ENGI 7825: Linear Algebra Review Subpaces, Basis, Dimension, and Rank

Adapted from Notes Developed by Martin Scharlemann

June 16, 2016

Definition: Vector Space

A vector space is a set \mathbb{V} which is closed under the following operations (where $\vec{x}, \vec{y}, \vec{z} \in \mathbb{V}$ and $c, t \in \mathbb{R}$):

- vector addition: $\vec{x}+\vec{y} \in \mathbb{V}$
- scalar multiplication: $c \vec{x} \in \mathbb{V}$

The following properties hold for any vector space:
(1) $\vec{x}+\vec{y} \in \mathbb{V}$
(2) $\vec{x}+\vec{y}=\vec{y}+\vec{x}$
(3) $(\vec{x}+\vec{y})+\vec{z}=\vec{x}+(\vec{y}+\vec{z})$
(9) There is an element $\overrightarrow{0} \in \mathbb{V}$ so that $\vec{x}+\overrightarrow{0}=\vec{x}=\overrightarrow{0}+\vec{x}$
(0) For each $\vec{x} \in \mathbb{V}$ there is a $\overrightarrow{-x} \in \mathbb{V}$ so that $\vec{x}+(-\vec{x})=\overrightarrow{0}$
(0) $c \vec{x} \in \mathbb{V}$
(1) $c(\vec{x}+\vec{y})=c \vec{x}+c \vec{y}$
(8) $(c+t) \vec{x}=c \vec{x}+t \vec{x}$
(-) $c(t \vec{x})=(c t) \vec{x}$
(10) $1 \vec{x}=\vec{x}$

Interestingly, the concept of vector spaces applies to non-vectors. Anything that has definitions for addition and scalar multiplication that satisfy the closure property of vector spaces qualifies.

Example: Let P_{n} be all polynomials of degree at most n. (These can be viewed as functions $\mathbb{R} \rightarrow \mathbb{R}$.)

Specific Example: P_{5} is every function we can write as

$$
f(t)=a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t^{1}+a_{0}
$$

Can add any two of these or multiply by a scalar and you still get a member of P_{5}.

Example: if

$$
f(t)=3 t^{5}-2 t^{4}+t^{3}+4 t^{2}+t^{1}-3
$$

then

$$
5 f(t)=15 t^{5}-10 t^{4}+5 t^{3}+20 t^{2}+5 t^{1}-15
$$

Definition: Subspace

Suppose that \mathbb{V} is a vector space and $\mathbb{U} \subset \mathbb{V}$. That is, \mathbb{U} is contained in \mathbb{V}. Suppose further

- $\overrightarrow{0} \in \mathbb{U}$,
- for all $\vec{x}, \vec{y} \in \mathbb{U}$, the sum $\vec{x}+\vec{y} \in \mathbb{U}$
- for all $c \in \mathbb{R}$ and $\vec{x} \in \mathbb{U}$, the scalar product $c \vec{x} \in \mathbb{U}$

Then \mathbb{U} is a subspace of \mathbb{V}

Theorem

Any subspace of a vector space is itself a vector space.

Example: Let P_{5} be the vector space of all $5^{\text {th }}$ degree polynomials. P_{4} is a subspace of P_{5}.
non-Example Let $\mathbb{U} \subset \mathbb{R}^{2}$ be the set of all $\left[\begin{array}{l}x \\ y\end{array}\right]$ so that $x \geq 0, y \geq 0$. Check if it's a subspace of \mathbb{R}^{2} :

- $\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \in \mathbb{U}$

- Suppose $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{U}$ and $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right] \in \mathbb{U}$. Then $x, x^{\prime} \geq 0 \Longrightarrow x+x^{\prime} \geq 0$ and $y, y^{\prime} \geq 0 \Longrightarrow y+y^{\prime} \geq 0$.
Hence $\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}x+x^{\prime} \\ y+y^{\prime}\end{array}\right] \in \mathbb{U}$
- But, sadly, although $\left[\begin{array}{l}1 \\ 1\end{array}\right] \in \mathbb{U}$, the scalar product
$-1 \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}-1 \\ -1\end{array}\right] \notin \mathbb{U}$.
Since we have shown some example does not satisfy one of the criteria, \mathbb{U} is not a subspace.

