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Stability

ENGI	7825:	Control	 Systems	II
Andrew	Vardy

Introduction

• Recall	that	the	state	response	of	an	LTI	system	
consists	of	two	parts:

• Stability	analysis	has	two	corresponding	aspects:
– Internal	stability: Whether	xzi(t)	stays	bounded
– Bounded-input	 bounded	 stability:	Whether	 yzs(t)	stays	
bounded	 for	a	bounded	 input

x(t) = eA(t−t0 )x0 + eA(t−τ )Bu(τ )dτ
t0

t
∫

zero-input response: xzi(t) xzs(t): zero-state response

y(t) =CeA(t−t0 )x0 + CeA(t−τ )Bu(τ )dτ
t0

t
∫ +Du(t)

zero-input output: yzi(t) yzs(t): zero-state output

INTERNAL	STABILITY
Whether	the	zero-input	state	response	stays	bounded

Internal	Stability

• Here,	we	assume	u(t)	=	0	and	focus	on	 the	
system’s	behaviour on	 its	own

• The	 fundamental	equation	 is

• Or	for	a	nonlinear	 system

• An	equilibrium	 state is	a	particular	 state	
vector	 at	which	 the	derivative	 equals	0
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FIGURE 6.2 Stability of an equilibrium state.

Our ultimate focus is on the homogeneous linear time-invariant state
equation

ẋ(t) = Ax(t) x(0) = x0 (6.3)

for which x̃ = 0 ∈ Rn is seen easily to be an equilibrium state. It is pos-
sible to show by exploiting the linearity of the solution to (6.3) in the
initial state that the preceding stability definitions can be reformulated as
follows:

Definition 6.2 The equilibrium state x̃ = 0 of Equation (6.3) is

• Stable if there exists a finite positive constant γ such that for any
initial state x0 the corresponding trajectory satisfies ||x(t)|| ≤ γ ||x0||
for all t ≥ 0.

• Unstable if it is not stable.
• (Globally) asymptotically stable if given any µ > 0 there exists

T > 0 such that for any initial state x0 the corresponding trajectory
satisfies ||x(t)|| ≤ µ||x0|| for all t ≥ T .

• (Globally) exponentially stable if there exist positive constants k and
λ such that that for any initial state x0 the corresponding trajectory
satisfies ||x(t)|| ≤ ke−λt ||x0|| for all t ≥ 0.

Since the trajectory of Equation (6.3) is given by x(t) = eAtx0, we
see from the choice x0 = ei , the ith standard basis vector, that a stable
equilibrium state implies that the ith column of the matrix exponential is
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bounded input signal. This is referred to, not surprisingly, as bounded-
input, bounded-output stability. Although these internal and external sta-
bility properties are fundamentally different in character, as they pertain
to different response components, they are related, as we will show. This
chapter concludes with an overview of stability analysis using MATLAB
featuring our Continuing MATLAB Example and Continuing Examples 1
and 2.

6.1 INTERNAL STABILITY

In this section we focus on the stability of equilibrium states for homo-
geneous state equations. We begin our analysis with the nonlinear state
equation

ẋ(t) = f [x(t)] x(0) = x0 (6.2)

for which equilibrium states are constant n × 1 vectors x̃ that satisfy
f (x̃) = 0. Stability of an equilibrium state refers to the qualitative behav-
ior of trajectories that start in the vicinity of the equilibrium state. A
nonlinear state equation can have multiple isolated equilibrium states each
with different stability properties. This is why we refer to stability of
a particular equilibrium state rather than the state equation itself. The
stability-related notions we consider are illustrated in Figure 6.1. Point
a represents an unstable equilibrium. A ball perfectly balanced atop the
curved surface on the left will remain at rest if undisturbed. However,
the slightest perturbation will cause the ball to roll away from that rest
position. Point b illustrates a stable equilibrium in the sense that the ball
will move only a small distance from a rest position on the flat surface
when experiencing a perturbation that is suitably small. Finally, point c
depicts an asymptotically stable equilibrium. Suppose that the ball is ini-
tially at rest nestled in the curved surface on the right. For a reasonably
small perturbation, the ball will not stray too far from the rest position
and, in addition, eventually will return to the rest position.

cba

FIGURE 6.1 Equilibrium states.
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• Depicted	below	are	equilibrium	states	a,	b	and	c:
– a	is	unstable: even	a	tiny	movement	will	 move	the	
state	away	from	equilibrium

– b	is	stable: a	small	movement	will	move	the	state	a	
small	distance

– c	is	asymptotically	 stable: a	small	movement	will	
move	the	state,	but	it	will	 eventually	return	 to	the	
original	 point.

Stable	and	Unstable
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Armed with this intuition, we now give precise stability definitions of
an equilibrium state. Because a nonzero equilibrium state can be translated
to the origin by change of variables with an accompanying modification
to the state equation, we can assume without loss of generality that the
equilibrium state under scrutiny is at the origin, that is, x̃ = 0 ∈ Rn.

Definition 6.1 The equilibrium state x̃ = 0 of Equation (6.2) is

• Stable if, given any ε > 0 there corresponds a δ > 0 such that ||x0||
< δ implies that ||x(t)|| < ε for all t ≥ 0.
• Unstable if it is not stable.
• Asymptotically stable if it is stable and it is possible to choose δ > 0
such that ||x0|| < δ implies that limt→∞ ||x(t)|| = 0. Specifically, given
any ε > 0, there exists T > 0 for which the corresponding trajectory
satisfies ||x(t)|| ≤ ε for all t ≥ T .
• Globally asymptotically stable if it is stable and limt→∞ ||x(t)|| = 0
for any initial state. Specifically, given any M > 0 and ε > 0, there
exists T > 0 such that ||x0|| < M implies that the corresponding tra-
jectory satisfies ||x(t)|| ≤ ε for all t ≥ T .
• Exponentially stable if there exist positive constants δ, k, and λ such
that ||x0|| < δ implies that ||x(t)|| < ke−λt ||x0|| for all t ≥ 0.
• Globally exponentially stable if there exist positive constants k and
λ such that ||x(t)|| ≤ ke−λt ||x0|| for all t ≥ 0 for all initial states.

