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Introduction

* Recall that the state response of an LTI system
consists of two parts:

.
x(t)= "%, + [ N UBu(r)dT
o

zero-input response: Xi(t) Xzs(t): zero-state response

Y1) =Cerxy + [ " Ce*"Bu(r)dt + Du(t)

R —_—
zero-input output: yi(t) yzs(t): zero-state output

* Stabilityanalysis has two corresponding aspects:
— Internal stability: Whether x,;(t) stays bounded

— Bounded-input bounded stability: Whether y,(t) stays
bounded for a bounded input

Whether the zero-input state response stays bounded

INTERNAL STABILITY

Internal Stability

* Here, we assume u(t) = 0 and focus on the
system’s behaviour on its own

* The fundamental equation is
x(t) = Ax(1) x(0) = x¢
* Or for anonlinear system
x(0) = flx(®]  x(0) =xo
* An equilibrium state X isa particular state
vector at which the derivative equals 0
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* Depicted below are equilibrium statesa, bandc:

— ais unstable: even a tiny movement will move the
state away from equilibrium

— b is stable: a small movement will move the state a
small distance

— c is asymptotically stable: a small movement will
move the state, but it will eventually return to the
original point.

Stable and Unstable

Definition 6.1 The equilibrium state X = 0 of Equation (6.2) is

. -lf given any & > 0 there corresponds a § > 0 such that ||x||
< 6 implies that ||x(t)|| < & forall t > 0.

. -if it is not stable.

Asymptotically Stable

- ASpIOHEAUTISTabe) i is stable and it is possible to choose § > 0
such that ||xo|| < & implies that lim,_, « ||x(¢)|| = 0. Specifically, given
any ¢ > 0, there exists T > 0 for which the corresponding trajectory
satisfies ||x(t)|| < e forall t > T.

« Globally asymptotically stable if it is stable and lim,_,  [|x()|| = 0
for any initial state. Specifically, given any M > 0 and & > 0, there
exists T > 0 such that ||xo|| < M implies that the corresponding tra-
Jectory satisfies ||x(t)|| < e forall t > T.

Assumptions

* If u(t) =0and ty =0, the state response is
x(1) = e*'x,
* We will assume the following (each statement
implies the others):

— A hasn linearly independent eigenvectors
— A hasn distinct eigenvalues

— A can bediagonalized

A=VDV!
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* We expand the definition of the matrix
exponential to incorporate VDV in place of A:

Using
A=vDv—!t Ak —ypky—!

A2 ABE3
At
€ = I+di+ 2! + 3!
/1)'2 =142 ",'1)3"/—1 ’3
= vv—1+vm'—l+‘ ; L 30 LA
D2t2 DZ{[Z% .
ST +"'>V

= V<1+D[+

= VePty!

e What does e’ look like? et 0 ... 0
Aot
bt 0 e 0
e’ = .
0 0 et

* Wecan use thisto re-write x(t)
z(t) = et
VePtv g,
* V, V1, and x, are constant matrices and vectors.

Therefore each row of x(t) is just some linear
combination of termsinvolving the diagonals of et

zi(t) = ae™t + bet2t 4 ...

zi(t) = ae™t + b2t 4 ...

* The exact stateresponserequires all these constants
(a, b, ...)to beknown, but for stability analysis we
just want to know if the expression will grow without
bound

* Clearly, ifthe eigenvalues of A (A, A,, ...)arereal
numbers then we just have a sum of pure
exponentials
— If any A; > 0 then the system is unstable

— If all Aj < 0 then the system is asymptotically stable

— If n—1 eigenvalues are negative, and just one eigenvalue is zero then
the system is stable, but not asymptotically stable

Complex Eigenvalues

* The eigenvalues of A will often be complex,
even if A is purely real

* Consider eMand letA=a+ib

e)\t _ e(a—&-ib)t _ eateibt
= e (cosbt + isinbt)
|€>\t‘ — eat

* This magnitude decays for a < 0, stays constant
fora =0, and grows (explodes!) fora >0

* Hence, for stability all we care about is Re{A}
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The Eigenvalue Test for Internal Stability

* Ifour assumption of n distinct eigenvalues holds, then
we have the following eigenvalue test for internal
stability:

— The system is stable if all eigenvalues have a non-positive
real part
* If one eigenvalue is zerothen there isa constant non-decaying term
* Otherwise, if all eigenvaluesarestrictly negative we have

— If any eigenvalue has a positive real part then the systemis
unstable

* Thesame holdsfor repeated eigenvalues, except for
repeated eigenvalues with zeroreal part. In thiscasea
more sophisticated test is required (out of our scope).

