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State Feedback: Part 1



Introduction
► The objective is to design control laws that yield desirable 

closed-loop performance in terms of both transient and 
steady-state response characteristics.

► If the open-loop state equation is controllable, then an 
arbitrary closed-loop eigenvalue placement via state-
space feedback can be achieved.

■ Various names for the same technique: 

► State feedback
► Eigenvalue placement
► Pole placement

► Assumptions:
■ The system must be controllable
■ We must have access to all state variables



► So far we have just considered the plant without any 
imposed control.  The direct input to the plant is u(t):

► If the plant’s open-loop response is unsatisfactory then 
incorporate a new input called r(t):
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The open-loop system under study (the plant) is represented by the 
LTI state equation:

(null direct matrix D is assumed)
We focus on the resulting effect of state feedback control laws like:

where K is the constant state feedback gain matrix (m x n) that yields 
the closed-loop state equation with the desired performance 
characteristics and G is an (m x p) matrix which scales the new 
reference input r(t) so that the magnitude of y(t) matches r(t) 
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► Why has u(t) been re-defined in this way?

► u(t) now plays a similar role to an error signal in classical 
control.  It gives the difference between the reference input 
r(t) and the system state, scaled through K.

■ However, the feedback now comes from x(t) not y(t).
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r(t) is called the 
reference input.  It 
is set to the desired 
value of y(t).

x(t) = (A−BK)x(t)+BGr(t)
y(t) =Cx(t)

u(t) = −Kx(t)+Gr(t)

Open-loop system Closed-loop system
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► If the system is SISO:
■ u(t) is a scalar
■ r(t) is a scalar
■ K is a 1 x n row vector
■ G is a scalar

► We can re-write         as:
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+Gr(t) = −k1x1(t)− k2x2 (t)−− knxn (t)+Gr(t)

u(t) = −Kx(t)+Gr(t)

Application to SISO Systems

u(t) = −Kx(t)+Gr(t)



► Feedback Gain Formula for Controller Canonical Form (CCF)
The coefficient matrices for CCF are given below:

its characteristic polynomial (transfer function denominator) is written as:

For the single-input case, the gain matrix K is reduced to a feedback gain 
vector denoted by:
Thus, the closed-loop system dynamics matrix is:

with char. poly:
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Closed-loop Eigenvalue Placement
The characteristic polynomial for the compensated system:

The following represents the desired characteristic polynomial:

These alpha coefficients would be arrived at by looking at the constraints 
imposed by the problem (e.g. specifying a desired %OS and Ts).

We determine KCCF by pairing, term-by-term, the two polynomials above (the 
actual and the desired) and solving for the k values.

which yields:
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KCCF = (α0 − a0) (α1 − a1)  (αn−1 − an−1)[ ]  



Dynamic Response Shaping
► We are interested in shaping the transient response (often 

the step response), by modifying such characteristics as 
rise time (Tr), peak time (Tp), percent overshoot (%OS), 
and settling time (Ts)

► Second-order dominant systems are frequently used as 
approximations in the design process

■ That is if the system is 3rd order or higher, it is approximated as 
2nd order

■ If the system is 1st or 2nd order then it is treated as such

► Lets have a quick review of the characteristics of 1st and 
2nd order systems:

■ [Time response notes from 5821]



Summary of 1st and 2nd Order System 
Characteristics

Gears:

T
dest

=

⇣
Ndest
Nsrc

⌘2
Z

M

✓
dest

DC Motors:

T
m

(s) = K
t

I
a

(s) V
b

(s) = K
b

s✓
m

(s)

Time Response

First-Order System

G(s) =

a

s + a
T

r

=

2.2

a
T

s

=

4

a

Second-Order System

G(s) =

!2
n

s2
+ 2⇣!

n

s + !2
n

cos✓ = ⇣

T
p

=

⇡

!
n

p
1� ⇣2

=

⇡

!
d

T
s

=

4

⇣!
n

=

4

�
d

%OS = e(�⇣⇡/

p
1�⇣

2) ⇥ 100 ⇣ =

� ln(%OS/100)q
⇡2

+ ln

2
(%OS/100)