The wording in these definitions is a bit subtle, but the basic ideas are
conveyed in Figure 6.2. An equilibrium state is stable if the state trajec-
tory can be made to remain as close as desired to the equilibrium state for
all time by restricting the initial state to be sufficiently close to the equi-
librium state. An unstable equilibrium state does not necessarily involve
trajectories that diverge arbitrarily far from the equilibrium; rather only
that there is some bound on ||x(t)|| that cannot be achieved for all t ≥ 0
by at least one trajectory no matter how small the initial deviation ||x0||.
Asymptotic stability requires, in addition to stability, that trajectories con-
verge to the equilibrium state over time with no further constraint on the
rate of convergence. By comparison, exponential stability is a stronger
stability property. As an illustration, consider the one-dimensional state
equation

ẋ(t) = −x3(t)

which, for any initial state, has the solution x(t) = x0/
√

1 + 2x2
0 t that

asymptotically converges to the equilibrium x̃ = 0 over time. However,
the rate of convergence is slower than any decaying exponential bound.
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Our ultimate focus is on the homogeneous linear time-invariant state
equation

ẋ(t) = Ax(t) x(0) = x0 (6.3)

for which x̃ = 0 ∈ Rn is seen easily to be an equilibrium state. It is pos-
sible to show by exploiting the linearity of the solution to (6.3) in the
initial state that the preceding stability definitions can be reformulated as
follows:

Definition 6.2 The equilibrium state x̃ = 0 of Equation (6.3) is

• Stable if there exists a finite positive constant γ such that for any
initial state x0 the corresponding trajectory satisfies ||x(t)|| ≤ γ ||x0||
for all t ≥ 0.

• Unstable if it is not stable.
• (Globally) asymptotically stable if given any µ > 0 there exists

T > 0 such that for any initial state x0 the corresponding trajectory
satisfies ||x(t)|| ≤ µ||x0|| for all t ≥ T .

• (Globally) exponentially stable if there exist positive constants k and
λ such that that for any initial state x0 the corresponding trajectory
satisfies ||x(t)|| ≤ ke−λt ||x0|| for all t ≥ 0.

Since the trajectory of Equation (6.3) is given by x(t) = eAtx0, we
see from the choice x0 = ei , the ith standard basis vector, that a stable
equilibrium state implies that the ith column of the matrix exponential is

Asymptotically	Stable
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conveyed in Figure 6.2. An equilibrium state is stable if the state trajec-
tory can be made to remain as close as desired to the equilibrium state for
all time by restricting the initial state to be sufficiently close to the equi-
librium state. An unstable equilibrium state does not necessarily involve
trajectories that diverge arbitrarily far from the equilibrium; rather only
that there is some bound on ||x(t)|| that cannot be achieved for all t ≥ 0
by at least one trajectory no matter how small the initial deviation ||x0||.
Asymptotic stability requires, in addition to stability, that trajectories con-
verge to the equilibrium state over time with no further constraint on the
rate of convergence. By comparison, exponential stability is a stronger
stability property. As an illustration, consider the one-dimensional state
equation

ẋ(t) = −x3(t)

which, for any initial state, has the solution x(t) = x0/
√

1 + 2x2
0 t that

asymptotically converges to the equilibrium x̃ = 0 over time. However,
the rate of convergence is slower than any decaying exponential bound.

Assumptions

• If	u(t)	=	0	and	 t0 =	0,	 the	state	response	 is

• We	will	assume	the	 following	(each	statement	
implies	the	others):
– A	has	n	linearly	independent	eigenvectors
– A	has	n	distinct	eigenvalues
– A	can	be	diagonalized

x(t) = eAtx0
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• We	expand	 the	definition	 of	the	matrix	
exponential	 to	 incorporate	 VDV-1 in	place	of	A:

• What		does	eDt look	like?

• We	can	use	this	to	re-write	x(t)

• V,	V-1,	and	x0 are	constant	matrices	and	vectors.		
Therefore	each	row	of	x(t)	is	just	some	linear	
combination	of	terms	involving	the	diagonals	of	eDt

• The	exact	state	response	requires	all	these	constants	
(a,	b,	...)	to	be	known,	but	for	stability	analysis	we	
just	want	to	know	if	the	expression	will	grow	without	
bound

• Clearly,	if	the	eigenvalues	of	A	(λ1,	λ2,	...)	are	real	
numbers	then	we	just	have	a	sum	of	pure	
exponentials
– If	any	λi >	0	then	the	system	is	unstable
– If	all	λi <	0	then	the	system	is	asymptotically	 stable
– If	n	– 1	eigenvalues	are	negative,	and	just	one	eigenvalue	is	zero	then	

the	system	is	stable,	but	not	asymptotically	stable

Complex	Eigenvalues

• The	eigenvalues	of	A	will	often	be	complex,	
even	 if	A	is	purely	 real

• Consider	 eλt and	 let	λ =	a	+	i b

• This	magnitude	 decays	 for	a	<	0,	stays	constant	
for	a	=	0,	and	grows	(explodes!)	 for	a	>	0

• Hence,	 for	stability	all	we	care	about	 is	Re{λ}
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The	Eigenvalue	Test	for	Internal	Stability
• If	our	assumption	of	n	distinct	eigenvalues	holds,	then	
we	have	the	following	eigenvalue	test	for	internal	
stability:
– The	system	 is	stable if	all	eigenvalues	 have	a	non-positive	
real	 part

• If	one	eigenvalue	is	zero	then	there	is	a	constant	non-decaying	term
• Otherwise,	if	all	eigenvalues	are	strictly	negative	we	have	asymptotic	
stability

– If	any	eigenvalue	 has	a	positive	 real	 part	 then	the	system	is	
unstable

• The	same	holds	for	repeated	eigenvalues,	except	for	
repeated	eigenvalues	with	zero	real	part.		In	this	case	a	
more	sophisticated	test	is	required	(out	of	our	scope).