Suppose \mathbb{V} is any vector space and $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \ldots, \vec{x}_{k} \in \mathbb{V}$.

Definition: Span (we have seen this before)

$\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}$ is the set of all elements of \mathbb{V} that can be written as a linear combination of $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}$.

Example: In the vector space $\mathbb{R}^{3} \operatorname{Span}\left\{\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T},\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}\right\}$ is the set of all vectors in the $x y$-plane, which is a subspace of \mathbb{R}^{3}.

Theorem

$\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}$ is always a subspace of \mathbb{V}

We can view the multiplication of a $m \times n$ matrix A by a $n \times 1$ vector \vec{x} in two distinct ways.

Dot product with rows: Each row of $\vec{y}=A \vec{x}$ consists of the dot product of the corresponding row of A with \vec{x}. Let the m rows of A be the \vec{r} vectors below.

$$
\begin{gathered}
A=\left[\begin{array}{c}
\vec{r}_{1} \\
\overrightarrow{r_{2}} \\
\ldots \\
\overrightarrow{r_{m}}
\end{array}\right] \\
\vec{y}=\left[\begin{array}{c}
\overrightarrow{r_{1}} \vec{x} \\
\overrightarrow{r_{2}} \vec{x} \\
\cdots \\
\overrightarrow{r_{m}} \vec{x}
\end{array}\right]
\end{gathered}
$$

Combination of the columns: The resultant vector $\vec{y}=A \vec{x}$ consists of the combination of columns of A as given by the elements of \vec{x}. Let the n columns of A be the \vec{c} vectors below.

$$
\begin{gathered}
A=\left[\begin{array}{llll}
\vec{c}_{1} & \vec{c}_{2} & \ldots & \vec{c}_{n}
\end{array}\right] \\
\vec{y}=\vec{c}_{1} x_{1}+\vec{c}_{2} x_{2}+\ldots \vec{c}_{n} x_{n}
\end{gathered}
$$

Let A be an $m \times n$ matrix.
Consider all $\vec{u} \in \mathbb{R}^{n}$ so that $A \vec{u}=\overrightarrow{0}$. Call it the null space of A or Nul A.

We now show that $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.

Need to check three things:

- $\overrightarrow{0} \in \operatorname{Nul} A$ (since $A \overrightarrow{0}=\overrightarrow{0}$).
- For any $\vec{x} \& \vec{y} \in \operatorname{Nul} A$,

$$
A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} .
$$

Hence $\vec{x}+\vec{y} \in \operatorname{Nul} A$.

- Similarly, for any $c \in \mathbb{R}$ and $\vec{x} \in \operatorname{Nul} A$,

$$
A(c \vec{x})=c A \vec{x}=c \overrightarrow{0}=\overrightarrow{0}
$$

Hence $c \vec{x} \in \operatorname{Nul} A$.

Easy question: Given $\vec{u} \in \mathbb{R}^{n}$, is $\vec{u} \in \operatorname{Nul} A$?
Harder question: Describe all of $\operatorname{Nul} A$.

Example: Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
1 & 3 & 5 & -2 \\
3 & 8 & 13 & -3
\end{array}\right] \quad \vec{u}=\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]
$$

Is \vec{u} in Nul A ?
Answer: Just calculate $A \vec{u}: A \vec{u}=\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \Longleftrightarrow \vec{u} \in \operatorname{Nul} A$.

Here
$A \vec{u}=\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \cdot 1-2 \cdot 2+3 \cdot 1+1 \cdot 0 \\ 1 \cdot 1-2 \cdot 3+5 \cdot 1-2 \cdot 0 \\ 1 \cdot 3-2 \cdot 8+13 \cdot 1-3 \cdot 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Hence $\vec{u} \in \operatorname{Nul} A$.

