

ENGI 7825: Control Systems II State Feedback: Part 2

Instructor: Dr. Andrew Vardy

Adapted from the notes of Gabriel Oliver Codina

2nd Order Design Constraints

- Specifications such as T_s, T_p, and %OS are usually specified as inequalities. For example,
 - ∎ %OS <= 4%
 - ∎ T_s <= 2 s
 - \bullet T_p <= 0.5 s

Consider %OS

- An upper bound on %OS is a lower bound on ζ.
- For %OS <= 4%
 we get ζ >= 0.716

$\zeta >= 0.716$

- With θ defined as the angle of the complex poles to the negative real axis, we can utilize θ = cos⁻¹(ζ) = 44.3°.
- Since cos⁻¹(ζ) is a decreasing function of ζ, the lower bound on zeta becomes an upper bound on θ: θ <= 44.3°.</p>
 - Exercise: draw the regions of acceptable eigenvalues for %OS

- ▶ Now consider the specification $T_s \le 2$ s.
- ► The real-part of the eigenvalue pair should lie to the left of σ_d >= 4 / 2 = 2

• That is, -
$$\sigma_d \ll -2$$

- ► Finally we consider T_p <= 0.5 s</p>
- Using the formula: $\omega_d >= \pi / 0.5 = 2 \pi$
- This means that the absolute value of the imaginary-part of the eigenvalue pair must lie above 2 π

The shaded regions show acceptable eigenvalue locations. Note that the constraint that $T_s \le 2$ s (which led to - $\sigma_d \le -2$) is made redundant by the other two constraints.

Higher-Order Systems

- The behaviour of higher-order systems is dictated by the pair of poles that lie closest to the origin
 - These are the dominant 2nd order poles
- If the other poles lie significantly to the left, then they lead to quickly decaying responses
 - See supplementary notes from 5821: "Systems with Additional Poles or Zeros"
- The following are 3rd and 6th order systems that are 2nd order in appearance:

System Order	Eigenvalues
Second	$\lambda_{1,2} = -2 \pm 1.95i$
Sixth	$\lambda_{1,2,3} = -2 \pm 1.95i, -20$ $\lambda_{1,2,3,4,5,6} = -2 \pm 1.95i, -20, -21, -22, -23$

Systems which Minimize ITAE

- If we have full control of our system's characteristic polynomial, why not place the eigenvalues in the "best" possible positions.
- How can "best" be defined? One possible definition for a step response is the one which minimizes ITAE (integral of time multiplied by absolute error):

$$\text{ITAE} = \int_0^\infty t |e(t)| dt$$

- The shaded areas indicate [e(t)]
- We multiply by time to further penalize error that occurs later in the response

► The following polynomials are those which minimize ITAE:

System Order	Characteristic Polynomial
First	$s + \omega_n$
Second	$s^2 + 1.4 \omega_n s + \omega_n^2$
Third	$s^{3} + 1.75 \ \omega_{n}s^{2} + 2.15 \ \omega_{n}^{2}s + \omega_{n}^{3}$
Fourth	$s^4 + 2.1 \ \omega_n s^3 + 3.4 \ \omega_n^2 s^2 + 2.7 \ \omega_n^3 s + \omega_n^4$
Fifth	$s^{5} + 2.8 \omega_{n}s^{4} + 5.0 \omega_{n}^{2}s^{3} + 5.5 \omega_{n}^{3}s^{2} + 3.4 \omega_{n}^{4}s + \omega_{n}^{5}$
Sixth	$s^{6} + 3.25 \omega_{n}s^{5} + 6.6 \omega_{n}^{2}s^{4} + 8.6 \omega_{n}^{3}s^{3} + 7.45 \omega_{n}^{4}s^{2} + 3.95 \omega_{n}^{5}s + \omega_{n}^{6}$

To obtain the full transfer function we must choose a value for !_n and then utilize the following (where d_k(s) is the kth order polynomial from the table above):

$$H_k(s) = \frac{\omega_n^k}{d_k(s)}$$

FIGURE 7.8 ITAE unit step responses.

Example 2

► We are given the following system:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -18 & -15 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

By inspection we can obtain the open-loop characteristic polynomial and its eigenvalues:

$$a(s) = s^{3} + a_{2}s^{2} + a_{1}s + a_{0} = s^{3} + 2s^{2} + 15s + 18$$

$$\lambda_{1,2,3} = -1.28, -0.36 \pm j3.73$$

► The step response is ...

$$a(s) = s^{3} + a_{2}s^{2} + a_{1}s + a_{0} = s^{3} + 2s^{2} + 15s + 18$$

- We have the following desired characteristics:
 - $T_s = 3$ seconds
 - % OS = 6%
 - Maintain steady-state value of the original system
- We will design a third-order characteristic polynomial that consists of two dominant 2nd order poles and a third pole, lying further to the left
- Under the assumption that our system is purely 2nd order we arrive at the following parameters:
 - $\zeta >= 0.67$ (we will choose $\zeta = 0.67$)
 - $\omega_n \ge 2 \text{ rad } / \text{ s (we will choose } \omega_n = 2)$
 - Eigenvalues: λ_1 , λ_2 = -1.33 ± j 1.49
- We place the additional eigenvalue 10 units to the left and on the real-axis: λ_3 = -13.33
- This gives us the following desired characteristic polynomial and K matrix:

$$\alpha(s) = (s + 1.33 + j1.49)(s + 1.33 - j1.49)(s + 13.33)$$

= $s^3 + 16s^2 + 39.55s + 53.26$
 $K_{\text{CCF}} = [(\alpha_0 - a_0) \quad (\alpha_1 - a_1) \quad (\alpha_2 - a_2)]$
= $[(53.26 - 18) \quad (39.55 - 15) \quad (16 - 2)]$
= $[35.26 \quad 24.55 \quad 14.00]$

Using $u(t) = -K_{CCF} x_{CCF}(t) + r(t)$ (that is, G = 1) we get the following compensated system:

$$H_{open}(s) = \frac{1}{s^3 + 2s^2 + 15s + 18} \qquad H_{closed}(s) = \frac{1}{s^3 + 16s^2 + 39.55s + 53.26}$$
$$H_{open}(0) = \frac{1}{18} = 0.056 \qquad \qquad H_{closed}(0) = \frac{1}{53.26} = 0.0188$$

To maintain the desired steady-state value, we incorporate the gain: G = 0.056 / 0.0188 = 2.96