Connection	between	Poles	and	
Eigenvalues

• The	poles	 of	a	system’s	 transfer	function	
will	be	eigenvalues	of	A
– Caveat:	 Its	possible	 that	some	of	the	
eigenvalues	of	A	will	not	be	poles	of	the	
transfer	function	 due	 to	pole-zero	
cancellation.	 	
• (We’ll	see	an	example	of	this	later)

• Let	H(s)	be	a	general	2nd order	transfer	function

• The	corresponding	A	matrix

• Lets	work	out	its	eigenvalues The	Characteristic
Polynomial

Energy-Based	Analysis

• Recall	that	state	variables	are	always	associated	with	
energy	storage	elements

• A	stable system	will	dissipate	or	maintain	energy
– If	the	system’s	energy	 always	dissipates	down	to	0	then	it	 is	
asymptotically	 stable

• If	the	energy	in	the	system	actually	increases	(without	
any	applied	input)	then	the	system	is	unstable

• Consider	the	following	simple
mechanical	system...

6 INTRODUCTION

y(t)
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FIGURE 1.2 Translational mechanical system.

ky(t)

cy(t)

f (t)m

FIGURE 1.3 Free-body diagram.

system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)
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• The	state	variable	x1(t)	represents	the	displacement	
of	the	mass.		The	system	stores	energy	in	two	ways:
– Potential	energy	 in	the	spring:	½	k	x12

– Kinetic	energy	 in	the	moving	mass:	½	m	x22

– Total	energy:

• Work	out	the	derivative	of	E	with	respect	to	time...
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EXAMPLES 7

The original single second-order differential equation can be written as
a coupled system of two first-order differential equations, that is,

ẋ1(t) = x2(t)

ẋ2(t) = − c

m
x2(t) − k

m
x1(t) + 1

m
f (t)

The output is the mass displacement

y(t) = x1(t)

The generic variable name for input vectors is u(t), so we define:

u(t) = f (t)

We now write the preceding equations in matrix-vector form to get a
valid state-space description. The general state-space description consists
of the state differential equation and the algebraic output equation. For
Example 1.1, these are

State Differential Equation

ẋ(t) = Ax(t) + Bu(t)

[
ẋ1(t)
ẋ2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]
+

⎡

⎣
0
1
m

⎤

⎦u(t)

Algebraic Output Equation

y(t) = Cx(t) + Du(t)

y(t) = [ 1 0 ]
[

x1(t)
x2(t)

]
+ [0]u(t)

The two-dimensional single-input, single-output system matrices in this
example are (with m = p = 1 and n = 2):

A =

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦ B =

⎡

⎣
0
1
m

⎤

⎦ C = [ 1 0 ]

D = 0

In this example, the state vector is composed of the position and
velocity of the mass m. Two states are required because we started with
one second-order differential equation. Note that D = 0 in this example
because no part of the input force is directly coupled to the output. !
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Example 6.1 We consider the second-order linear translational mechan-
ical system that was introduced in Example 1.1, which for zero external
applied force is governed by

m ÿ(t) + cẏ(t) + ky(t) = 0

in which y(t) represents the displacement of both the mass and spring
from rest. The state variables were chosen previously as the mass/spring
displacement x1(t) = y(t) and the mass velocity x2(t) = ẏ(t), yielding
the homogeneous state equation

[
ẋ1(t)
ẋ2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]

We recall that these state variables are related to energy stored in this
system. The spring displacement characterizes the potential energy stored
in the spring, and the mass velocity characterizes the kinetic energy stored
in the mass. We therefore can express the total energy stored in the system
by the function

E(x1, x2) = 1
2
kx2

1 + 1
2
mx2

2

We observe that the system energy is positive whenever [x1, x2]T ̸=
[0, 0]T and attains the minimum value of zero at the equilibrium state
[x̃1, x̃2]T = [0, 0]T .

On evaluating the energy function along a system trajectory, we can
compute the time derivative

d

dt
E[x1(t), x2(t)] = d

dt

[
1
2
kx2

1(t) + 1
2
mx2

2(t)

]

= kx1(t)ẋ1(t) + mx2(t)ẋ2(t)

= kx1(t)

[
x2(t)

]
+ mx2(t)

[
− k

m
x1(t) − c

m
x2(t)

]

= −cx2
2(t)

where we have invoked the chain rule and have used the state equation
to substitute for the state-variable derivatives.

For zero damping (c = 0) we have dE/dt ≡ 0, so the total system
energy is constant along any trajectory. This corresponds to a perpetual
exchange between the potential energy stored in the spring and the kinetic

• Lets	try	adjusting	the	damping	coefficient,	c

6 INTRODUCTION
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ẋ2(t) = − c

m
x2(t) − k

m
x1(t) + 1

m
f (t)

The output is the mass displacement

y(t) = x1(t)

The generic variable name for input vectors is u(t), so we define:

u(t) = f (t)

We now write the preceding equations in matrix-vector form to get a
valid state-space description. The general state-space description consists
of the state differential equation and the algebraic output equation. For
Example 1.1, these are

State Differential Equation

ẋ(t) = Ax(t) + Bu(t)

[
ẋ1(t)
ẋ2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]
+

⎡

⎣
0
1
m

⎤

⎦u(t)

Algebraic Output Equation

y(t) = Cx(t) + Du(t)

y(t) = [ 1 0 ]
[

x1(t)
x2(t)

]
+ [0]u(t)

The two-dimensional single-input, single-output system matrices in this
example are (with m = p = 1 and n = 2):

A =

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦ B =

⎡

⎣
0
1
m

⎤

⎦ C = [ 1 0 ]