Block Diagram Reduction

3



Example 1

►Consider again the following mechanical system:6 INTRODUCTION
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FIGURE 1.2 Translational mechanical system.
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FIGURE 1.3 Free-body diagram.

system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)
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energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
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Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)

State variables:
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Eigenvalue Selection for Second-Order Systems

For a second-order system, we can achieve desired transient behavior
via specifying a pair of eigenvalues. To illustrate, we consider the lin-
ear translational mechanical system of Example 1.1 (see Figure 1.2) with
applied force f (t) as the input and mass displacement y(t) as the out-
put. We identify this with a standard second-order system by redefin-
ing the input via u(t) = f (t)/k. The new input u(t) can be interpreted
as a commanded displacement. This will normalize steady-state value
of the unit step response to 1.0. With this change, the state equation
becomes

[
ẋ1(t)
x2(t)

]
=

⎡

⎣
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− k

m
− c

m

⎤
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[

x1(t)
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⎣
0
k
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⎦u(t)

y(t) =
[

1 0
] [

x1(t)
x2(t)

]

with associated transfer function

H(s) =
k
m

s2 + c
m
s + k

m

We compare this with the standard second-order transfer function, namely,

ω2
n

s2 + 2ξωn + ω2
n

in which ξ is the unitless damping ratio, and ωn is the undamped natural
frequency in radians per second. This leads to the relationships

ξ = c

2
√

km
and ωn =

√
k

m

The characteristic polynomial is

λ2 + c

m
λ + k

m
= λ2 + 2ξωnλ + ω2

n

from which the eigenvalues are

λ1,2 = −ξωn ± ωn

√
ξ 2 − 1
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► We set specific values of the constants and compare with 
the standard 2nd order transfer function to obtain:
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ẋ1(t)
x2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]
+

⎡

⎣
0
k

m

⎤

⎦u(t)

y(t) =
[

1 0
] [

x1(t)
x2(t)

]

with associated transfer function

H(s) =
k
m

s2 + c
m
s + k

m

We compare this with the standard second-order transfer function, namely,

ω2
n

s2 + 2ξωn + ω2
n

in which ξ is the unitless damping ratio, and ωn is the undamped natural
frequency in radians per second. This leads to the relationships

ξ = c

2
√

km
and ωn =

√
k

m

The characteristic polynomial is

λ2 + c

m
λ + k

m
= λ2 + 2ξωnλ + ω2

n

from which the eigenvalues are

λ1,2 = −ξωn ± ωn

√
ξ 2 − 1

Second-Order Systems Characteristics of Underdamped Systems
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Settling time tS is typically defined to be the time at which the response
enters and remains within a ±2 percent band about the steady-state value
and can be approximated by

tS ∼= 4
ξωn

The swiftness of the response is related to the rise time and peak time;
the deviation between the response and its steady-state value is related to
the percent overshoot and settling time.

Example 7.1 We return to the linear translational mechanical system
for the parameter values m = 1 kg, c = 1 N-s/m, and k = 10 N/m. The
undamped natural frequency and dimensionless damping ratio are

ωn =
√

k

m
=

√
10
1

= 3.16 rad/s

ξ = c

2
√

km
= 1

2
√

10(1)
= 0.158

and the damped natural frequency is

ωd = ωn

√
1 − ξ 2 = 3.12 rad/s

The characteristic polynomial is

λ2 + 2ξωnλ + ω2
n = λ2 + λ + 10

yielding the complex conjugate eigenvalues

λ1,2 = −0.5 ± 3.12i

The unit step response is given by

y(t) = 1 − 1.01e−0.5t sin(3.12t + 80.9◦
)

We calculate directly from ξ and ωn the step response characteristics:
tR = 0.30 s (because ξ < 0.3 this estimate may be somewhat inaccurate),
tP = 1.01 s, PO = 60.5 percent, and tS = 8 s.

