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Definition: Vector Space

A vector space is a set V which is closed under the following
operations (where ~x , ~y , ~z ∈ V and c , t ∈ R):

vector addition: ~x + ~y ∈ V
scalar multiplication: c~x ∈ V

The following properties hold for any vector space:

1 ~x + ~y ∈ V
2 ~x + ~y = ~y + ~x
3 (~x + ~y) + ~z = ~x + (~y + ~z)
4 There is an element ~0 ∈ V so that ~x +~0 = ~x = ~0 + ~x
5 For each ~x ∈ V there is a ~−x ∈ V so that ~x + ( ~−x) = ~0
6 c~x ∈ V
7 c(~x + ~y) = c~x + c~y
8 (c + t)~x = c~x + t~x
9 c(t~x) = (ct)~x
10 1~x = ~x 2/24
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Interestingly, the concept of vector spaces applies to non-vectors.
Anything that has definitions for addition and scalar mul-
tiplication that satisfy the closure property of vector spaces qualifies.

Example: Let Pn be all polynomials of degree at most n. (These
can be viewed as functions R→ R.)

Specific Example: P5 is every function we can write as

f (t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t
1 + a0

Can add any two of these or multiply by a scalar and you still get a
member of P5.

Example: if

f (t) = 3t5 − 2t4 + t3 + 4t2 + t1 − 3

then
5f (t) = 15t5 − 10t4 + 5t3 + 20t2 + 5t1 − 15
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Definition: Subspace

Suppose that V is a vector space and U ⊂ V. That is, U is
contained in V. Suppose further

~0 ∈ U,

for all ~x , ~y ∈ U, the sum ~x + ~y ∈ U
for all c ∈ R and ~x ∈ U, the scalar product c~x ∈ U

Then U is a subspace of V

Theorem

Any subspace of a vector space is itself a vector space.

Example: Let P5 be the vector space of all 5th degree polynomials.
P4 is a subspace of P5.
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non-Example Let U ⊂ R2 be the set of all

[
x
y

]
so that

x ≥ 0, y ≥ 0. Check if it’s a subspace of R2:

~0 =

[
0
0

]
∈ U V

Suppose

[
x
y

]
∈ U and

[
x ′

y ′

]
∈ U. Then

x , x ′ ≥ 0 =⇒ x + x ′ ≥ 0 and y , y ′ ≥ 0 =⇒ y + y ′ ≥ 0.

Hence

[
x
y

]
+

[
x ′

y ′

]
=

[
x + x ′

y + y ′

]
∈ U V

But, sadly, although

[
1
1

]
∈ U, the scalar product

−1 ·
[

1
1

]
=

[
−1
−1

]
/∈ U. §

Since we have shown some example does not satisfy one of
the criteria, U is not a subspace.
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Suppose V is any vector space and ~x1, ~x2, . . . , ~xk ∈ V.

Definition: Span (we have seen this before)

Span{~x1, ~x2, . . . , ~xk} is the set of all elements of V that can be
written as a linear combination of {~x1, ~x2, . . . , ~xk}.

Example: In the vector space R3 Span{[1 0 0]T , [0 1 0]T} is the
set of all vectors in the xy−plane, which is a subspace of R3.

Theorem

Span{~x1, ~x2, . . . , ~xk} is always a subspace of V
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We can view the multiplication of a m × n matrix A by a n × 1
vector ~x in two distinct ways.

Dot product with rows: Each row of ~y = A~x consists of the dot
product of the corresponding row of A with ~x . Let the m rows of A
be the ~r vectors below.

A =




~r1
~r2
. . .
~rm




~y =




~r1~x
~r2~x
. . .
~rm~x



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Combination of the columns: The resultant vector ~y = A~x consists
of the combination of columns of A as given by the elements of ~x .
Let the n columns of A be the ~c vectors below.

A =
[
~c1 ~c2 . . . ~cn

]

~y = ~c1x1 + ~c2x2 + . . . ~cnxn
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Let A be an m × n matrix.

Consider all ~u ∈ Rn so that A~u = ~0. Call it the null space of A or
NulA.