Harder question: Describe all of Nul A. Interpretation: Find $\vec{u}_{1}, \ldots \vec{u}_{k} \in \operatorname{Nul} A$ so that $\operatorname{Span}\left\{\vec{u}_{1}, \ldots \vec{u}_{k}\right\}=\operatorname{Nul} A$

Fancy description of an old problem we know how to do:
Solve the homogeneous system of linear equations given by $A \vec{x}=\overrightarrow{0}$.

Step 1: Convert A to reduced echelon form:

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
1 & 3 & 5 & -2 \\
3 & 8 & 13 & -3
\end{array}\right] \rightarrow_{1^{s t}} \mathrm{col} .\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & 1 & 2 & -3 \\
0 & 2 & 4 & -6
\end{array}\right] \rightarrow_{2^{\text {nd }}} \mathrm{col} .\left[\begin{array}{cccc}
1 & 0 & -1 & 7 \\
0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Step 2: Identify the free variables. Here they are x_{3}, x_{4}.
Step 3: Convert to vector equation:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{3}-7 x_{4} \\
-2 x_{3}+3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-7 \\
3 \\
0 \\
1
\end{array}\right]
$$

Then $\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-7 \\ 3 \\ 0 \\ 1\end{array}\right]\right\}$
This spanning set is efficient: no proper subset spans Nul A.

As before, let A be any $m \times n$ matrix:

Consider all linear combinations of the column vectors of A. It's a subset of \mathbb{R}^{m}, denoted $\operatorname{Col} A$.

In other words, for

$$
A=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right]
$$

Col A is $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right\}$.

Connection to $\vec{y}=A \vec{x}$: This system is solvable if and only if \vec{y} is in the column space of A

$$
\vec{y} \in \operatorname{Col} A \Longleftrightarrow \vec{y}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots x_{n} \vec{a}_{n} \Longleftrightarrow \vec{y}=A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots x_{n}
\end{array}\right]
$$

Describe Col A :

Answer: We've just done it - it's $\operatorname{Span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$, the span of the column vectors of A.

Example:

$A=\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3\end{array}\right] \Longrightarrow \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right],\left[\begin{array}{c}3 \\ 5 \\ 13\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ -3\end{array}\right]\right\}$

But this is not necessarily an efficient description: a subset may span $\operatorname{Col} A$. In this case, the first two vectors suffice:
$\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right]\right\}$

Harder question: Given $\vec{u} \in \mathbb{R}^{m}$, is $\vec{u} \in \operatorname{Col} A$.
Translation: Are there $\left\{x_{1}, \ldots x_{n}\right\}$ so that

$$
\vec{u}=x_{1} \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n} ?
$$

Equivalently:
Is there a vector $\vec{x} \in \mathbb{R}^{n}$ so that $A \vec{x}=\vec{u}$?

Solution: Reduce augmented matrix $\left[\begin{array}{lllll}\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n} & \vec{u}\end{array}\right]$ to echelon form and see if the equations are consistent:

Example: Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
1 & 3 & 5 & -2 \\
3 & 8 & 13 & -3
\end{array}\right] \quad \vec{u}=\left[\begin{array}{c}
3 \\
4 \\
11
\end{array}\right]
$$

Is $\vec{u} \in \operatorname{Col} A$?

$$
\left[\begin{array}{cccc|c}
1 & 2 & 3 & 1 & 3 \\
1 & 3 & 5 & -2 & 4 \\
3 & 8 & 13 & -3 & 11
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & 2 & 3 & 1 & 3 \\
0 & 1 & 2 & -3 & 1 \\
0 & 2 & 4 & -6 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & 2 & 3 & 1 & 3 \\
0 & 1 & 2 & -3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The last column says that $0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4}=0 u_{3}$ which is consistent. However, if the bottom-right entry had been non-zero then we would have had an inconsistent equation. So in this case $\vec{u} \in \operatorname{Col} A$.

Additional payoff: First two columns are the pivot columns \Longrightarrow first two of the original columns span $\operatorname{Col} A$.

Definition

A subset $\left\{\vec{v}_{1}, \ldots \vec{v}_{k}\right\} \subset \mathbb{V}$ is a basis for V if and only if it is linearly independent and it spans V.