A plot of the unit step response is given is Figure 7.3, with rise time,
peak time, percent overshoot, and settling time displayed. This plot was
obtained from MATLAB using the step command and right-clicking in the
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Eigenvalue Selection for Second-Order Systems
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TABLE 7.1 Damping Ratio versus Step Response Characteristics

Case Damping Ratio Eigenvalues Unit Step Response

Overdamped ξ > 1 Real and distinct Slowest transient
response

Critically damped ξ = 1 Real and equal Fastest transient response
without overshoot

Underdamped 0 < ξ < 1 Complex conjugate
pair

Faster transient response
but with overshoot
and oscillation

Undamped ξ = 0 Imaginary pair Undamped oscillation
Unstable ξ < 0 At least one with

positive real part
Unbounded response

To study the relationship between these eigenvalues and system transient
response, we identify five distinct cases in Table 7.1, determined by
the dimensionless damping ratio ξ for a fixed undamped natural
frequency ωn.

We next relate step response characteristics to the system eigenvalues
for the most interesting of these cases: the underdamped case character-
ized by 0 < ξ < 1. In this case, the complex conjugate eigenvalues are
given by

λ1,2 = −ξωn ± jωd

in which ωd = ωn

√
1 − ξ 2 is the damped natural frequency in radians per

second. The unit step response for a standard second-order system in the
underdamped case is

y(t) = 1 − e−ξωnt

√
1 − ξ 2

sin(ωd t + θ)

in which the phase angle is given by θ = cos−1(ξ ) and therefore is referred
to as the damping angle. This response features a sinusoidal component
governed by the damped natural frequency and damping angle that is
damped by a decaying exponential envelope related to the negative real
part of the eigenvalues. A response of this type is plotted in Figure 7.3.

For the underdamped case, there are four primary performance char-
acteristics (see Figure 7.3) associated with the unit step response that
either directly or approximately can be related to the damping ratio and
undamped natural frequency. The performance characteristics definitions
and formulas are found in Dorf and Bishop (2005). Rise time tR is defined
as the elapsed time between when the response first reaches 10 percent of
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Step Response
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FIGURE 7.3 Unit step response for Example 7.1.

the steady-state value to when the response first reaches 90 percent of the
steady-state value. For a damping ratio in the range 0.3 < ξ < 0.8, rise
time can be approximated by

tR ∼= 2.16ξ + 0.60
ωn

Peak time tP is the time at which the peak response value is reached and
is given exactly by

tP = π

ωn

√
1 − ξ 2

= π

ωd

Percent overshoot PO characterizes the relationship between the peak
value and steady-state value according to

PO = peak value − steady-state value
steady-state value

× 100%

and can be computed exactly using

PO = 100e−ξπ/
√

1−ξ 2

Calculated characteristics:

Ts = 8 seconds

%OS = 60.46%

In Matlab:
•Generate LTI system sys using tf or ss
•Generate step response with step(sys)
•Right-click on plot and select “Characteristics” then the 
characteristic of interest
•Click on generated point to see the value selected.

Both of these 
characteristics can be 
reduced!  Desired:

Ts = 2 seconds

%OS = 4 %
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resulting figure window to add the performance specifications (Charac-
teristics → choose Peak Response, Settling Time, Rise Time, and Steady
State in turn. MATLAB will mark the response with a dot, which the user
may click to display the numerical values). We see that with the exception
of rise time (0.30 s estimated versus 0.37 s from the plot), the formula
values agree well with the MATLAB results values labeled on Figure 7.3
(settling time is also inaccurate, 8 s from the equation versus 7.32 s as
measured from the MATLAB generated response). !

Example 7.2 The unit step response in Figure 7.3 is typical of lightly
damped systems such as large-scale space structures. We consider the
application of a proportional-derivative (PD) control law given by

u(t) = −kPy(t) − kDẏ(t) + Gr(t)

= −
[
kP kD

] [
x1(t)
x2(t)

]
+ Gr(t)

which, as shown, also has the form of a state feedback control law. The
closed-loop system that results is given by

[
ẋ1(t)
x2(t)

]
=

⎡

⎣
0 1

−
(

k

m
+ kP

)
−

( c

m
+ kD

)
⎤

⎦
[

x1(t)
x2(t)

]
+

⎡

⎣
0
k

m

⎤

⎦Gr(t)

y(t) =
[

1 0
] [

x1(t)
x2(t)

]

Our objective is to improve the step response characteristics by reducing
the percent overshoot and settling time via adjusting the proportional and
derivative gains kP and kD. In particular, we specify a desired percent
overshoot of 4 percent and a settling time of 2 s. The gain G will be
chosen so that the closed-loop unit step response will have the same
steady-state value as the open-loop unit step response.

