

0	ly, the concept of vector spaces applies to non-vectors.
Anything t	hat has definitions for addition and scalar mul-
tiplication	that satisfy the closure property of vector spaces qualifies.

Example: Let P_n be all polynomials of degree at most n. (These can be viewed as functions $\mathbb{R} \to \mathbb{R}$.)

Specific Example: P_5 is every function we can write as

$$f(t) = a_5t^5 + a_4t^4 + a_3t^3 + a_2t^2 + a_1t^1 + a_0$$

Can add any two of these or multiply by a scalar and you still get a member of P_5 .

Example: if

$$f(t) = 3t^5 - 2t^4 + t^3 + 4t^2 + t^1 - 3$$

then

Vector Space

Matrix-vector multiplication

 $5f(t) = 15t^{5} - 10t^{4} + 5t^{3} + 20t^{2} + 5t^{1} - 15$

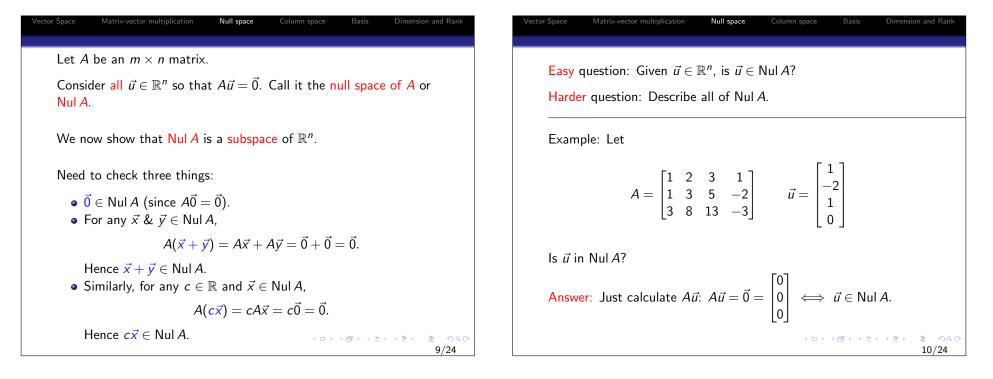
Dofini	tion: Subspace				
•••	ose that $\mathbb V$ is a vecto	•	$\mathbb{U} \subset \mathbb{V}$. Ih	at ıs, ∪	IS
contai	ned in $\mathbb V$. Suppose t	further			
• Ō	$i \in \mathbb{U}$,				
• fo	or all $ec{x},ec{y}\in\mathbb{U}$, the s	sum $\vec{x} + \vec{y}$	$\in \mathbb{U}$		
• fo	or all $c\in \mathbb{R}$ and $ec{x}\in$	$\mathbb U$, the sca	lar product o	$\vec{x} \in \mathbb{U}$	
Then	${\mathbb U}$ is a subspace of ${\mathbb V}$	V			
Theor	em				

Example: Let P_5 be the vector space of all 5^{th} degree polynomials. P_4 is a subspace of P_5 .

Vector Space Matrix-vector multiplication Null space Column space Basis Dimension and Rank	Vector Space Matrix-vector multiplication Null space Column space Basis Dimension and Rank
non-Example Let $\mathbb{U} \subset \mathbb{R}^2$ be the set of all $\begin{bmatrix} x \\ y \end{bmatrix}$ so that $x \ge 0, y \ge 0$. Check if it's a subspace of \mathbb{R}^2 : • $\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{U}$ \not{Z} • Suppose $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{U}$ and $\begin{bmatrix} x' \\ y' \end{bmatrix} \in \mathbb{U}$. Then $x, x' \ge 0 \implies x + x' \ge 0$ and $y, y' \ge 0 \implies y + y' \ge 0$. Hence $\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x + x' \\ y + y' \end{bmatrix} \in \mathbb{U}$ \not{Z}	Suppose \mathbb{V} is any vector space and $\vec{x_1}, \vec{x_2}, \dots, \vec{x_k} \in \mathbb{V}$. Definition: Span (we have seen this before) Span{ $\vec{x_1}, \vec{x_2}, \dots, \vec{x_k}$ } is the set of all elements of \mathbb{V} that can be written as a linear combination of { $\vec{x_1}, \vec{x_2}, \dots, \vec{x_k}$ }. Example: In the vector space \mathbb{R}^3 Span{[1 0 0] ^T , [0 1 0] ^T } is the set of all vectors in the xy -plane, which is a subspace of \mathbb{R}^3 .
$\begin{bmatrix} y \\ y' \end{bmatrix} \begin{bmatrix} y' \\ y' \end{bmatrix} \begin{bmatrix} y + y' \end{bmatrix}$ • But, sadly, although $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{U}$, the scalar product $-1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \notin \mathbb{U}$. \bigcirc Since we have shown some example does not satisfy one of the criteria, \mathbb{U} is not a subspace. $\square = \square \square$	Theorem Span $\{\vec{x_1}, \vec{x_2}, \dots, \vec{x_k}\}$ is always a subspace of \mathbb{V} $(\square \lor (\square \lor \square $