D = 0

In this example, the state vector is composed of the position and
velocity of the mass m. Two states are required because we started with
one second-order differential equation. Note that D = 0 in this example
because no part of the input force is directly coupled to the output. !
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Example 6.1 We consider the second-order linear translational mechan-
ical system that was introduced in Example 1.1, which for zero external
applied force is governed by

m ÿ(t) + cẏ(t) + ky(t) = 0

in which y(t) represents the displacement of both the mass and spring
from rest. The state variables were chosen previously as the mass/spring
displacement x1(t) = y(t) and the mass velocity x2(t) = ẏ(t), yielding
the homogeneous state equation

[
ẋ1(t)
ẋ2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]

We recall that these state variables are related to energy stored in this
system. The spring displacement characterizes the potential energy stored
in the spring, and the mass velocity characterizes the kinetic energy stored
in the mass. We therefore can express the total energy stored in the system
by the function

E(x1, x2) = 1
2
kx2

1 + 1
2
mx2

2

We observe that the system energy is positive whenever [x1, x2]T ̸=
[0, 0]T and attains the minimum value of zero at the equilibrium state
[x̃1, x̃2]T = [0, 0]T .

On evaluating the energy function along a system trajectory, we can
compute the time derivative

d

dt
E[x1(t), x2(t)] = d

dt

[
1
2
kx2

1(t) + 1
2
mx2

2(t)

]

= kx1(t)ẋ1(t) + mx2(t)ẋ2(t)

= kx1(t)

[
x2(t)

]
+ mx2(t)

[
− k

m
x1(t) − c

m
x2(t)

]

= −cx2
2(t)

where we have invoked the chain rule and have used the state equation
to substitute for the state-variable derivatives.

For zero damping (c = 0) we have dE/dt ≡ 0, so the total system
energy is constant along any trajectory. This corresponds to a perpetual
exchange between the potential energy stored in the spring and the kinetic
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where we have invoked the chain rule and have used the state equation
to substitute for the state-variable derivatives.

For zero damping (c = 0) we have dE/dt ≡ 0, so the total system
energy is constant along any trajectory. This corresponds to a perpetual
exchange between the potential energy stored in the spring and the kinetic

• Zero	damping:	 c	=	0
– dE/dt =	0	which	means	 that	the	 total	energy	 is	constant
– Energy	 goes	back	and	 forth	between	 the	moving	mass	and	
the	spring,	but	is	never	 lost	(or	gained)

– λ1,	λ2 =	± j	3.16		(for	m	=	1kg,	k	=	10	N/m)
– The	system	oscillates	sinusoidally
– The	system	 is	stable,	but	not	asymptotically	 stable
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system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)

EXAMPLES 7

The original single second-order differential equation can be written as
a coupled system of two first-order differential equations, that is,

ẋ1(t) = x2(t)

ẋ2(t) = − c

m
x2(t) − k

m
x1(t) + 1

m
f (t)

The output is the mass displacement

y(t) = x1(t)

The generic variable name for input vectors is u(t), so we define:

u(t) = f (t)

We now write the preceding equations in matrix-vector form to get a
valid state-space description. The general state-space description consists
of the state differential equation and the algebraic output equation. For
Example 1.1, these are

State Differential Equation

ẋ(t) = Ax(t) + Bu(t)

[
ẋ1(t)
ẋ2(t)

]
=

⎡
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0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]
+

⎡

⎣
0
1
m

⎤

⎦u(t)

Algebraic Output Equation

y(t) = Cx(t) + Du(t)

y(t) = [ 1 0 ]
[

x1(t)
x2(t)

]
+ [0]u(t)

The two-dimensional single-input, single-output system matrices in this
example are (with m = p = 1 and n = 2):

A =

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦ B =

⎡

⎣
0
1
m

⎤

⎦ C = [ 1 0 ]

D = 0

In this example, the state vector is composed of the position and
velocity of the mass m. Two states are required because we started with
one second-order differential equation. Note that D = 0 in this example
because no part of the input force is directly coupled to the output. !
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the homogeneous state equation

[
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We observe that the system energy is positive whenever [x1, x2]T ̸=
[0, 0]T and attains the minimum value of zero at the equilibrium state
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On evaluating the energy function along a system trajectory, we can
compute the time derivative
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dt

[
1
2
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1(t) + 1
2
mx2
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]

= kx1(t)ẋ1(t) + mx2(t)ẋ2(t)

= kx1(t)

[
x2(t)

]
+ mx2(t)

[
− k

m
x1(t) − c

m
x2(t)

]

= −cx2
2(t)

where we have invoked the chain rule and have used the state equation
to substitute for the state-variable derivatives.

For zero damping (c = 0) we have dE/dt ≡ 0, so the total system
energy is constant along any trajectory. This corresponds to a perpetual
exchange between the potential energy stored in the spring and the kinetic

210 STABILITY

computing the following function of the state variables

Ė(x1, x2) ! ∂E

∂x1
(x1, x2)ẋ1 + ∂E

∂x2
(x1, x2)ẋ2

= (kx1)ẋ1 + (mx2)ẋ2

= (kx1)(x2) + (mx2)

(
− k

m
x1 − c

m
x2

)

= −cx2
2

followed by evaluating along a system trajectory x(t) = [x1(t), x2(t)]T to
obtain

Ė[x1(t), x2(t)] = −cx2
2(t) = d

dt
E[x1(t), x2(t)]

In addition, properties of the total energy time derivative along all sys-
tem trajectories and accompanying stability implications can be deduced
from properties of the function Ė(x1, x2) over the entire state space. An
important consequence is that explicit knowledge of the trajectories them-
selves is not required.

