^2 + as + b$ and the roots have real part $\sigma_d = -a/2$.

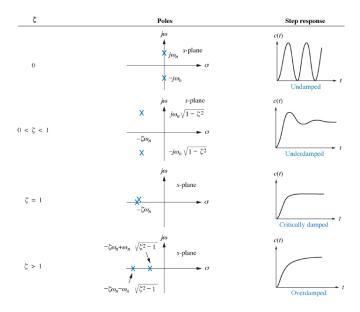
We apply the definition for ζ :

$$\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency}} = \frac{|\sigma_d|}{\omega_n} = \frac{a/2}{\omega_n}$$

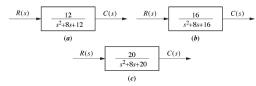
Thus, $a=2\zeta\omega_n$. We can now describe the second-order system as follows:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Poles:
$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$



e.g. Describe the category of the following systems:



$$\omega_n = \sqrt{b}$$
, $\zeta = \frac{a/2}{\omega_n} = \frac{a}{2\sqrt{b}}$

- (a) $\zeta = 1.155 \implies \text{Overdamped}$
- (b) $\zeta=1$ \Longrightarrow Critically damped
- (c) $\zeta = 0.894 \implies \mathsf{Underdamped}$

Characteristics of Underdamped Systems

Underdamped systems are very common and we will focus in particular on designing compensators for underdamped systems later in the course. Consider the step response for a general second-order system:

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$
$$= \frac{K_1}{s} + \frac{K_2 s + K_3 s}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

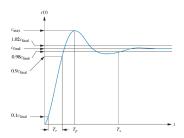
We solve for K_1 , K_2 , K_3 then take the ILT:

$$c(t) = 1 - e^{-\zeta \omega_n t} \left[\cos(\omega_n \sqrt{1 - \zeta^2} t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2} t) \right]$$
$$= 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \cos(\omega_n \sqrt{1 - \zeta^2} t - \phi)$$

where
$$\phi = \tan^{-1}\left(\zeta/\sqrt{1-\zeta^2}\right)$$
.

Although the two parameters ω_n and ζ completely characterize the form of the underdamped response, we usually specify the response with the following derived parameters:

- Peak time, T_p : The time required to reach the first (maximum) peak.
- Percent overshoot, %OS: The amount that the response exceeds the final value at T_p .
- Settling time, T_s : The time required for the oscillations to die down and stay within 2% of the final value.
- Rise time, T_r : The time to go from 10% to 90% of the final value.



Consider determining T_p , the time required to reach the first peak. At the peak, the derivative is zero. Thus, we can solve for the value of t for which $\dot{c}(t) = 0$. We do this differentiation in the FD:

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$
$$\frac{d}{dt}c(t) \rightarrow sC(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

We now find the ILT to obtain $\dot{c}(t)$ and proceed to find the times at which $\dot{c}(t)=0$.

COVERED ON BOARD

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Percent overshoot is defined as follows,

$$%OS = \frac{c_{max} - c_{final}}{c_{final}} \times 100$$

If the input is a unit step, $c_{final} = 1$.

$$\begin{array}{lcl} c(t) & = & 1 - \mathrm{e}^{-\zeta\omega_n t} \left[\cos(\omega_n \sqrt{1 - \zeta^2} t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2} t) \right] \\ \\ c_{max} & = & c(T_p) = 1 + \mathrm{e}^{(-\zeta\pi/\sqrt{1 - \zeta^2})} \end{array}$$

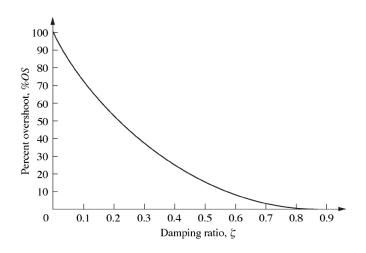
We obtain,

$$\%OS = e^{(-\zeta\pi/\sqrt{1-\zeta^2})} \times 100$$

This relationship is invertible,

$$\zeta = \frac{-\ln(\%OS/100)}{\sqrt{\pi^2 + \ln^2(\%OS/100)}}$$

ENGI 5821



The settling time T_s is the time required for c(t) to reach and stay within 2% of the final value.

$$c(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \cos(\omega_n \sqrt{1 - \zeta^2 t} - \phi)$$

Consider just the exponential envelope of c(t),

$$\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}$$

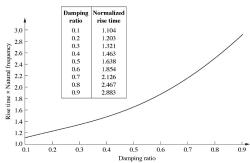
Solve for the time at which the envelope decays to 0.02

$$\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}=0.02$$

$$T_s = \frac{-\ln(0.02\sqrt{1-\zeta^2})}{\zeta\omega_n} \approx \frac{4}{\zeta\omega_n}$$

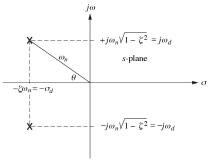
Note that this is a conservative estimate since the sinusoid might actually reach and stay within 2% earlier.

There is no analytical form for T_r (time to go from 10% to 90% of final value). This value can be calculated numerically and has been formed into a table:



Relationship to Pole Plot

The following is the pole plot for a general second-order system:



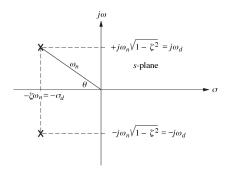
 $\sigma_d = \zeta \omega_n$ is the real part of the pole and is called the *exponential* decay frequency.

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$
 is the imaginary part and is called the *damped* frequency of oscillation.

Notice the following:

- ω_n is the distance to the origin
- $\cos \theta = \zeta$

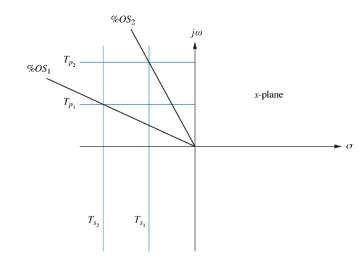
Relationship to Pole Plot

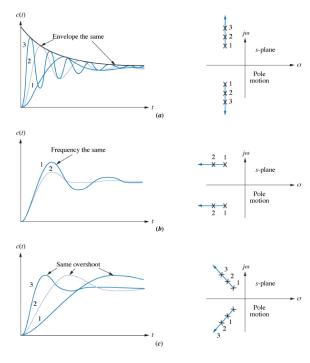


We can relate T_p , T_s , and %OS to the locations of the poles.

$$T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}} = \frac{\pi}{\omega_d}$$
 $T_s = \frac{4}{\zeta \omega_n} = \frac{4}{\sigma_d}$ %OS = $f(\zeta)$

$$T_p = \pi/\omega_d$$
 $T_s = 4/\sigma_d$





Design Example

Given the system below, find J and D to yield 20% overshoot and a settling time of 2 seconds for a step input torque T(t).

$$K = 5 \text{ N-m/rad}$$

The transfer function must first be determined,

$$G(s) = \frac{1/J}{s^2 + \frac{D}{J}s + \frac{K}{J}}$$

Relating to the standard form of a second-order systems we have,

$$\omega_n = \sqrt{\frac{K}{I}}$$
 $2\zeta\omega_n = \frac{D}{I}$

The specification of 20% overshoot allows us to calculate $\zeta=0.456.$

The specification of $T_s=2$ allows us to calculate $\zeta\omega_n=2$. From these values we can easily calculate D=1.04 and J=0.26.