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State Feedback: Part 2



2nd Order Design Constraints
► Specifications such as Ts, Tp, and %OS are usually 

specified as inequalities.  For example,
■ %OS <= 4%
■ Ts <= 2 s
■ Tp <= 0.5 s

► Consider %OS
■ An upper bound

on %OS is a lower
bound on ζ.

■ For %OS <= 4%
we get ζ >= 0.716

Second-Order Systems Characteristics of Underdamped Systems
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► With θ defined as the angle of the complex poles to the 
negative real axis, we can utilize θ = cos-1(ζ) = 44.3o.

► Since cos-1(ζ) is a decreasing
function of ζ, the lower bound
on zeta becomes an upper bound
on θ: θ <= 44.3o.

■ Exercise: draw the regions of
acceptable eigenvalues for %OS

ζ >= 0.716



► Now consider the specification Ts <= 2 s.
► The real-part of the eigenvalue

pair should lie to the left of 
σd >= 4 / 2 = 2

► That is, - σd <= -2

► Finally we consider Tp <= 0.5 s
■ Using the formula: ωd >= π / 0.5 = 2 π
■ This means that the absolute value

of the imaginary-part of the 
eigenvalue pair must lie above 2 π

Relationship to Pole Plot
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acceptable eigenvalue locations is bounded by the radial lines making
angles of ±44.3◦ with respect to the negative real axis.

The formula that approximates settling time shows that settling time is
inversely proportional to the product ξωn that is directly related to the real
part of the complex-conjugate eigenvalues. Therefore, an upper bound on
settling time tS ≤ tS, max corresponds to eigenvalues that lie to the left of a
vertical line passing through the point −4/tS, max on the negative real axis.
With a specified upper bound on settling time of 2 s, eigenvalues must lie
to the left of the vertical line passing through the point −4/2 = −2 on
the negative real axis.

The formula for peak time shows that peak time is inversely propor-
tional to the damped natural frequency ωd that characterizes the imaginary
part of the complex-conjugate eigenvalues. Thus an upper bound on peak
time tP ≤ tP, max yields a lower bound on ωd . This corresponds to an eigen-
value that lies above the horizontal line passing through j (π/tP, max) on
the positive imaginary axis and a conjugate eigenvalue that lies below the
horizontal line passing through −j (π/tP, max) on the negative imaginary
axis. With a specified upper bound on peak time of 0.5 s, these horizontal
lines pass through ±j (π/0.5) = ±j2π .

The region in the complex plane characterizing allowable eigenvalue
locations with respect to all three constraints is given by the intersection of
the individual regions. The shaded region in Figure 7.5 shows allowable
eigenvalue locations for this example along with the bounding lines for
the individual regions.
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FIGURE 7.5 Allowable eigenvalue locations for Example 7.3.The shaded regions show acceptable eigenvalue locations.  Note that the 
constraint that Ts <= 2 s (which led to - σd <= - 2) is made redundant by the 
other two constraints.



Higher-Order Systems
► The behaviour of higher-order systems is dictated by the 

pair of poles that lie closest to the origin
■ These are the dominant 2nd order poles

► If the other poles lie significantly to the left, then they lead 
to quickly decaying responses

■ See supplementary notes from 5821: “Systems with Additional 
Poles or Zeros”

► The following are 3rd and 6th order systems that are 2nd

order in appearance:
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TABLE 7.3 Eigenvalues for Figure 7.6

System Order Eigenvalues

First λ1 = −0.5
Second λ1,2 = −0.5,−5
Third λ1,2,3 = −0.5,−5,−6
Fourth λ1,2,3,4 = −0.5,−5,−6,−7

Figure 7.7 shows the effect of augmenting dominant second-order sys-
tem eigenvalues (s1,2 = −2 ± 1.95i from Example 7.2) with additional
real negative eigenvalues at least 10 times further to the left in the com-
plex plane for third- and sixth-order systems. The eigenvalues associated
with each case are given in Table 7.4. The third- and sixth-order step
responses are similar to the desired dominant second-order step response.
The rise time increases slightly as the system order increases.
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FIGURE 7.7 Dominant second-order system versus third- and sixth-order systems.