Lyapunov Stability Analysis

The Russian mathematician A. M. Lyapunov (1857–1918) observed
that conclusions regarding stability of an equilibrium state can be
drawn from a more general class of energy-like functions. For the
nonlinear state equation (6.2), we consider real-valued functions V (x) =
V (x1, x2, . . . , xn) with continuous partial derivatives in each state variable
that are positive definite, meaning that V (0) = 0 and V (x) > 0 for all
x ̸= 0 at least in a neighborhood of the origin. This generalizes the
property that the total energy function has a local minimum at the
equilibrium. To analyze the time derivative of the function V (x) along
trajectories of Equation (6.2), we define

V̇ (x) = ∂V

∂x1
(x)ẋ1 + ∂V

∂x2
(x)ẋ2 + · · · + ∂V

∂xn

(x)ẋn

=
[

∂V

∂x1
(x)

∂V

∂x2
(x) · · · ∂V

∂x2
(x)

]
⎡

⎢⎢⎣

ẋ1
ẋ2
...
ẋn

⎤

⎥⎥⎦

= ∂V

∂x
(x)f (x)
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system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)
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thereby verifying that x(t) ≡ x̃ = [0, 0]T is an asymptotically stable equi-
librium state.

For negative damping (c < 0), we have dE/dt > 0 along any trajectory
for which the mass velocity is not identically zero. The same reasoning
applied earlier indicates that the total energy in the system is strictly
increasing along any trajectory other than x(t) ≡ x̃ = [0, 0]T . It can be
argued that any initial state other than the equilibrium state yields a tra-
jectory that diverges infinitely far away from the origin as time tends to
infinity.

Simulation results and eigenvalue computations bear out these
conclusions. For m = 1 kg, k = 10 N/m, and c = 0 N-s/m along with
the initial state x(0) = x0 = [1, 2]T , the state-variable time responses are
shown in Figure 6.4a, the phase portrait [x2(t) = ẋ1(t) plotted versus
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FIGURE 6.4 (a) State-variable responses; (b) phase portrait; (c) energy response
for a marginally-stable equilibrium.

“Phase	portrait”:	
Shows	system	
trajectory	 in	
state	 space

Specific	values:
m	=	1	kg
k	=	10	N/m
x0 =	 [1,	2]T
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6

• Positive	damping:	 c	=	1
– dE/dt <	0	which	means	 that	energy	 strictly	decreases
– λ1,	λ2 =	 -0.5	± j	3.12
– Asymptotically	 stable:

• State	response	is	an	exponentially	decaying	sinusoid
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system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)
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The original single second-order differential equation can be written as
a coupled system of two first-order differential equations, that is,

ẋ1(t) = x2(t)

ẋ2(t) = − c

m
x2(t) − k

m
x1(t) + 1

m
f (t)

The output is the mass displacement

y(t) = x1(t)

The generic variable name for input vectors is u(t), so we define:

u(t) = f (t)

We now write the preceding equations in matrix-vector form to get a
valid state-space description. The general state-space description consists
of the state differential equation and the algebraic output equation. For
Example 1.1, these are

State Differential Equation

ẋ(t) = Ax(t) + Bu(t)

[
ẋ1(t)
ẋ2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]
+

⎡

⎣
0
1
m

⎤

⎦u(t)

Algebraic Output Equation

y(t) = Cx(t) + Du(t)

y(t) = [ 1 0 ]
[

x1(t)
x2(t)

]
+ [0]u(t)

The two-dimensional single-input, single-output system matrices in this
example are (with m = p = 1 and n = 2):

A =

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦ B =

⎡

⎣
0
1
m

⎤

⎦ C = [ 1 0 ]

D = 0

In this example, the state vector is composed of the position and
velocity of the mass m. Two states are required because we started with
one second-order differential equation. Note that D = 0 in this example
because no part of the input force is directly coupled to the output. !
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Example 6.1 We consider the second-order linear translational mechan-
ical system that was introduced in Example 1.1, which for zero external
applied force is governed by

m ÿ(t) + cẏ(t) + ky(t) = 0

in which y(t) represents the displacement of both the mass and spring
from rest. The state variables were chosen previously as the mass/spring
displacement x1(t) = y(t) and the mass velocity x2(t) = ẏ(t), yielding
the homogeneous state equation
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]
=
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m
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⎤
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]

We recall that these state variables are related to energy stored in this
system. The spring displacement characterizes the potential energy stored
in the spring, and the mass velocity characterizes the kinetic energy stored
in the mass. We therefore can express the total energy stored in the system
by the function

E(x1, x2) = 1
2
kx2

1 + 1
2
mx2

2

We observe that the system energy is positive whenever [x1, x2]T ̸=
[0, 0]T and attains the minimum value of zero at the equilibrium state
[x̃1, x̃2]T = [0, 0]T .

On evaluating the energy function along a system trajectory, we can
compute the time derivative

d

dt
E[x1(t), x2(t)] = d

dt

[
1
2
kx2

1(t) + 1
2
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]
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= kx1(t)

[
x2(t)

]
+ mx2(t)

[
− k
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x1(t) − c

m
x2(t)

]

= −cx2
2(t)

where we have invoked the chain rule and have used the state equation
to substitute for the state-variable derivatives.

For zero damping (c = 0) we have dE/dt ≡ 0, so the total system
energy is constant along any trajectory. This corresponds to a perpetual
exchange between the potential energy stored in the spring and the kinetic
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tem trajectories and accompanying stability implications can be deduced
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nonlinear state equation (6.2), we consider real-valued functions V (x) =
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that are positive definite, meaning that V (0) = 0 and V (x) > 0 for all
x ̸= 0 at least in a neighborhood of the origin. This generalizes the
property that the total energy function has a local minimum at the
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(x)ẋ2 + · · · + ∂V

∂xn

(x)ẋn
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system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)
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x1(t) parameterized by time t] is shown in Figure 6.4b, and the time
response of the total system energy is shown in Figure 6.4c. In this
case, we see oscillatory state-variable time responses, an elliptical phase
portrait, and constant total energy. The system eigenvalues are λ1.2 =
±j3.16, purely imaginary (zero real part). Since they are distinct, the
geometric multiplicity equals the algebraic multiplicity for each.