Connection between Poles and
Eigenvalues

* The poles of asystem’s transfer function
will be eigenvalues of A
— Caveat: Its possible that some of the
eigenvalues of A will not be poles of the
transfer function due to pole-zero
cancellation.
* (We'll see an example of this later)

* Let H(s) be a general 2" order transfer function

b —a++va?—4b

PoRT—— poles: 5
* The corresponding A matrix

H(s) =

* Letswork out its eigenvalues The Characteristic
Polynomial
det (A—M\I) =

w(3 )

N4a+b = 0

A =

Energy-Based Analysis

* Recall that state variables are always associated with
energy storage elements
* Astable system will dissipate or maintainenergy
— If the system’s energy always dissipates down to O then it is
asymptotically stable

* Iftheenergy in the system actually increases (without
any applied input) then the system is unstable

* Consider the following simple }_”(”
mechanical system...

m — f(r)
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}—» ¥(1)
. 0 1
W] / A= k c
¢ = fin) —_—— —_—
i m m

* The statevariablex,(t) represents the displacement
of the mass. The system stores energy in two ways:
— Potential energy in the spring: % k x2
— Kinetic energy in the moving mass: % m x

— Total energy:

L, 1 5
E(x1,x) = Ekx1 + mez

* Work out the derivative of E with respect to time...

(=53]

] 0 1 1 1
) n =0 A= ko e E(xl,xz)zzkxlz-i—zmx%

d d[1 1
EE[x.(t),xz(t)] = |:§kx12(t) + meg(l):|
= kx1(£)x1(t) + mxy(t)Xa2(t)

k "
kxl(l)[xz(t)] + mxs (1) [—;xm - %xz(l)}

= —cx%(t)

* Letstryadjusting the damping coefficient, c

}—» 0 1 2 1 2
k 0 | E(x1,x) = Ekxl + 2
. P ——— A= k c . )
i = = Eln0), 0] = —edo)

e Zero damping: c=0
— dE/dt = 0 which means that the total energy is constant
— Energy goes back and forth between the moving mass and
the spring, butis never lost (or gained)
— M, A2=2%j3.16 (form=1kg k =10 N/m)
— The system oscillates sinusoidally

— The system is stable, but not asymptotically stable

“Phase portrait”:

€ Shows system
trajectory in
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Specific values:
m =1 kg
k=10 N/m
' x0=[1,2]

FIGURE 6.4 (a) State-variable responses; (b) phase portrait; (c) energy response
for a marginally-stable equilibrium.
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FIGURE 6.5 (a) State-variable responses; (b) phase portrait; (c) energy response
for an asymptotically-stable equilibrium.

}—»\(1) E( )_]k2+1 )
k 0 1 X1, X2) = E X mez
. N e A= k c . )
i - Elxi (1), x2(1)] = —cx;3 (1)
* Positive damping: c=1
— dE/dt < 0 which means that energy strictly decreases
— A1, A2=-054+j3.12
— Asymptotically stable:
* State response is an exponentially decaying sinusoid
}—» ay 1 2 1 2
0 1 E(xy,x;) = Ekxl + mez
mo A A= k c . )
- E[x(1), x2(1)] = —ex3(1)

* Negative damping: c=-1
— Not clear what this means physically: Apowered
damper?
— dE/dt > 0 which means that energy strictly increases
— A1, A2=054+]3.12

— Unstable:
* State response is an exponentially growing sinusoid
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FIGURE 6.6 (a) State-variable responses; (b) phase portrait; (c) energy response
for an unstable equilibrium.
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Whether the zero-stateresponse is bounded for a bounded input

BOUNDED-INPUT BOUNDED-
OUTPUT STABILITY

Bounded-Input Bounded-Output
(BIBO) Stability

Recall that the output of an LTI system consists of
two parts:

¥(1)=Ce*x, + [ Ce*"Bu(r)dz + Du(r)

— —
zero-input output: yi(t) yzs(t): zero-state output
BIBO stability concernsy,(t)

As you have seen BIBO stability in other courses we
will be brief:

— Asystem is BIBO stable if its impulse response has a finite
sum

Test for BIBO Stability

Theorem 6.6 The linear state equation (6.1) is bounded-input, bounded-
output stable if and only if the impulse response matrix H(t) = Ce?' B+
Dé(t) satisfies

/ |H(t)|ldTt < 00
0

* Thismeans that H(t) is absolutely integrable
* There isa strongrelationship between internal
stability and BIBO stability (both involve e*t)
* |f asystem is asymptotically stable, itis BIBO
stable

* However, the oppositeis not necessarily true...

Example 6.3 Consider the following two-dimensional state equation:
@ | [0 1]x@ -1
][ o] [0 ][]0

o x1(1)
y@) =10 1]|:x2(t)i|

The characteristic polynomial is

IsT — Al ‘ s —1

-1 s

st—1

+Ds—1 Ao =—1,+1

Not asymptotically stable... In fact, unstable!

l t —t l ot

A 2(6 +e™) 2(6 e
B 1 3 —1 1 ' —1
5(6’ —e) 5(6‘ +e™)
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H(s)=C(sI —A)~'B
—1
s —1 -1
-o ol S]]

i)

=[0 1]

_ s—1
T+ D -1
1 Pole-Zero
= Cancellation
s+1
hty=e¢",1>0

o0
Satisfies the test for BIBO stability: / [h(T)ldT =1
0

So the system is unstable, but BIBO stable? Why?

Lesson: Don’t cancel poles and zeros when testing for stability
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