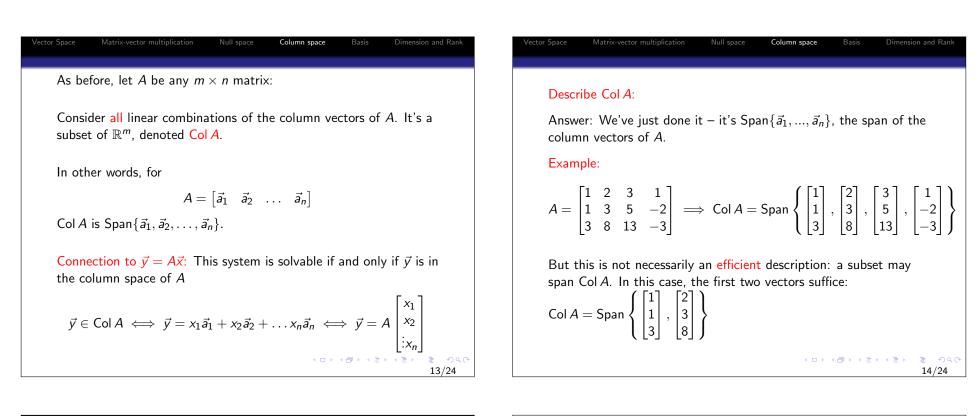
Vector Space Matrix-vector multiplication (Null space) Column space (Basis) Dimension and Rank We can view the multiplication of a $m \times n$ matrix A by a $n \times 1$ vector \vec{x} in two distinct ways. Dot product with rows: Each row of $\vec{y} = A\vec{x}$ consists of the dot product of the corresponding row of A with \vec{x} . Let the m rows of A be the \vec{r} vectors below. $A = \begin{bmatrix} \vec{r_1} \\ \vec{r_2} \\ \vdots \\ \vec{r_m} \end{bmatrix}$ $\vec{y} = \begin{bmatrix} \vec{r_1} \vec{x} \\ \vec{r_2} \vec{x} \\ \vdots \\ \vec{r_m} \vec{x} \end{bmatrix}$ Meeter Space Matrix vector multipleation (values) and the product of the contract of the columns. The resultant vector $\vec{y} = A\vec{x}$ consists of the combination of columns of A as given by the elements of \vec{x} . Let the n columns of A be the \vec{c} vectors below. $A = \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \dots & \vec{c}_n \end{bmatrix}$ $\vec{y} = \vec{c}_1 x_1 + \vec{c}_2 x_2 + \dots + \vec{c}_n x_n$

8/24



ector Space	Matrix-vector multiplication	Null space	Column space	Basis	Dimension and Rank
Here					
$A\vec{u} =$	$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$	$\begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	$\cdot 1 - 2 \cdot 2 + $ $\cdot 1 - 2 \cdot 3 + $ $\cdot 3 - 2 \cdot 8 + $	$3 \cdot 1 + 1$ $5 \cdot 1 - 2$ $13 \cdot 1 - 3$	$\begin{bmatrix} \cdot & 0 \\ 2 \cdot & 0 \\ 3 \cdot & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
Hence	$\vec{u} \in Nul A.$				
	question: Describ $ec{ u}_k \in \operatorname{Nul} A$ so that			tion: Fir	nd
Fancy	description of an o	old problem	we know how	ı to do:	
Solve	the homogeneous s	system of line	ear equations	given b	$A\vec{x} = \vec{0}.$
			< □ >	< ₽ < ₹	×≣> ≣ ∽۹@ 11/24