With c = 1 N-s/m and all other parameters unchanged, the state-variable
time responses are shown in Figure 6.5a, the phase portrait is shown in
Figure 6.5b, and the time response of the total system energy is shown in
Figure 6.5c. In this case, each state-variable time response decays to zero
as time tends to infinity, as does the total energy response. The phase por-
trait depicts a state trajectory that spirals in toward the equilibrium state at
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FIGURE 6.5 (a) State-variable responses; (b) phase portrait; (c) energy response
for an asymptotically-stable equilibrium.

Convergence	to	
[0,	0]T,	hence	
asymptotically	
stable

• Negative	damping:	 c	=	-1
– Not	clear	what	this	means	physically:		A	powered	
damper?

– dE/dt >	0	which	means	 that	energy	 strictly	 increases
– λ1,	λ2 =	0.5	± j	3.12
– Unstable:

• State	response	is	an	exponentially	growing sinusoid

6 INTRODUCTION

y(t)

f(t)

k

c m

FIGURE 1.2 Translational mechanical system.

ky(t)

cy(t)

f (t)m

FIGURE 1.3 Free-body diagram.

system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)

EXAMPLES 7

The original single second-order differential equation can be written as
a coupled system of two first-order differential equations, that is,

ẋ1(t) = x2(t)

ẋ2(t) = − c

m
x2(t) − k

m
x1(t) + 1

m
f (t)

The output is the mass displacement

y(t) = x1(t)

The generic variable name for input vectors is u(t), so we define:

u(t) = f (t)

We now write the preceding equations in matrix-vector form to get a
valid state-space description. The general state-space description consists
of the state differential equation and the algebraic output equation. For
Example 1.1, these are

State Differential Equation

ẋ(t) = Ax(t) + Bu(t)

[
ẋ1(t)
ẋ2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]
+

⎡

⎣
0
1
m

⎤

⎦u(t)

Algebraic Output Equation

y(t) = Cx(t) + Du(t)

y(t) = [ 1 0 ]
[

x1(t)
x2(t)

]
+ [0]u(t)

The two-dimensional single-input, single-output system matrices in this
example are (with m = p = 1 and n = 2):

A =

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦ B =

⎡

⎣
0
1
m

⎤

⎦ C = [ 1 0 ]

D = 0

In this example, the state vector is composed of the position and
velocity of the mass m. Two states are required because we started with
one second-order differential equation. Note that D = 0 in this example
because no part of the input force is directly coupled to the output. !
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Example 6.1 We consider the second-order linear translational mechan-
ical system that was introduced in Example 1.1, which for zero external
applied force is governed by

m ÿ(t) + cẏ(t) + ky(t) = 0

in which y(t) represents the displacement of both the mass and spring
from rest. The state variables were chosen previously as the mass/spring
displacement x1(t) = y(t) and the mass velocity x2(t) = ẏ(t), yielding
the homogeneous state equation

[
ẋ1(t)
ẋ2(t)

]
=

⎡

⎣
0 1

− k

m
− c

m

⎤

⎦
[

x1(t)
x2(t)

]

We recall that these state variables are related to energy stored in this
system. The spring displacement characterizes the potential energy stored
in the spring, and the mass velocity characterizes the kinetic energy stored
in the mass. We therefore can express the total energy stored in the system
by the function

E(x1, x2) = 1
2
kx2

1 + 1
2
mx2

2

We observe that the system energy is positive whenever [x1, x2]T ̸=
[0, 0]T and attains the minimum value of zero at the equilibrium state
[x̃1, x̃2]T = [0, 0]T .

On evaluating the energy function along a system trajectory, we can
compute the time derivative

d

dt
E[x1(t), x2(t)] = d

dt

[
1
2
kx2

1(t) + 1
2
mx2

2(t)

]

= kx1(t)ẋ1(t) + mx2(t)ẋ2(t)

= kx1(t)

[
x2(t)

]
+ mx2(t)

[
− k

m
x1(t) − c

m
x2(t)

]

= −cx2
2(t)

where we have invoked the chain rule and have used the state equation
to substitute for the state-variable derivatives.

For zero damping (c = 0) we have dE/dt ≡ 0, so the total system
energy is constant along any trajectory. This corresponds to a perpetual
exchange between the potential energy stored in the spring and the kinetic
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computing the following function of the state variables

Ė(x1, x2) ! ∂E

∂x1
(x1, x2)ẋ1 + ∂E

∂x2
(x1, x2)ẋ2

= (kx1)ẋ1 + (mx2)ẋ2

= (kx1)(x2) + (mx2)

(
− k

m
x1 − c

m
x2

)

= −cx2
2

followed by evaluating along a system trajectory x(t) = [x1(t), x2(t)]T to
obtain

Ė[x1(t), x2(t)] = −cx2
2(t) = d

dt
E[x1(t), x2(t)]

In addition, properties of the total energy time derivative along all sys-
tem trajectories and accompanying stability implications can be deduced
from properties of the function Ė(x1, x2) over the entire state space. An
important consequence is that explicit knowledge of the trajectories them-
selves is not required.

Lyapunov Stability Analysis

The Russian mathematician A. M. Lyapunov (1857–1918) observed
that conclusions regarding stability of an equilibrium state can be
drawn from a more general class of energy-like functions. For the
nonlinear state equation (6.2), we consider real-valued functions V (x) =
V (x1, x2, . . . , xn) with continuous partial derivatives in each state variable
that are positive definite, meaning that V (0) = 0 and V (x) > 0 for all
x ̸= 0 at least in a neighborhood of the origin. This generalizes the
property that the total energy function has a local minimum at the
equilibrium. To analyze the time derivative of the function V (x) along
trajectories of Equation (6.2), we define

V̇ (x) = ∂V

∂x1
(x)ẋ1 + ∂V

∂x2
(x)ẋ2 + · · · + ∂V

∂xn

(x)ẋn

=
[

∂V

∂x1
(x)

∂V

∂x2
(x) · · · ∂V

∂x2
(x)

]
⎡

⎢⎢⎣

ẋ1
ẋ2
...
ẋn

⎤

⎥⎥⎦

= ∂V

∂x
(x)f (x)
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system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)
x2(t)

]
x1(t) = y(t)
x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)

This	unstable	
system	is	on	its	
way	to	some	
sort	of	break	
down!
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FIGURE 6.6 (a) State-variable responses; (b) phase portrait; (c) energy response
for an unstable equilibrium.

the origin. The system eigenvalues are λ1,2 = −0.50 ± j3.12, each with
negative real part.