We now show that NulA is a subspace of Rn.

Need to check three things:

~0 ∈ NulA (since A~0 = ~0).

For any ~x & ~y ∈ NulA,

A(~x + ~y) = A~x + A~y = ~0 +~0 = ~0.

Hence ~x + ~y ∈ NulA.

Similarly, for any c ∈ R and ~x ∈ NulA,

A(c~x) = cA~x = c~0 = ~0.

Hence c~x ∈ NulA.
9/24
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Easy question: Given ~u ∈ Rn, is ~u ∈ NulA?

Harder question: Describe all of NulA.

Example: Let

A =




1 2 3 1
1 3 5 −2
3 8 13 −3


 ~u =




1
−2
1
0




Is ~u in NulA?

Answer: Just calculate A~u: A~u = ~0 =




0
0
0


 ⇐⇒ ~u ∈ NulA.
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Here

A~u =




1 2 3 1
1 3 5 −2
3 8 13 −3







1
−2
1
0


 =




1 · 1− 2 · 2 + 3 · 1 + 1 · 0
1 · 1− 2 · 3 + 5 · 1− 2 · 0

1 · 3− 2 · 8 + 13 · 1− 3 · 0


 =




0
0
0




Hence ~u ∈ NulA.

Harder question: Describe all of NulA. Interpretation: Find
~u1, ...~uk ∈ NulA so that Span{~u1, ...~uk} = NulA

Fancy description of an old problem we know how to do:

Solve the homogeneous system of linear equations given by A~x = ~0.
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Step 1: Convert A to reduced echelon form:



1 2 3 1
1 3 5 −2
3 8 13 −3


→1st col .




1 2 3 1
0 1 2 −3
0 2 4 −6


→2nd col .




1 0 −1 7
0 1 2 −3
0 0 0 0




Step 2: Identify the free variables. Here they are x3, x4.

Step 3: Convert to vector equation:



x1
x2
x3
x4


 =




x3 − 7x4
−2x3 + 3x4

x3
x4


 = x3




1
−2
1
0


+ x4




−7
3
0
1




Then NulA = Span








1
−2
1
0


 ,




−7
3
0
1








This spanning set is efficient: no proper subset spans NulA.
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As before, let A be any m × n matrix:

Consider all linear combinations of the column vectors of A. It’s a
subset of Rm, denoted ColA.

In other words, for

A =
[
~a1 ~a2 . . . ~an

]

ColA is Span{~a1, ~a2, . . . , ~an}.

Connection to ~y = A~x : This system is solvable if and only if ~y is in
the column space of A

~y ∈ ColA ⇐⇒ ~y = x1~a1 + x2~a2 + . . . xn~an ⇐⇒ ~y = A



x1
x2
...xn



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Describe ColA:

Answer: We’ve just done it – it’s Span{~a1, ..., ~an}, the span of the
column vectors of A.

Example:

A =




1 2 3 1
1 3 5 −2
3 8 13 −3


 =⇒ ColA = Span








1
1
3


 ,




2
3
8


 ,




3
5

13


 ,




1
−2
−3







But this is not necessarily an efficient description: a subset may
span ColA. In this case, the first two vectors suffice:

ColA = Span








1
1
3


 ,




2
3
8






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Harder question: Given ~u ∈ Rm, is ~u ∈ ColA.

Translation: Are there {x1, . . . xn} so that

~u = x1~a1 + . . . + xn~an?

Equivalently:

Is there a vector ~x ∈ Rn so that A~x = ~u?

Solution: Reduce augmented matrix
[
~a1 ~a2 . . . ~an ~u

]
to

echelon form and see if the equations are consistent:
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Example: Let

A =




1 2 3 1
1 3 5 −2
3 8 13 −3


 ~u =




3
4

11




Is ~u ∈ ColA?