Classic example: The set $\left\{\vec{e}_{1}, \ldots \vec{e}_{n}\right\} \subset \mathbb{R}^{n}$ is a basis for the vector space \mathbb{R}^{n}. Where

$$
\vec{e}_{i}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where the 1 appears in the $i^{t h}$ position. This set is called the standard basis for \mathbb{R}^{n}.

Theorem

Any finite spanning set of vectors contains a basis.

Suppose $\left\{\vec{v}_{1}, \ldots \vec{v}_{n}\right\} \subset \mathbb{V}$ spans \mathbb{V}

- if $\left\{\vec{v}_{1}, \ldots \vec{v}_{n}\right\}$ is linearly independent, then it's a basis.
- if it's linearly dependent, some proper subset spans.

Two important properties of a basis:

- No proper subset of a basis is a basis (it will no longer span).
- Adding an additional vector to a basis will no longer constitute a basis (no longer linearly independent).

A basis efficiently captures most information about a vector space.

Example:

Consider the set of 2-vectors

$$
S=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
3
\end{array}\right]\right\}
$$

Is this set a basis for \mathbb{R}^{2} ?
No. This set is not independent. But any pair of vectors from S would form a basis for \mathbb{R}^{2}.

The dimension of a subspace is the number of vectors needed to form a basis.

Its clear that the dimension of \mathbb{R}^{n} is n. Any vector in \mathbb{R}^{n} can be written as a combination of n basis vectors. The standard basis for \mathbb{R}^{n} is the set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Other basis vectors are possible, but a potential set must contain n independent vectors in order to qualify as a basis.

As we have seen, for a matrix A there are two particularly interesting subspaces:

- The null space, Nul A, consisting of all solutions to $A \vec{x}=0$
- The column space, Col A, consisting of all linear combinations of the columns of A. If there is a solution to $A \vec{x}=\vec{y}$ then \vec{y} must lie in the column space of A (i.e. it must be some linear combination of the columns of A).

The dimension of $\operatorname{Nul} A$ is known as nullity (A).
The dimension of $\operatorname{Col} A$ is $\operatorname{rank}(A)$. In fact, the rank is also the dimension of the row space.

Sylvester's Law of Nullity

For the $m \times n$ matrix A :

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

Example: Given a matrix A find a basis for its null space and the dimension of that basis.

Answer: We've done this! Nul A, can be found via reduced echelon form.

Previous example: Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
1 & 3 & 5 & -2 \\
3 & 8 & 13 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & 7 \\
0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\mathrm{Nul} A$ spanned by one vector for each free variable:
Here the free variables are x_{3}, x_{4}. First equation gives:

$$
x_{1}-x_{3}+7 x_{4}=0 \Longrightarrow x_{1}=x_{3}-7 x_{4}
$$

Second equation gives:

$$
x_{2}+2 x_{3}-3 x_{4}=0 \Longrightarrow x_{2}=-2 x_{3}+3 x_{4}
$$

Combining: $\vec{x} \in \operatorname{NuI} A \Longleftrightarrow$

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{3}-7 x_{4} \\
-2 x_{3}+3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-7 \\
3 \\
0 \\
1
\end{array}\right]
$$

Hence $\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-7 \\ 3 \\ 0 \\ 1\end{array}\right]\right\}$

The bottom rows show that these vectors are linearly independent, so they are a basis for $\operatorname{Nul} A$. Since there are two, $\operatorname{nullity}(A)=2$.

Example: Given a matrix A find a basis for its column space and its dimension.

Step 1: Reduce to echelon form.
Step 2: Identify the pivot columns
Step 3: These columns of the original matrix! are a basis for $\operatorname{Col} A$.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
1 & 3 & 5 & -2 \\
3 & 8 & 13 & -3
\end{array}\right] \rightarrow_{\text {row reduce }}\left[\begin{array}{cccc}
1 & 0 & -1 & 7 \\
0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Pivot columns are first and second columns
First and second columns of original A span $\operatorname{Col} A$:
$\operatorname{Col} A=$ Span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right]\right\}$ These vectors form a basis for $\operatorname{Col} A$.
Note that Sylvester's Law of Nullity is satisfied: $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$