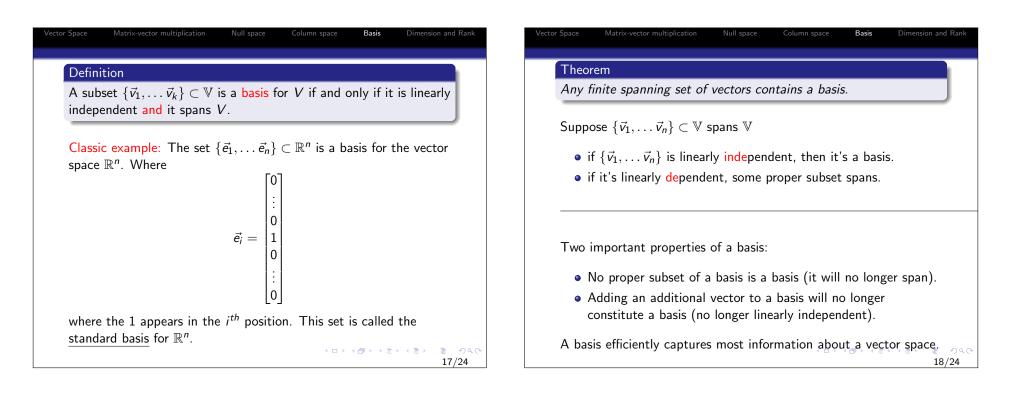
Vector Space	Matrix-vector multiplication	Null space	Column space	Basis	Dimension	and Rank
Step 1	Convert A to reduc	ed echelon	form:			
5 0	$ \begin{bmatrix} 3 & 1 \\ 5 & -2 \\ 13 & -3 \end{bmatrix} \rightarrow{1^{st} col.} $ is Identify the free var		•]	Lo	$\begin{array}{ccc} 0 & -1 \\ 1 & 2 \\ 0 & 0 \end{array}$	$\begin{bmatrix} 7 \\ -3 \\ 0 \end{bmatrix}$
Step 3	Convert to vector e $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_3 - 7 \\ -2x_3 + \\ x_3 \\ x_4 \end{bmatrix}$	7	$3\begin{bmatrix}1\\-2\\1\\0\end{bmatrix}+x_4$	$\begin{bmatrix} -7\\3\\0\\1\end{bmatrix}$		
Then N	$\operatorname{Nul} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right\}$	$\left , \begin{bmatrix} -7\\ 3\\ 0\\ 1 \end{bmatrix}\right\}$				
This sp	panning set is <mark>efficien</mark>	t: no prope	er subset spa	ns Nul		12/24



ector Space Matrix-vector multiplication Null space Column space Basis Dimension and Rank	Example: Let
Harder question: Given $\vec{u} \in \mathbb{R}^m$, is $\vec{u} \in \text{Col } A$. Translation: Are there $\{x_1, \dots x_n\}$ so that	Is $\vec{u} \in \text{Col } A$?
$\vec{u} = x_1 \vec{a}_1 + \ldots + x_n \vec{a}_n?$	
Equivalently: Is there a vector $ec{x} \in \mathbb{R}^n$ so that $Aec{x} = ec{u}?$	$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & - \\ 3 & 8 & 13 & - \end{bmatrix}$
Solution: Reduce augmented matrix $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n & \vec{u} \end{bmatrix}$ to echelon form and see if the equations are consistent:	The last colum consistent. Ho then we would $\vec{u} \in \text{Col } A$.
(D) (B) (E) (E) (C) 15/24	Additional pay first two <mark>of the</mark>

Example: Let
$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix} \qquad \vec{u} = \begin{bmatrix} 3 \\ 4 \\ 11 \end{bmatrix}$
Is $\vec{u} \in \text{Col } A$?
$\begin{bmatrix} 1 & 2 & 3 & 1 & & 3 \\ 1 & 3 & 5 & -2 & & 4 \\ 3 & 8 & 13 & -3 & & 11 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & & 3 \\ 0 & 1 & 2 & -3 & & 1 \\ 0 & 2 & 4 & -6 & & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & & 3 \\ 0 & 1 & 2 & -3 & & 1 \\ 0 & 0 & 0 & 0 & & 0 \end{bmatrix}$
The last column says that $0x_1 + 0x_2 + 0x_3 + 0x_4 = 0u_3$ which is consistent. However, if the bottom-right entry had been non-zero then we would have had an inconsistent equation. So in this case $\vec{u} \in \text{Col } A$.