In terms of these performance specifications, we calculate the
desired closed-loop damping ratio ξ ′ from the percent-overshoot formula
according to

ξ ′ =

∣∣∣∣ln
(

PO
100

)∣∣∣∣
√

π2 +
[

ln
(

PO
100

)]2
=

∣∣∣∣ln
(

4
100

)∣∣∣∣
√

π2 +
[

ln
(

4
100

)]2
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Using this, we calculate the desired closed-loop undamped natural
frequency from the settling-time formula via

ω′
n = 4

ξ ′tS
= 2.79 rad/s

The desired closed-loop damped natural frequency is

ω′
d = ω′

n

√
1 − (ξ ′)2 = 1.95 rad/s

The proportional and derivative gains then can be determined by com-
paring the closed-loop characteristic polynomial of the closed-loop state
equation with the desired closed-loop characteristic polynomial:

λ2 + (2ξωn + kD)λ + (ω2
n + kP) = λ2 + 2ξ ′ω′

nλ + ω′
n

2 = λ2 + 4λ + 7.81

which leads to

kP = ω′
n

2 − ω2
n = −2.20 kD = 2ξ ′ω′

n − 2ξωn = 3.00

The input gain G is determined from the relationship

G = ω′
n

2

ω2
n

= 0.781

which yields the closed-loop transfer function

k
m
G

s2 + ( c
m

+ kD)s + ( k
m

+ kP)
= ω2

nG

s2 + (2ξωn + kD)s + (ω2
n + kP)

= ω′
n

2

s2 + 2ξ ′ω′
ns + ω

′2
n

= 7.81
s2 + 4s + 7.81

The closed-loop eigenvalues then are:

λ1,2 = −2 ± j1.95

and the closed-loop unit step response is

y(t) = 1 − 1.43e−2t sin(1.95t + 44.3◦
)

The MATLAB step command gives us the four performance specifica-
tions: tR = 0.78 s, tP = 1.60 s, PO = 4 percent, and tS = 2.12 s. The
actual settling time differs slightly from the desired settling time because
of the approximation in the settling-time formula. Figure 7.4 shows a

• We have the following desired characteristics:
• Ts = 2 seconds
• % OS = 4%

• From these we can determine the desired  2nd order system parameters

• Desired characteristic polynomial:
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frequency from the settling-time formula via

ω′
n = 4

ξ ′tS
= 2.79 rad/s

The desired closed-loop damped natural frequency is

ω′
d = ω′

n

√
1 − (ξ ′)2 = 1.95 rad/s

The proportional and derivative gains then can be determined by com-
paring the closed-loop characteristic polynomial of the closed-loop state
equation with the desired closed-loop characteristic polynomial:

λ2 + (2ξωn + kD)λ + (ω2
n + kP) = λ2 + 2ξ ′ω′

nλ + ω′
n

2 = λ2 + 4λ + 7.81

which leads to

kP = ω′
n

2 − ω2
n = −2.20 kD = 2ξ ′ω′

n − 2ξωn = 3.00

The input gain G is determined from the relationship

G = ω′
n

2

ω2
n

= 0.781

which yields the closed-loop transfer function

k
m
G

s2 + ( c
m

+ kD)s + ( k
m

+ kP)
= ω2

nG

s2 + (2ξωn + kD)s + (ω2
n + kP)

= ω′
n

2

s2 + 2ξ ′ω′
ns + ω

′2
n

= 7.81
s2 + 4s + 7.81

The closed-loop eigenvalues then are:

λ1,2 = −2 ± j1.95

and the closed-loop unit step response is

y(t) = 1 − 1.43e−2t sin(1.95t + 44.3◦
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The MATLAB step command gives us the four performance specifica-
tions: tR = 0.78 s, tP = 1.60 s, PO = 4 percent, and tS = 2.12 s. The
actual settling time differs slightly from the desired settling time because
of the approximation in the settling-time formula. Figure 7.4 shows a