TABLE 7.4 Eigenvalues for Figure 7.7

System
Order Eigenvalues

Second λ1,2 = −2 ± 1.95i
Third λ1,2,3 = −2 ± 1.95i,−20
Sixth λ1,2,3,4,5,6 = −2 ± 1.95i,−20,−21,−22,−23
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Systems which Minimize ITAE
► If we have full control of our system’s characteristic 

polynomial, why not place the eigenvalues in the “best” 
possible positions.

► How can “best” be defined?  One possible definition for a 
step response is the one which minimizes ITAE (integral 
of time multiplied by absolute error):

► The shaded areas indicate
|e(t)|

► We multiply by time to
further penalize error that
occurs later in the response
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ITAE Method for Shaping the Dynamic Response

The ITAE (integral of time multiplying the absolute value of error),
method attempts to accomplish dynamic shaping by penalizing the error,
in our case the deviation between the unit step response and the steady-
state value that yields the transient response component, more heavily
later in the response as time increases (Graham and Lathrop, 1953). The
ITAE objective function is

ITAE =
∫ ∞

0
t |e(t)|dt

Minimizing the ITAE objective function yields a step response with rela-
tively small overshoot and relatively little oscillation. The ITAE is just one
possible objective function; others have been proposed and used in prac-
tice. For first- through sixth-order systems, the characteristic polynomials
given in Table 7.5 correspond to systems that minimize the ITAE crite-
rion (Dorf and Bishop, 2005). In each case, one must specify the desired
natural frequency ωn (higher values correspond to faster response). Then
the desired eigenvalues are obtained by finding the roots of the appropriate
characteristic polynomial for the particular system order.

Figure 7.8 shows the unit step responses for the ITAE first- through
sixth-order systems described by transfer functions of the form

Hk(s) = ωk
n

dk(s)

in which the index k denotes the system order, and the denominator poly-
nomial is taken from Table 7.5. The independent axis in Figure 7.8 is
the normalized time ωnt , which is unitless. Note that beyond the first-
order case, some overshoot is involved in optimizing the ITAE objective
function.

This section has presented several approaches to translate transient
response specifications into desired eigenvalue locations. These methods

TABLE 7.5 ITAE Characteristic Polynomials

System Order Characteristic Polynomial

First s + ωn

Second s2 + 1.4 ωns + ω2
n

Third s3 + 1.75 ωns
2 + 2.15 ω2

ns + ω3
n

Fourth s4 + 2.1 ωns
3 + 3.4 ω2

ns
2 + 2.7 ω3

ns + ω4
n

Fifth s5 + 2.8 ωns
4 + 5.0 ω2

ns
3 + 5.5 ω3

ns
2 + 3.4 ω4

ns + ω5
n

Sixth s6 + 3.25 ωns
5 + 6.6 ω2

ns
4 + 8.6 ω3

ns
3 + 7.45 ω4

ns
2 + 3.95 ω5

ns + ω6
n

Instrumentation & Process Control 
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where the error signal e(t) is the difference between the set point and the measurement. 

Notice that for P controller, where offset occurs, the integral given by Equation does not 

converge. In these cases, one can use a modified integrand, which replaces the error 

by )()( tyy �f , since this term does approach zero as t goes to infinity.    
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A graphical interpretation of the IAE performance index is shown in Figure 4.   

 

 
 

The ISE will penalize the response that has large errors, which usually occur at the 

beginning of a response because the error is squared. The ITAE will penalize a response 

which has errors that persist for a long time. The IAE will treat all errors in a uniform 

manner; thus, it allows larger deviation than ISE. In general, ITAE is the preferred 

integral error criterion since it results in the most conservative controller settings.     

Figure 4 Graphical interpretation 
of IAE.  



► The following polynomials are those which minimize ITAE:

► To obtain the full transfer
function we must choose
a value for !n and then 
utilize the following
(where dk(s) is the
kth order polynomial from
the table above):
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FIGURE 7.8 ITAE unit step responses.

have focused on so-called all-pole system models. It is well known from
classical control that the presence of zeros (roots of the transfer func-
tion numerator polynomial) will change the system’s transient behavior.
One approach to remedy this is to use a prefilter to reduce the effect of
these zeros.