Finally, with the damping coefficient changed to c = −1 N-s/m, the
state-variable time responses are shown in Figure 6.6a, the phase portrait
is shown in Figure 6.6b, and the time response of the total system energy
is shown in Figure 6.6c. Here each state variable time response grows
in amplitude and the total energy increases with time. The phase portrait
depicts a state trajectory that spirals away from the equilibrium state at
the origin. The system eigenvalues are λ1,2 = +0.50 ± j3.12, each with
positive real part.

An extremely appealing feature of the preceding energy-based analysis
is that stability of the equilibrium state can be determined directly from
the time derivative of the total energy function along trajectories of the
system. Computation of this time derivative can be interpreted as first
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BOUNDED-INPUT	BOUNDED-
OUTPUT	STABILITY

Whether	the	zero-state	response	is	bounded	for	a	bounded	input

Bounded-Input	Bounded-Output	
(BIBO)	Stability

• Recall	that	the	output	of	an	LTI	system	consists	of	
two	parts:

• BIBO	stability	concerns	yzs(t)
• As	you	have	seen	 BIBO	stability	in	other	courses	we	
will	be	brief:
– A	system	 is	BIBO	stable	 if	its	impulse	 response	has	a	 finite	
sum

y(t) =CeA(t−t0 )x0 + CeA(t−τ )Bu(τ )dτ
t0

t
∫ +Du(t)

zero-input output: yzi(t) yzs(t): zero-state output

Test	for	BIBO	Stability
BOUNDED-INPUT, BOUNDED-OUTPUT STABILITY 219

a choice of vector norm for both the input space Rm and the output space
Rp and a corresponding induced matrix norm on the set of p × m matrices
(see Appendix B, Section 9).

Theorem 6.6 The linear state equation (6.1) is bounded-input, bounded-
output stable if and only if the impulse response matrix H(t) = CeAtB+
Dδ(t) satisfies ∫ ∞

0
||H(τ )||dτ < ∞

Proof. To show sufficiency, suppose that this integral is finite, and set

η =
∫ ∞

0
||H(τ )||dτ

Then, for all t ≥ 0, the zero-state output response satisfies

||y(t)|| = ||
∫ t

0
H(τ )u(t − τ )dτ ||

≤
∫ t

0
||H(τ )u(t − τ )||dτ

≤
∫ t

0
||H(τ )||||u(t − τ )||dτ

≤
∫ t

0
||H(τ )||dτ sup0≤σ≤t ||u(σ )||

≤
∫ ∞

0
||H(τ )||dτ supt≥0||u(t)||

= ηsupt≥0||u(t)||

from which the bound in Definition 6.5 follows from the definition of
supremum. Since the input signal was arbitrary, we conclude that the
system (6.1) is bounded-input, bounded-output stable.

To show that bounded-input, bounded-output stability implies
∫ ∞

0
||H(τ )||dτ < ∞

we prove the contrapositive. Assume that for any finite η > 0 there exists
a T > 0 such that ∫ T

0
||H(τ )||dτ > η

• This	means	that	H(t)	is	absolutely	integrable
• There	is	a	strong	relationship	between	internal	
stability	and	BIBO	stability	(both	involve	eAt)
• If	a	system	is	asymptotically	stable,	it	is	BIBO	
stable

• However,	the	opposite	is	not	necessarily	true...
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Example 6.3 Consider the following two-dimensional state equation:
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
1 0

][
x1(t)
x2(t)

]
+

[
−1

1

]
u(t)

y(t) = [ 0 1 ]
[

x1(t)
x2(t)

]

The characteristic polynomial is

|sI − A| =
∣∣∣∣

s −1
−1 s

∣∣∣∣

= s2 − 1

= (s + 1)(s − 1)

indicating that the eigenvalues of A are λ1,2 = −1, +1 and according to
Theorem 6.3, the state equation is not asymptotically stable as a result.
This can be seen by inspection of the matrix exponential

eAt =

⎡

⎢⎣

1
2
(et + e−t )

1
2
(et − e−t )

1
2
(et − e−t )

1
2
(et + e−t )

⎤

⎥⎦

The growing exponential term et associated with the positive eigenvalue
causes every element of eAt to diverge as t increases. The transfer func-
tion is

H(s) = C(sI − A)−1B

= [ 0 1 ]
[

s −1
−1 s

]−1 [
−1

1

]

= [ 0 1 ]

[
s 1
1 s

]

s2 − 1

[
−1

1

]

= s − 1
(s + 1)(s − 1)

= 1
(s + 1)

from which the impulse response h(t) = e−t , t ≥ 0, satisfies
∫ ∞

0
|h(τ )|dτ = 1
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Example 6.3 Consider the following two-dimensional state equation:
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
1 0

][
x1(t)
x2(t)

]
+

[
−1

1

]
u(t)

y(t) = [ 0 1 ]
[

x1(t)
x2(t)

]

The characteristic polynomial is

|sI − A| =
∣∣∣∣

s −1
−1 s

∣∣∣∣

= s2 − 1

= (s + 1)(s − 1)

indicating that the eigenvalues of A are λ1,2 = −1, +1 and according to
Theorem 6.3, the state equation is not asymptotically stable as a result.
This can be seen by inspection of the matrix exponential

eAt =

⎡

⎢⎣

1
2
(et + e−t )

1
2
(et − e−t )

1
2
(et − e−t )

1
2
(et + e−t )

⎤

⎥⎦

The growing exponential term et associated with the positive eigenvalue
causes every element of eAt to diverge as t increases. The transfer func-
tion is

H(s) = C(sI − A)−1B

= [ 0 1 ]
[

s −1
−1 s

]−1 [
−1

1

]