Additional payoff: First two columns are the pivot columns \implies first two of the original columns span Col A.



Example: Consider the set of 2-vectors $S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right\}$ Is this set a basis for \mathbb{R}^2 ? No. This set is not independent. But any pair of vectors from <i>S</i> would form a basis for \mathbb{R}^2 .	The dimension of a subspace is the number of vectors needed to form a basis. Its clear that the dimension of \mathbb{R}^n is <i>n</i> . Any vector in \mathbb{R}^n can be written as a combination of <i>n</i> basis vectors. The standard basis for \mathbb{R}^n is the set $\{e_1, e_2, \ldots, e_n\}$. Other basis vectors are possible, but a potential set must contain <i>n</i> independent vectors in order to qualify as a basis.
<□> ₽ ₽ ₽ ₽ ₽ ₽	<ロト < 合ト < 注ト < 注ト < 注 > 注 の Q (で 20/24

Dimension and Rank

Basis

Dimension and Rank

Vector Space Matrix-vector multiplication Null space Column space Basis Dimension and Rank

As we have seen, for a matrix A there are two particularly interesting subspaces:

- The null space, Nul A, consisting of all solutions to $A\vec{x} = 0$
- The column space, Col A, consisting of all linear combinations of the columns of A. If there is a solution to $A\vec{x} = \vec{y}$ then \vec{y} must lie in the column space of A (i.e. it must be some linear combination of the columns of A).

The dimension of Nul A is known as nullity(A).

The dimension of $\operatorname{Col} A$ is rank(A). In fact, the rank is also the dimension of the row space.

Sylvester's Law of Nullity

For the *mxn* matrix *A*:

rank(A) + nullity(A) = n

Vector Space	Matrix-vector multiplication	Null space	Column space	Basis	Dimension and Rank
Combi	ning: $\vec{x} \in \operatorname{Nul} A \Leftarrow$	⇒			
	$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_3 \\ -2x \\ x_3 \end{bmatrix}$	$\begin{bmatrix} -7x_4 \\ x_3 + 3x_4 \\ x_3 \\ x_4 \end{bmatrix} =$	$= x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} +$	$x_4 \begin{bmatrix} -7\\ 3\\ 0\\ 1 \end{bmatrix}$	
Hence	$\operatorname{Nul} A = \operatorname{Span} \left\{ \begin{bmatrix} 1\\ -\\ 1\\ 0 \end{bmatrix} \right.$	$\begin{bmatrix} -7\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} -7\\3\\0\\1 \end{bmatrix}$	}		

The bottom rows show that these vectors are linearly independent, so they are a basis for Nul A. Since there are two, nullity(A) = 2.

21/24

Vector Space Matrix-vector multiplication Null space Column space Basis Dimension and Ra

Example: Given a matrix A find a basis for its null space and the dimension of that basis.

Answer: We've done this! Nul A, can be found via reduced echelon form.

Previous example: Let

	[1	2	3	1		[1	0	$^{-1}$	7]
A =	1	3	5	-2	\rightarrow	0	1	2	-3
A =	3	8	13	-3		0	0	0	0

Nul A spanned by one vector for each free variable:

Here the free variables are x_3, x_4 . First equation gives:

$$x_1 - x_3 + 7x_4 = 0 \implies x_1 = x_3 - 7x_4$$

Second equation gives:

$$x_2 + 2x_3 - 3x_4 = 0 \implies x_2 = -2x_3 + 3x_4$$

Example: Given a matrix A find a basis for its column space and its dimension.

Step 1: Reduce to echelon form.

Step 2: Identify the pivot columns

Step 3: These columns of the original matrix! are a basis for Col A.

			-	1]		1 -			7]	
A =	1	3	5	-2	ightarrow reduce	0	1	2	-3	
				-3		lo	0	0	0	

Pivot columns are first and second columns

First and second columns of original A span Col A:

 $\operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\3\\8 \end{bmatrix}, \begin{bmatrix} 2\\3\\8 \end{bmatrix} \right\}$ These vectors form a basis for Col A. Note that Sylvester's Law of Nullity is satisfied: $\operatorname{rank}(A) + \operatorname{nullity}(A) = n$