Solution



1 2 3 1 3
1 3 5 −2 4
3 8 13 −3 11


→




1 2 3 1 3
0 1 2 −3 1
0 2 4 −6 2


→




1 2 3 1 3
0 1 2 −3 1
0 0 0 0 0




The last column says that 0x1 + 0x2 + 0x3 + 0x4 = 0u3 which is
consistent. However, if the bottom-right entry had been non-zero
then we would have had an inconsistent equation. So in this case
~u ∈ ColA.

Additional payoff: First two columns are the pivot columns =⇒
first two of the original columns span ColA.
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Definition

A subset {~v1, . . . ~vk} ⊂ V is a basis for V if and only if it is linearly
independent and it spans V .

Classic example: The set {~e1, . . . ~en} ⊂ Rn is a basis for the vector
space Rn. Where

~ei =




0
...
0
1
0
...
0




where the 1 appears in the i th position. This set is called the
standard basis for Rn.
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Theorem

Any finite spanning set of vectors contains a basis.

Suppose {~v1, . . . ~vn} ⊂ V spans V

if {~v1, . . . ~vn} is linearly independent, then it’s a basis.

if it’s linearly dependent, some proper subset spans.

Two important properties of a basis:

No proper subset of a basis is a basis (it will no longer span).

Adding an additional vector to a basis will no longer
constitute a basis (no longer linearly independent).

A basis efficiently captures most information about a vector space.
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Example:

Consider the set of 2-vectors

S =

{[
1
2

]
,

[
2
1

]
,

[
3
3

]}

Is this set a basis for R2?

No. This set is not independent. But any pair of vectors from S
would form a basis for R2.
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The dimension of a subspace is the number of vectors needed to
form a basis.

Its clear that the dimension of Rn is n. Any vector in Rn can be
written as a combination of n basis vectors. The standard basis for
Rn is the set {e1, e2, . . . , en}. Other basis vectors are possible, but
a potential set must contain n independent vectors in order to
qualify as a basis.
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As we have seen, for a matrix A there are two particularly
interesting subspaces:

The null space, NulA, consisting of all solutions to A~x = 0
The column space, ColA, consisting of all linear combinations
of the columns of A. If there is a solution to A~x = ~y then ~y
must lie in the column space of A (i.e. it must be some linear
combination of the columns of A).

The dimension of NulA is known as nullity(A).

The dimension of ColA is rank(A). In fact, the rank is also the
dimension of the row space.

Sylvester’s Law of Nullity

For the mxn matrix A:

rank(A) + nullity(A) = n

21/24
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Example: Given a matrix A find a basis for its null space and the
dimension of that basis.

Answer: We’ve done this! NulA, can be found via reduced echelon
form.

Previous example: Let

A =




1 2 3 1
1 3 5 −2
3 8 13 −3


→




1 0 −1 7
0 1 2 −3
0 0 0 0




NulA spanned by one vector for each free variable:

Here the free variables are x3, x4. First equation gives:

x1 − x3 + 7x4 = 0 =⇒ x1 = x3 − 7x4

Second equation gives:

x2 + 2x3 − 3x4 = 0 =⇒ x2 = −2x3 + 3x4
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Combining: ~x ∈ NulA ⇐⇒

~x =




x1
x2
x3
x4


 =




x3 − 7x4
−2x3 + 3x4

x3
x4


 = x3




1
−2
1
0


+ x4




−7
3
0
1




Hence NulA = Span








1
−2
1
0


 ,




−7
3
0
1








The bottom rows show that these vectors are linearly independent,
so they are a basis for NulA. Since there are two, nullity(A) = 2.
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Example: Given a matrix A find a basis for its column space and
its dimension.

Step 1: Reduce to echelon form.

Step 2: Identify the pivot columns

Step 3: These columns of the original matrix! are a basis for ColA.

A =




1 2 3 1
1 3 5 −2
3 8 13 −3


→row reduce




1 0 −1 7
0 1 2 −3
0 0 0 0




Pivot columns are first and second columns

First and second columns of original A span ColA:

ColA = Span








1
1
3


 ,




2
3
8





 These vectors form a basis for ColA.

Note that Sylvester’s Law of Nullity is satisfied:
rank(A) + nullity(A) = n