= [ 0 1 ]

[
s 1
1 s

]

s2 − 1

[
−1

1

]

= s − 1
(s + 1)(s − 1)

= 1
(s + 1)

from which the impulse response h(t) = e−t , t ≥ 0, satisfies
∫ ∞

0
|h(τ )|dτ = 1

Not	asymptotically	stable...		In	fact,	unstable!
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Example 6.3 Consider the following two-dimensional state equation:
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
1 0

][
x1(t)
x2(t)

]
+

[
−1

1

]
u(t)

y(t) = [ 0 1 ]
[

x1(t)
x2(t)

]

The characteristic polynomial is

|sI − A| =
∣∣∣∣

s −1
−1 s

∣∣∣∣

= s2 − 1

= (s + 1)(s − 1)

indicating that the eigenvalues of A are λ1,2 = −1, +1 and according to
Theorem 6.3, the state equation is not asymptotically stable as a result.
This can be seen by inspection of the matrix exponential

eAt =

⎡

⎢⎣

1
2
(et + e−t )

1
2
(et − e−t )

1
2
(et − e−t )

1
2
(et + e−t )

⎤

⎥⎦

The growing exponential term et associated with the positive eigenvalue
causes every element of eAt to diverge as t increases. The transfer func-
tion is

H(s) = C(sI − A)−1B

= [ 0 1 ]
[

s −1
−1 s

]−1 [
−1

1

]

= [ 0 1 ]

[
s 1
1 s

]

s2 − 1

[
−1

1

]

= s − 1
(s + 1)(s − 1)

= 1
(s + 1)

from which the impulse response h(t) = e−t , t ≥ 0, satisfies
∫ ∞

0
|h(τ )|dτ = 1
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Example 6.3 Consider the following two-dimensional state equation:
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
1 0

][
x1(t)
x2(t)

]
+

[
−1

1

]
u(t)

y(t) = [ 0 1 ]
[

x1(t)
x2(t)

]

The characteristic polynomial is

|sI − A| =
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s −1
−1 s

∣∣∣∣

= s2 − 1

= (s + 1)(s − 1)

indicating that the eigenvalues of A are λ1,2 = −1, +1 and according to
Theorem 6.3, the state equation is not asymptotically stable as a result.
This can be seen by inspection of the matrix exponential

eAt =

⎡

⎢⎣

1
2
(et + e−t )

1
2
(et − e−t )

1
2
(et − e−t )

1
2
(et + e−t )

⎤

⎥⎦

The growing exponential term et associated with the positive eigenvalue
causes every element of eAt to diverge as t increases. The transfer func-
tion is

H(s) = C(sI − A)−1B

= [ 0 1 ]
[

s −1
−1 s

]−1 [
−1

1

]

= [ 0 1 ]

[
s 1
1 s

]

s2 − 1

[
−1

1

]

= s − 1
(s + 1)(s − 1)

= 1
(s + 1)

from which the impulse response h(t) = e−t , t ≥ 0, satisfies
∫ ∞

0
|h(τ )|dτ = 1
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Example 6.3 Consider the following two-dimensional state equation:
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
1 0

][
x1(t)
x2(t)

]
+

[
−1

1

]
u(t)

y(t) = [ 0 1 ]
[

x1(t)
x2(t)

]

The characteristic polynomial is

|sI − A| =
∣∣∣∣

s −1
−1 s

∣∣∣∣

= s2 − 1

= (s + 1)(s − 1)

indicating that the eigenvalues of A are λ1,2 = −1, +1 and according to
Theorem 6.3, the state equation is not asymptotically stable as a result.
This can be seen by inspection of the matrix exponential

eAt =

⎡

⎢⎣

1
2
(et + e−t )

1
2
(et − e−t )

1
2
(et − e−t )

1
2
(et + e−t )

⎤

⎥⎦

The growing exponential term et associated with the positive eigenvalue
causes every element of eAt to diverge as t increases. The transfer func-
tion is

H(s) = C(sI − A)−1B

= [ 0 1 ]
[

s −1
−1 s

]−1 [
−1

1

]

= [ 0 1 ]

[
s 1
1 s

]

s2 − 1

[
−1

1

]

= s − 1
(s + 1)(s − 1)

= 1
(s + 1)

from which the impulse response h(t) = e−t , t ≥ 0, satisfies
∫ ∞

0
|h(τ )|dτ = 1Satisfies	the	test	for	BIBO	stability:	
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Example 6.3 Consider the following two-dimensional state equation:
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
1 0

][
x1(t)
x2(t)

]
+

[
−1

1

]
u(t)

y(t) = [ 0 1 ]
[

x1(t)
x2(t)

]

The characteristic polynomial is

|sI − A| =
∣∣∣∣

s −1
−1 s

∣∣∣∣

= s2 − 1

= (s + 1)(s − 1)

indicating that the eigenvalues of A are λ1,2 = −1, +1 and according to
Theorem 6.3, the state equation is not asymptotically stable as a result.
This can be seen by inspection of the matrix exponential

eAt =

⎡

⎢⎣

1
2
(et + e−t )

1
2
(et − e−t )

1
2
(et − e−t )

1
2
(et + e−t )

⎤

⎥⎦

The growing exponential term et associated with the positive eigenvalue
causes every element of eAt to diverge as t increases. The transfer func-
tion is

H(s) = C(sI − A)−1B

= [ 0 1 ]
[

s −1
−1 s

]−1 [
−1

1

]

= [ 0 1 ]

[
s 1
1 s

]

s2 − 1

[
−1

1

]

= s − 1
(s + 1)(s − 1)

= 1
(s + 1)

from which the impulse response h(t) = e−t , t ≥ 0, satisfies
∫ ∞

0
|h(τ )|dτ = 1

So	the	system	is	unstable,	but	BIBO	stable?		Why?

Pole-Zero
Cancellation

Lesson:	Don’t	cancel	poles	and	zeros	when	 testing	 for	stability


