

Introduction

- Recall that the state response of an LTI system consists of two parts:

- Stability analysis has two corresponding aspects:
- Internal stability: Whether $\mathrm{x}_{\mathrm{zi}}(\mathrm{t})$ stays bounded
- Bounded-input bounded stability: Whether $\mathrm{y}_{25}(\mathrm{t})$ stays bounded for a bounded input

INTERNAL STABILITY

Internal Stability

- Here, we assume $u(t)=0$ and focus on the system's behaviour on its own
- The fundamental equation is

$$
\dot{x}(t)=A x(t) \quad x(0)=x_{0}
$$

- Or for a nonlinear system

$$
\dot{x}(t)=f[x(t)] \quad x(0)=x_{0}
$$

- An equilibrium state \tilde{x} is a particular state vector at which the derivative equals 0
- Depicted below are equilibrium states a, b and c :
- \mathbf{a} is unstable: even a tiny movement will move the state away from equilibrium
- b is stable: a small movement will move the state a small distance
- c is asymptotically stable: a small movement will move the state, but it will eventually return to the original point.

Asymptotically Stable

- Asymptotically stable if it is stable and it is possible to choose $\delta>0$ such that $\left\|x_{0}\right\|<\delta$ implies that $\lim _{t \rightarrow \infty}\|x(t)\|=0$. Specifically, given ny $\varepsilon>0$, there exists $T>0$ for which the corresponding trajector Globally asymptoticall $t \geq$
- Globally asymptotically stable if it is stable and $\lim _{t \rightarrow \infty}\|x(t)\|=0$. State. Specifically, given any $M>0$ and $\varepsilon>0$, there exists $T>0$ such that $\left\|x_{0}\right\|<M$ implies that the corresponding tra jectory satisfies $\|x(t)\| \leq \varepsilon$ for all $t \geq T$

Stable and Unstable

Definition 6.1 The equilibrium state $\tilde{x}=0$ of Equation (6.2) is
Stable if, given any $\varepsilon>0$ there corresponds a $\delta>0$ such that $\left\|x_{0}\right\|$ $<\delta$ implies that $\|x(t)\|<\varepsilon$ for all $t \geq 0$.

- Unstable if it is not stable.

Assumptions

- If $u(t)=0$ and $t_{0}=0$, the state response is

$$
\mathbf{x}(t)=e^{\Lambda t} \mathbf{x}_{0}
$$

- We will assume the following (each statement implies the others):
- A has n linearly independent eigenvectors
- A has n distinct eigenvalues
- A can be diagonalized

$$
A=V D V^{-1}
$$

- We expand the definition of the matrix exponential to incorporate $V^{2} V^{-1}$ in place of A :

Using

$$
A=V D V^{-1} \quad A^{k}=V D^{k} V^{-1}
$$

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\cdots
$$

$=V V^{-1}+V D V^{-1}+\frac{V D^{2} V^{-1} t^{2}}{2!}+\frac{V D^{3} V^{-1} t^{3}}{3!}+\cdots$
$=V\left(I+D t+\frac{D^{2} t^{2}}{2!}+\frac{D^{3} t^{3}}{3!}+\cdots\right) V^{-1}$
$=V e^{D t} V^{-1}$

$$
x_{i}(t)=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}+\cdots
$$

- The exact state response requires all these constants (a, b, \ldots) to be known, but for stability analysis we just want to know if the expression will grow without bound
- Clearly, if the eigenvalues of $A\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ are real numbers then we just have a sum of pure exponentials
- If any $\lambda_{i}>0$ then the system is unstable
- If all $\lambda_{i}<0$ then the system is asymptotically stable
- If $n-1$ eigenvalues are negative, and just one eigenvalue is zero then the system is stable, but not asymptotically stable
- What does edt look like?

$$
e^{D t}=\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & & 0 \\
& & \ddots & \\
0 & \cdots & 0 & e^{\lambda_{n} t}
\end{array}\right]
$$

- We can use this to re-write $x(t)$

$$
\begin{aligned}
x(t) & =e^{A t} x_{0} \\
& =V e^{D t} V^{-1} x_{0}
\end{aligned}
$$

- $\mathrm{V}, \mathrm{V}^{-1}$, and x_{0} are constant matrices and vectors. Therefore each row of $x(t)$ is just some linear combination of terms involving the diagonals of $e^{D t}$

$$
x_{i}(t)=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}+\cdots
$$

Complex Eigenvalues

- The eigenvalues of A will often be complex, even if A is purely real
- Consider $\mathrm{e}^{\lambda \mathrm{t}}$ and let $\lambda=\mathrm{a}+\mathrm{i} \mathrm{b}$

$$
\begin{aligned}
e^{\lambda t}=e^{(a+i b) t} & =e^{a t} e^{i b t} \\
& =e^{a t}(\cos b t+i \sin b t) \\
\left|e^{\lambda t}\right| & =e^{a t}
\end{aligned}
$$

- This magnitude decays for $a<0$, stays constant for $\mathrm{a}=0$, and grows (explodes!) for $\mathrm{a}>0$
- Hence, for stability all we care about is $\operatorname{Re}\{\lambda\}$

The Eigenvalue Test for Internal Stability

- If our assumption of n distinct eigenvalues holds, then we have the following eigenvalue test for internal stability:
- The system is stable if all eigenvalues have a non-positive real part
- If one eigenvalue is zerothen there is a constant non-decaying tem
- Otherwise, if all eigenvalues are strictly negative we have asymptotic stability
- If any eigenvalue has a positive real part then the system is unstable
- The same holds for repeated eigenvalues, except for repeated eigenvalues with zeroreal part. In this case a more sophisticated test is required (out of our scope).