7.3 CLOSED-LOOP EIGENVALUE PLACEMENT VIA STATE
FEEDBACK

The following result establishes a connection between the ability to arbi-
trarily place the closed-loop eigenvalues by proper choice of the state
feedback gain matrix K and controllability of the open-loop state equation,
i.e., the pair (A, B).

Theorem 7.1 For any symmetric set of n complex numbers {µ1 , µ2 , . . . ,
µn}, there exists a state feedback gain matrix K such that σ (A − BK ) =
{µ1 , µ2 , . . . , µn} if and only if the pair (A, B) is controllable.

Proof. Here we prove that controllability of the pair (A, B) is necessary
for arbitrary eigenvalue placement via state feedback. That controllabil-
ity of the pair (A, B) is sufficient for arbitrary eigenvalue placement via
state feedback will be established constructively in the single-input case
by deriving formulas for the requisite state feedback gain vector. The
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Example 2
► We are given the following system:

► By inspection we can obtain the open-loop characteristic 
polynomial and its eigenvalues:

► The step response is ...
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−C(A − BK)−1B is a scalar quantity and is therefore singular when and
only when it is zero, meaning that the scalar transfer function C(sI −
A + BK)−1B has a zero at s = 0 in the familiar sense.

For the case m ≥ p, the factor −C(A − BK)−1B has dimension p × m
and therefore has more columns than rows. If this matrix has full-row
rank p then we can take the m × p input gain matrix G to be the Moore-
Penrose pseudoinverse given by

G = −[C(A − BK)−1B]T
[
C(A − BK)−1B[C(A − BK)−1B]T

]−1

which the reader should verify yields HCL(0) = I .
We can arrive at the same conclusion from a time-domain viewpoint.

For the constant reference input r(t) = R, t ≥ 0, steady state corresponds
to an equilibrium condition for the closed-loop state equation involving
an equilibrium state denoted by xss that satisfies

0 = (A − BK)xss + BG R

which can be solved to give xss = −(A − BK)−1BG R. The steady-state
output then is obtained from

yss = Cxss = −C(A − BK)−1BG R = HCL(0)R

from which the same formula for the input gain results.
The preceding analysis can be generalized to address other steady-state

objectives involving a closed-loop dc gain other than an identity matrix.
For the m = p case, let Kdc denote the desired closed-loop dc gain. We
need only adjust the input gain formula according to

G = −[C(A − BK)−1B]−1Kdc

to achieve the desired result.

Example 7.8 We modify the state feedback control law computed for
the state equation of Example 7.4 to include an input gain chosen so that
the open-loop and closed-loop unit step responses reach the same steady-
state value. The open-loop state equation is specified by the following
coefficient matrices which although are in controller canonical form, we
omit the corresponding subscripts

A =

⎡

⎣
0 1 0
0 0 1

−18 −15 −2

⎤

⎦ B =

⎡

⎣
0
0
1

⎤

⎦ C =
[

1 0 0
]
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Beginning with an arbitrary symmetric set of complex numbers {µ1, µ2,
. . . , µn} that represents the desired closed-loop eigenvalues, we define the
associated closed-loop characteristic polynomial

α(s) = (s − µ1)(s − µ2) · · · (s − µn)

= sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

It is important to note that because the roots of a polynomial uniquely
determine and are uniquely determined by the polynomial coefficients,
specifying n desired closed-loop eigenvalues is equivalent to specifying
the n coefficients α0, α1, α2, . . . , αn−1. In terms of these parameters, the
crux of the problem is to determine KCCF so that the characteristic polyno-
mial of ACCF − BCCFKCCF matches the desired closed-loop characteristic
polynomial α(s). Equating

|sI − ACCF + BCCFKCCF| = sn + (an−1 + δn−1)s
n−2 + · · · + (a2 + δ2)s

2

+ (a1 + δ1)s + (a0 + δ0)

= sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

yields, on comparing coefficients of like powers of s, the relationships

a0 + δ0 = α0 a1 + δ1 = α1 a2 + δ2 = α2 · · · an−1 + δn−1 = αn−1

so that

δ0 = α0 − a0 δ1 = α1 − a1 δ2 = α2 − a2 · · · δn−1 = αn−1 − an−1

and the state feedback gain vector is then given by

KCCF =
[
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

]

Example 7.4 We consider the following three-dimensional state
equation given in controller canonical form specified by the coefficient
matrices

ACCF =

⎡

⎣
0 1 0
0 0 1

−18 −15 −2

⎤

⎦ BCCF =

⎡

⎣
0
0
1

⎤

⎦ CCCF =
[

1 0 0
]

The open-loop characteristic polynomial, is by inspection,

a(s) = s3 + a2s
2 + a1s + a0 = s3 + 2s2 + 15s + 18254 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS

which yields the open-loop eigenvalues λ1,2,3 = −1.28, −0.36 ± j3.73.
This open-loop system exhibits a typical third-order lightly damped step
response, as shown in Figure 7.9 below.

This open-loop system is already asymptotically stable, but we are inter-
ested in designing a state feedback control law to improve the transient
response performance. We first specify a pair of dominant eigenvalues
to yield a percent overshoot of 6 percent and a settling time of 3 s. The
associated damping ratio and undamped natural frequency are ξ = 0.67
and ωn = 2.00 rad/s. The resulting dominant second-order eigenvalues are
λ1,2 = −1.33 ± j1.49. The open-loop system is third-order, so we need
to specify a third desired eigenvalue, which we choose to be negative,
real, and 10 further to the left of the dominant second-order eigenval-
ues in the complex plane: λ3 = −13.33. Thus the desired characteristic
polynomial is

α(s) = s3 + α2s
2 + α1s + α0 = s3 + 16s2 + 39.55s + 53.26

This leads immediately to the state feedback gain vector

KCCF =
[
(α0 − a0) (α1 − a1) (α2 − a2)

]

=
[
(53.26 − 18) (39.55 − 15) (16 − 2)

]

=
[

35.26 24.55 14.00
]

The state feedback control law

u(t) = −KCCF xCCF(t) + r(t)

yields the closed-loop state equation specified by the coefficient matrices

ACCF − BCCFKCCF =

⎡

⎣
0 1 0
0 0 1

−53.26 −39.55 −16

⎤

⎦ BCCF =

⎡

⎣
0
0
1

⎤

⎦

CCCF =
[

1 0 0
]

which is also in controller canonical form. Figure 7.9 shows a comparison
of the open-loop and closed-loop output responses to a unit step input.
The closed-loop transient response is greatly improved, and the achieved
percent overshoot (5.9 percent) and settling time (3.09 s) are in close
agreement with the design specifications. Note, however, that neither unit
step response achieves a steady-state value of 1.0. For the closed-loop sys-
tem, this means that the steady-state output does not match the reference





• We have the following desired characteristics:
• Ts = 3 seconds
• % OS = 6%
• Maintain steady-state value of the original system

• We will design a third-order characteristic polynomial that consists of two 
dominant 2nd order poles and a third pole, lying further to the left

• Under the assumption that our system is purely 2nd order we arrive at the 
following parameters:

• ζ >= 0.67 (we will choose ζ = 0.67)
• ωn >= 2 rad / s (we will choose ωn = 2)
• Eigenvalues: λ1, λ2 = -1.33 ± j 1.49

• We place the additional eigenvalue 10 units to the left and on the real-axis: 
λ3 = -13.33

• This gives us the following desired characteristic polynomial and K matrix:
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which yields the open-loop eigenvalues λ1,2,3 = −1.28, −0.36 ± j3.73.
This open-loop system exhibits a typical third-order lightly damped step
response, as shown in Figure 7.9 below.