• Desired characteristic polynomial:

• Open-loop (i.e. original) characteristic polynomial:

• A – BK matrix for the compensated system:

• Characteristic polynomial for A – BK:

• So we need k1 = 3 and k0 = -2.19
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Using this, we calculate the desired closed-loop undamped natural
frequency from the settling-time formula via

ω′
n = 4

ξ ′tS
= 2.79 rad/s

The desired closed-loop damped natural frequency is

ω′
d = ω′
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√
1 − (ξ ′)2 = 1.95 rad/s

The proportional and derivative gains then can be determined by com-
paring the closed-loop characteristic polynomial of the closed-loop state
equation with the desired closed-loop characteristic polynomial:

λ2 + (2ξωn + kD)λ + (ω2
n + kP) = λ2 + 2ξ ′ω′

nλ + ω′
n

2 = λ2 + 4λ + 7.81

which leads to

kP = ω′
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The closed-loop eigenvalues then are:

λ1,2 = −2 ± j1.95

and the closed-loop unit step response is

y(t) = 1 − 1.43e−2t sin(1.95t + 44.3◦
)

The MATLAB step command gives us the four performance specifica-
tions: tR = 0.78 s, tP = 1.60 s, PO = 4 percent, and tS = 2.12 s. The
actual settling time differs slightly from the desired settling time because
of the approximation in the settling-time formula. Figure 7.4 shows a
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Settling time tS is typically defined to be the time at which the response
enters and remains within a ±2 percent band about the steady-state value
and can be approximated by

tS ∼= 4
ξωn

The swiftness of the response is related to the rise time and peak time;
the deviation between the response and its steady-state value is related to
the percent overshoot and settling time.

Example 7.1 We return to the linear translational mechanical system
for the parameter values m = 1 kg, c = 1 N-s/m, and k = 10 N/m. The
undamped natural frequency and dimensionless damping ratio are

ωn =
√

k

m
=

√
10
1

= 3.16 rad/s

ξ = c

2
√

km
= 1

2
√

10(1)
= 0.158

and the damped natural frequency is

ωd = ωn

√
1 − ξ 2 = 3.12 rad/s

The characteristic polynomial is

λ2 + 2ξωnλ + ω2
n = λ2 + λ + 10

yielding the complex conjugate eigenvalues

λ1,2 = −0.5 ± 3.12i

The unit step response is given by

y(t) = 1 − 1.01e−0.5t sin(3.12t + 80.9◦
)

We calculate directly from ξ and ωn the step response characteristics:
tR = 0.30 s (because ξ < 0.3 this estimate may be somewhat inaccurate),
tP = 1.01 s, PO = 60.5 percent, and tS = 8 s.

A plot of the unit step response is given is Figure 7.3, with rise time,
peak time, percent overshoot, and settling time displayed. This plot was
obtained from MATLAB using the step command and right-clicking in the

(t)(t)
(t)(t)(t)

Cxy
BuAxx

=

+=! x(t) = (A−BK)x(t)+BGr(t)
y(t) =Cx(t)

u(t) = −Kx(t)+Gr(t)

Open-loop system Closed-loop system
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+=! x(t) = (A−BK)x(t)+BGr(t)
y(t) =Cx(t)

Open-loop system Closed-loop system

Obtain transfer functions from A, B, and C (open-loop) or A-BK, BG, and C (closed-loop):

Are we done?  Not yet.  Assuming G = 1, what transfer functions would we obtain?

u(t) = −Kx(t)+Gr(t)

Not in pure 2nd order form so the 
step response will not go to 1





(t)(t)
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Cxy
BuAxx

=

+=! x(t) = (A−BK)x(t)+BGr(t)
y(t) =Cx(t)

Open-loop system Closed-loop system

u(t) = −Kx(t)+Gr(t)

• Consider the step response for this system:

• What’s the steady-state value?  We can use the final-value theorem to find out:

• If we want a steady-state value of y(1) = 1 then set G = 7.81 / 10

H(s=0) also known as DC gain



Success!  %OS = 4 as desired.  However, Ts = 2.12 which is a little larger than 2.  Recall 
that our formula for Ts is actually based on an approximation, so this is a good result  