Connection between Poles and Eigenvalues

- The poles of a system's transfer function will be eigenvalues of A
- Caveat: Its possible that some of the eigenvalues of A will not be poles of the transfer function due to pole-zero cancellation.
- (We'll see an example of this later)
- Let $\mathrm{H}(\mathrm{s})$ be a general $2^{\text {nd }}$ order transfer function

$$
H(s)=\frac{b}{s^{2}+a s+b} \quad \text { poles: } \frac{-a \pm \sqrt{a^{2}-4 b}}{2}
$$

- The corresponding A matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-b & -a
\end{array}\right]
$$

- Lets work out its eigenvalues

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \quad \text { Polynomia } \\
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
-b & -a-\lambda
\end{array}\right]\right) & =0 \\
\lambda^{2}+a \lambda+b & =0 \\
\lambda & =\frac{-a \pm \sqrt{a^{2}-4 b}}{2}
\end{aligned}
$$

Energy-Based Analysis

- Recall that state variables are always associated with energy storage elements
- A stable system will dissipate or maintain energy
- If the system's energy always dissipates down to 0 then it is asymptotically stable
- If the energy in the system actually increases (without any applied input) then the system is unstable
- Consider the following simple mechanical system..

- The state variablex $x_{1}(t)$ represents the displacement of the mass. The system stores energy in two ways:
- Potential energy in the spring: $1 / 2 \mathrm{k} x_{1}^{2}$
- Kinetic energy in the moving mass: $1 / 2 m x_{2}{ }^{2}$
- Total energy:

$$
E\left(x_{1}, x_{2}\right)=\frac{1}{2} k x_{1}^{2}+\frac{1}{2} m x_{2}^{2}
$$

- Work out the derivative of E with respect to time...
- Zero damping: $\mathrm{c}=0$
$-\mathrm{dE} / \mathrm{dt}=0$ which means that the total energy is constant
- Energy goes back and forth between the moving mass and the spring, but is never lost (or gained)
$-\lambda_{1}, \lambda_{2}= \pm \mathrm{j} 3.16$ (for $\mathrm{m}=1 \mathrm{~kg}, \mathrm{k}=10 \mathrm{~N} / \mathrm{m}$)
- The system oscillates sinusoidally
- The system is stable, but not asymptotically stable

$$
\begin{aligned}
& \left.\quad \begin{array}{rl}
\frac{d}{d t} E\left[x_{1}(t), x_{2}(t)\right] & =\frac{d}{d t}\left[\frac{1}{2} k x_{1}^{2}(t)+\frac{1}{2} m x_{2}^{2}(t)\right] \\
& =k x_{1}(t) \dot{x}_{1}(t)+m x_{2}(t) \dot{x}_{2}(t) \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \quad E\left(x_{1}, x_{2}\right)=\frac{1}{2} k x_{1}^{2}+\frac{1}{2} m x_{2}^{2} \\
& \\
& =k x_{1}(t)\left[x_{2}(t)\right]+m x_{2}(t)\left[-\frac{k}{m} x_{1}(t)-\frac{c}{m} x_{2}(t)\right] \\
& \\
&
\end{aligned}
$$

- Lets try adjusting the damping coefficient, c

$$
\begin{aligned}
& \text { 171191191117 }
\end{aligned}
$$

- Positive damping: c=1
$-\mathrm{dE} / \mathrm{dt}<0$ which means that energy strictly decreases
$-\lambda_{1}, \lambda_{2}=-0.5 \pm j 3.12$
- Asymptotically stable:
- State response is an exponentially decaying sinusoid
- Negative damping: c = -1
- Not clear what this means physically: A powered damper?
$-\mathrm{dE} / \mathrm{dt}>0$ which means that energy strictly increases
$-\lambda_{1}, \lambda_{2}=0.5 \pm \mathrm{j} 3.12$
- Unstable:
- State response is an exponentially growing sinusoid

BOUNDED-INPUT BOUNDEDOUTPUT STABILITY

Bounded-Input Bounded-Output (BIBO) Stability

- Recall that the output of an LTI system consists of two parts:

- BIBO stability concerns $y_{z s}(t)$
- As you have seen BIBO stability in other courses we will be brief:
- A system is BIBO stable if its impulse response has a finite sum

Test for BIBO Stability

Theorem 6.6 The linear state equation (6.1) is bounded-input, bounded output stable if and only if the impulse response matrix $H(t)=C e^{A t} B+$ $D \delta(t)$ satisfies

$$
\int_{0}^{\infty}\|H(\tau)\| d \tau<\infty
$$

- This means that $\mathrm{H}(\mathrm{t})$ is absolutely integrable
- There is a strong relationship between internal stability and BIBO stability (both involve e ${ }^{\text {At }}$)
- If a system is asymptotically stable, it is BIBO stable
- However, the opposite is not necessarily true...

Example 6.3 Consider the following two-dimensional state equation:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{r}
-1 \\
1
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{aligned}
$$

The characteristic polynomial is

$$
\begin{aligned}
|s I-A| & =\left|\begin{array}{rr}
s & -1 \\
-1 & s
\end{array}\right| \\
& =s^{2}-1 \\
& =(s+1)(s-1) \quad \lambda_{1,2}=-1,+1
\end{aligned}
$$

Not asymptotically stable... In fact, unstable!

$$
e^{A t}=\left[\begin{array}{ll}
\frac{1}{2}\left(e^{t}+e^{-t}\right) & \frac{1}{2}\left(e^{t}-e^{-t}\right) \\
\frac{1}{2}\left(e^{t}-e^{-t}\right) & \frac{1}{2}\left(e^{t}+e^{-t}\right)
\end{array}\right]
$$