This open-loop system is already asymptotically stable, but we are inter-
ested in designing a state feedback control law to improve the transient
response performance. We first specify a pair of dominant eigenvalues
to yield a percent overshoot of 6 percent and a settling time of 3 s. The
associated damping ratio and undamped natural frequency are ξ = 0.67
and ωn = 2.00 rad/s. The resulting dominant second-order eigenvalues are
λ1,2 = −1.33 ± j1.49. The open-loop system is third-order, so we need
to specify a third desired eigenvalue, which we choose to be negative,
real, and 10 further to the left of the dominant second-order eigenval-
ues in the complex plane: λ3 = −13.33. Thus the desired characteristic
polynomial is

α(s) = s3 + α2s
2 + α1s + α0 = s3 + 16s2 + 39.55s + 53.26

This leads immediately to the state feedback gain vector

KCCF =
[
(α0 − a0) (α1 − a1) (α2 − a2)

]

=
[
(53.26 − 18) (39.55 − 15) (16 − 2)

]

=
[

35.26 24.55 14.00
]

The state feedback control law

u(t) = −KCCF xCCF(t) + r(t)

yields the closed-loop state equation specified by the coefficient matrices

ACCF − BCCFKCCF =

⎡

⎣
0 1 0
0 0 1

−53.26 −39.55 −16

⎤

⎦ BCCF =

⎡

⎣
0
0
1

⎤

⎦

CCCF =
[

1 0 0
]

which is also in controller canonical form. Figure 7.9 shows a comparison
of the open-loop and closed-loop output responses to a unit step input.
The closed-loop transient response is greatly improved, and the achieved
percent overshoot (5.9 percent) and settling time (3.09 s) are in close
agreement with the design specifications. Note, however, that neither unit
step response achieves a steady-state value of 1.0. For the closed-loop sys-
tem, this means that the steady-state output does not match the reference
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Using (that is, G = 1)
we get the following compensated system:
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FIGURE 7.9 Open-loop versus closed-loop unit step responses for Example 7.4.

input, yielding, in this case, substantial steady-state error. Methods to
correct this will be addressed later in this chapter. !

Bass-Gura Formula

We generalize the preceding feedback gain construction for the controller
canonical form to the case of an arbitrary controllable single-input state
equation. Our plan of attack is to use the explicitly defined state coor-
dinate transformation linking a controllable single-input state equation to
its associated controller canonical form.

As before, we let {µ1, µ2, . . . , µn} be a symmetric set of n complex
numbers representing the desired closed-loop eigenvalues, which uniquely
determines the desire closed-loop characteristic polynomial

α(s) = (s − µ1)(s − µ2) · · · (s − µn)

= sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

For the controllable pair (A, B), Section 3.4 indicates that the state coor-
dinate transformation x(t) = TCCF xCCF(t) with

TCCF = PP −1
CCF

transforms the original state equation to its controller canonical form.
Since the system dynamics matrices A and ACCF are related by a similarity

The transient response 
looks much nicer (and has 
the desired characteristics) 
but the goal was to 
maintain the steady-state 
value of 0.056.



To maintain the desired steady-state value, we incorporate the gain:
G = 0.056 / 0.0188 = 2.96272 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS
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FIGURE 7.11 Open-loop versus closed-loop unit step response for Example 7.8.

obtain a type I system that yields zero steady-state tracking error for
step reference inputs with our methods for state feedback design that
deliver closed-loop stability and desirable transient response characteris-
tics. This approach is robust with respect to uncertainty in the open-loop
state equation in that the steady-state tracking performance is preserved
as long as closed-loop stability is maintained. In this section we focus on
the single-input, single-output case and impose the following additional
assumptions:

Assumptions
1. The open-loop state equation, i.e., the pair (A, B), is controllable.
2. The open-loop state equation has no pole/eigenvalue at s = 0.
3. The open-loop state equation has no zero at s = 0.

Our control law will be of the form

ξ̇(t) = r(t) − y(t)

u(t) = −Kx(t) + kIξ(t)

in which r(t) is the step reference input to be tracked by the output
y(t). By setting the time derivative ξ̇(t) to equal the tracking error r(t) −
y(t), we see that ξ(t) represents the integral of the tracking error. Taking


